NO SUBGROUP OF A_4 HAS INDEX 2

KEITH CONRAD

The group A_4 has order 12, so its subgroups could have size 1, 2, 3, 4, 6, or 12. There are subgroups of orders 1, 2, 3, 4, and 12, but A_4 has no subgroup of order 6 (equivalently, no subgroup of index 2). Here is one proof, using left cosets.

Theorem 1. There is no subgroup of index 2 in A_4 .

Proof. Suppose a subgroup H of A_4 has index 2, so |H| = 6. We will show for each $g \in A_4$ that $g^2 \in H$.

If $g \in H$ then clearly $g^2 \in H$. If $g \notin H$ then gH is a left coset of H different from H(since $g \in gH$ and $g \notin H$), so from [G : H] = 2 the only left cosets of H are H and gH. Which one is g^2H ? If $g^2H = gH$ then $g^2 \in gH$, so $g^2 = gh$ for some $h \in H$, and that implies g = h, so $g \in H$, but that's a contradiction. Therefore $g^2H = H$, so $g^2 \in H$.

Every 3-cycle (abc) in A_4 is a square: (abc) has order 3, so $(abc) = (abc)^4 = ((abc)^2)^2$. Thus H contains all 3-cycles in A_4 . The 3-cycles are

(123), (132), (124), (142), (134), (143), (234), (243)

and that is too much since there are 8 of them while |H| = 6. Hence H does not exist. \Box

We will now give three more proofs that there is no subgroup of index 2 in A_4 as corollaries of three different theorems from group theory.

Theorem 2. If G is a finite group and $N \triangleleft G$ then any element of G with order relatively prime to [G:N] lies in N. In particular, if N has index 2 then all elements of G with odd order lie in N.

Proof. Let g be an element of G with order m, which is relatively prime to [G:N]. Reducing the equation $g^m = e$ modulo N gives $\overline{g}^m = \overline{e}$ in G/N. Also $\overline{g}^{[G:N]} = \overline{e}$, so the order of \overline{g} in G/N divides m and [G:N]. These numbers are relatively prime, so $\overline{g} = \overline{e}$, which means $g \in N$.

Corollary 3. There is no subgroup of index 2 in A_4 .

Proof. If A_4 has a subgroup with index 2 then by Theorem 2, all elements of A_4 with odd order are in the subgroup. But A_4 contains 8 elements of order 3 (there are 8 different 3-cycles), and an index-2 subgroup of A_4 has size 6, so not all elements of odd order can lie in the subgroup.

That proof is very closely related to the first proof we gave.

Theorem 4. If G is a finite group with a subgroup of index 2 then its commutator subgroup has even index.

Proof. If [G:H] = 2 then $H \triangleleft G$, so G/H is a group of size 2 and thus is abelian. So all commutators of G are in H, which means H contains the commutator subgroup of G. The index of the commutator subgroup therefore is divisible by [G:H] = 2.

KEITH CONRAD

Corollary 5. There is no subgroup of index 2 in A_4 .

Proof. We will show the commutator subgroup of A_4 has odd index, so there is no index-2 subgroup by Theorem 4. The subgroup

 $V = \{(1), (12)(34), (13)(24), (14)(23)\}$

is normal in A_4 and A_4/V has size 3, hence is abelian, so the commutator subgroup of A_4 is inside V. Each element of V is a commutator (e.g., (12)(34) = [(123), (124)]), so V is the commutator subgroup of A_4 . It has index 3, which is odd.

Theorem 6. Every group of size 6 is cyclic or isomorphic to S_3 .

Proof. This is a special case of the classification of groups of order pq for primes p and q, but we give a self-contained treatment in this special case.

Let G have size 6 and assume G is not cyclic. We want to show $G \cong S_3$. By Cauchy, G contains elements a with order 2 and b with order 3. The subgroup $H = \{1, a\}$ has index 3, so the usual left multiplication action of G on the left coset space G/H is a homomorphism $G \to \text{Sym}(G/H) \cong S_3$. If g is in the kernel then gH = H, so $g \in H$. Thus, if the kernel is nontrivial then it contains a. In particular, abH = bH. Since $bH = \{b, ba\}$ and $abH = \{ab, aba\}$, either b = ab or b = aba. The first choice is impossible, so b = aba. Since a has order 2, $ab = ba^{-1} = ba$, which means a and b commute. Thus ab has order $2 \cdot 3 = 6$, so G is cyclic. We were assuming G is not cyclic, so the kernel of the map $G \to \text{Sym}(G/H)$ is trivial, hence this is an isomorphism.

Corollary 7. There is no subgroup of index 2 in A_4 .

Proof. If A_4 has an index-2 subgroup H, that subgroup has size 6 and therefore is isomorphic to either $\mathbf{Z}/(6)$ or S_3 . There are no elements in A_4 with order 6, so the first choice is impossible: H must be isomorphic to S_3 . In S_3 there are three elements of order 2 (the transpositions). The group A_4 also has only three elements of order 2 ((12)(34), (13)(24), (14)(23)), so these (2, 2)-cycles must lie in H. However, the elements of order 2 in S_3 don't commute while the (2, 2)-cycles in A_4 do commute, so we have a contradiction. Since H can't be isomorphic to S_3 , it doesn't exist.

For more proofs of this result, see [1].

References

 M. Brennan, D. Machale, Variations on a theme: A₄ definitely has no subgroup of order six!, Math. Mag. 73 (2000), 36–40.