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Abstract

This paper aims at introducing to the reader basic statistical analysis done by most applied statisticians. The paper introduces
simple linear regression with the help of an example. The objective is to build a linear model between two variables and test
the significance of the model.

Introduction

Statistics is generally understood to be a branch of mathematics concerned with collecting and interpreting data. This
however, is largely untrue. Statistics, by itself should not be understood as a branch of mathematics. Mathematics is
definitive, and in most cases deterministic. A problem in mathematics has one correct answer. In statistical analysis,
there is no correct answer. This is what makes statistics the most flexible and sought after tool in understanding the
workings of the world.

This is not to say that mathematics renders itself useless in the field of statistics. Indeed, understanding most topics
in statistics requires a sound knowledge of mathematics, which is why most statisticians have an undergraduate degree
in mathematics. Today, we live in a world where everything turns into data at the end of the day, and there are not
enough qualified statisticians to make sense of the data. In 2009, an article in the New York Times [1] elaborated very
articulately, on why being a statistician is one of the most sought after professions.

One of the most important aspect of statistics is to find out if certain things are related to each other. For example,
the fact that smoking causes lung cancer was proved largely due to statistical analysis. Similarly, we might want to
analyze if a certain variable, Y (response) depends on a set of variables X1, X2, . . . , Xp (predictors). And if there is
such a dependence, then we want to find the f such that Y = f(X1, X2, . . . Xp). This function f is found by using
Regression.

This paper focuses on Simple Linear Regression, i.e., when we have only one predictor, X, and f is a linear function,
giving the relation, Y = β0 + β1X. The concept of simple linear regression will be explained step by step with the
help of an example dataset.

Dataset

A dataset is a collection of data, usually presented in tabular form, where each column represents a variable of interest.
In simple linear regression, there are only two columns, one for the response variable, Y and one for the predictor
variable, X. This paper uses the example of one of the most basic and famous datasets.

Karl Pearson organized the collection of data of over 1100 families in England in the period 1893 - 1898. This particular
data set gives the heights in inches of mothers and their daughters. All daughters are at least age 18, and all mothers
are younger than 65. The objective is to find out whether there is a relation between the height of mothers and their
daughters.

Notice how the background of the dataset is as important as the numbers in the dataset. For example, it is important
to know that the daughters are atleast age 18, so we can assume that they have attained their full height.

Now, the original dataset has 1100 observations, but for the purpose of this paper, I have chosen a random subset of
200 observations from the dataset. This is just to ensure that the graphs produced at not messy. The numbers in the
dataset are given in the table below.

Of course, looking at the numbers does not really help us, specially when we have 200 such pairs. This is where
graphical tools prove to be much more useful.
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X Y

Mother’s Height Daughter’s Height

63.5 66.0

63.5 63.2

62.7 63.0
...

...

Each of the rows above, corresponds to a datapoint, which is to say that each point can be written as (xi, yi), and this
would correspond to a point on a graph of Y vs X. When all the datapoints are plotted together, we get something
called a scatterplot. This is essentially the first tool in understanding whether there is any relation between X and
Y .

From the scatterplot above, we notice that as mother’s height increases, we see some increase in the daughter’s height.
Note that this is not individually true, but the trend indicates that it is generally true.

As mentioned earlier, the objective is to find a linear relationship between X and Y .

Model

If there is a linear relationship between X and Y , all points (xi, yi) should lie on a common line. We also know that
they do not exactly lie on a common line and there is some deviation(as demonstrated in the scatterplot above). This
is represented by the model below

yi = β0 + β1xi + εi

where β0 is the y-intercept, β1 is the slope of the line, and εi is known as the error. When we write this model, we
make the following very important assumptions:

• A linear model is appropriate

• All the observations, y1, . . . yn are independent of each other. In this dataset, we assumed that none of the
daughters are related.

• The errors εi ∼ N(0, σ2). This means that the errors follow a normal distribution[3] with mean 0 and variance
σ2.

• All observations have a constant variance (σ2, as opposed to σ2
i ).

Whenever a model is fit to the dataset, it is the duty of the statistician to ensure that the model assumptions stated
above hold true.

One important point to note in the model, is that the unknown quantities are β0 and β1, and the points (xi, yi) are
all known, since the line is fit only after we have the data. Thus, the term ”linear” refers to the equation being linear
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in the βs, and not in the xs. If instead we had the equation

yi = β0 + β1x
2
i + εi

This would still be a linear regression model.

The next step is to try and estimate β0 and β1 from the data. Notice how we use the word ”estimate”, because
every time the experiment is done, we get a different dataset, and every dataset gives a new ”estimate” of these two
parameters. These estimates are denoted by β̂0 and β̂1, and are calculated by using a method known as Ordinary
Least Squares (OLS).

OLS - Ordinary Least Squares

Clearly, we can not fit a line by joining all the points. This is where mathematics, gives way to statistics. We fit a line
to the data, in such a way that the overall deviation of the datapoints from the line is minimized. This is done by a
method known as Ordinary Least Squares, or OLS.

Notice that in the model, the error εi is nothing but the deviation of each point from the line. Now let us assume that
we have already fit the line, and have found β̂0, β̂1 and for each xi we have a ŷi. Thus each (xi, ŷi) lies on the line:

ŷi = β̂0 + β̂1xi

The estimated errors are known as residuals = yi − ŷi, giving :

ε̂i = yi − (β̂0 + β̂1xi)

The OLS method estimates β̂0 and β̂1 are obtained by minimizing the sum of the squared residuals over all observations,
i.e.

(β̂0, β̂1) = min
(β0,β1)

n∑
i=1

(yi − (β0 + β1xi))
2

This turns out to be an exercise in basic calculus, the proof for which can be found in most statistics books [2]. The
OLS estimates we get are:

β̂1 =

n∑
i=1

(yi − ȳ)(xi − x̄)

n∑
i=1

(xi − x̄)2
β̂0 = ȳ − β̂1x̄

where ȳ and x̄ are the means of yis and xis. β̂0 and β̂1 represent the actual y-intercept and slope of the line.

In our dataset, we get β̂0 = 25.05 and β̂1 = 0.62 giving the equation

Daughterheight = 25.04 + 0.58Motherheight
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Interpretation:

β̂0 = 25.05 implies that when the mother’s height is 0 inches, the daughters height on average is 25.05 inches. This of
course does not make sense, and that is alright. In most cases β̂0 need not be interpreted. We are more interested in
β̂1. β̂1 = 0.58 implies that with one inch increase (decrease) in the mother’s height, we expect the daughters height to
increase(decrease) by 0.58 inches. This is what gives us the relation between mother’s height and daughter’s height.
We need to analyze this more carefully.

Significance

The most important aspect of simple linear regression is to make sense of the β̂1. Since β̂1 is the slope of the line, a
value of 0 would mean a horizontal line. If the line was horizontal, it would imply that there is no relationship between
X and Y . Thus, our objective is to always check whether β̂1 = 0 or not.

The data that we collect is known as a sample and is a representation of the whole population. Clearly, it is
impossible for us to collect the heights of mothers and their daughters all over the world. So we collect heights from
a sample that represents the population. Every time, we collect data from a sample, we will get different estimates of
β0 and β1.

Remember how in our dataset we had chosen 200 observations at random from 1100 observations so that the scatterplot
was not messy. If we take different sets of 200 observations again, we will get different estimates of β1.

No. β̂1

1 0.61

2 0.59

3 0.51

4 0.54

Notice, from the table that the β̂1 values are close to 0.58, but not exactly 0.58. Thus, for each sample we get different
estimates. And so we need to check if for our sample, the value of β̂1 is different enough from 0 for us to be confident
that it is in fact, not 0.

This is done by using a method known as Hypothesis Testing. A step by step explanation on this can be found in
the references [2] [3]. I present briefly, how we decide whether β̂1 is different enough from 0.

We first construct a Null Hypothesis, H0, and an Alternate Hypothesis, Ha. H0 is assumed to be true, and from
the data, we want to gather enough evidence to reject the H0 and accept Ha.

H0 : β1 = 0
Ha : β1 6= 0

This structure makes sense, because we want to be sure that there is in fact a relationship between X and Y , and for
that to be true, we want the data to give us enough evidence to reject the null hypothesis.

Next, we calculate something called the Test Statistic, t which in this case is

t =
β̂1

se(β̂1)
where se(β̂1) =

√√√√√√ σ̂2

n∑
i=1

(xi − x̄)2

This t follows a t-distribution with n − 2 degrees of freedom [3]. Intuitively, this t scales β̂1 down by its standard

deviation, and gives us an idea on whether the β̂1 is different from 0.

If |t| > 1.96 (approx) this means, that we can reject the null hypothesis, H0, and we say the the variable X is significant.
That is to say, that we are confident that X and Y are related, and β1 is in fact different from 0.

In our dataset, β̂1 = 0.58, se(β̂1) = 0.069 and t = 7.79. Since |t| = 7.79 > 1.96, we can reject H0, and claim that there
is a significant relationship between mother’s height and daughter’s height.

4



Additional Comments

We have, at this point succeeded in analyzing the dataset. We have found the relationship between X and Y , and
shown that this relationship is significant. This is what most statisticians have to do when they are given a dataset.
However there are some roadblocks, and most datasets are trickier than this one. Following are some other important
aspects of statistical analysis:

• Once the model has been fit, it is important to check the assumptions. In a lot of cases, the constant variance
assumption is not valid, in which case we need to transform our data [2].

• In a lot of cases, a linear relationship is not adequate. Higher order regression models should then be tried [2].

• We generally have more than one predictor variable, X1, X2, . . . , Xp. In that case, we fit the linear regression
model

yi = β0 + β1x1i + . . . xpi + εi

In our dataset for example, we could also introduce father’s height, weight of the daughter, and time of menarche
as potential predictor variables. However, in that case, we move from 2 dimensions to p + 1 dimensions. The
regression model is then built by using matrices [2].

• Sometimes, the data does not come from a Normal distribution, in which case we fit Generalized Linear Regression
Models [4].

Another important aspect of statistical analysis is computer programming. Since most datasets are large, and com-
putations are complicated, it is impractical to do regression on paper. Statistical programming languages make life
a million times easier and also provide us with some excellent graphical tools. R and SAS are the two most famous
languages used. SAS is used mostly in industry settings and biostatistics work. R is used extensively in academic
settings. I used R to do the analysis in this paper.

Conclusion

Statistical analysis at its core is about quantifying uncertainty. It is about making inferences from raw data, figuring
out trends and concluding with confidence that the results obtained are not coincidental.

In the end, the model obtained would probably not be the exact model. For example, if we were able to get data on
all mothers and daughters in the world, then β1 might be very different from 0.58. But, the idea is to get as much
information as possible from the model. There is one statement most statisticians live by, ”All models are wrong, but
some are useful”.
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