
NO SUBGROUP OF A4 HAS INDEX 2

KEITH CONRAD

The group A4 has order 12, so its subgroups could have size 1, 2, 3, 4, 6, or 12. There
are subgroups of orders 1, 2, 3, 4, and 12, but A4 has no subgroup of order 6 (equivalently,
no subgroup of index 2). Here is one proof, using left cosets.

Theorem 1. There is no subgroup of index 2 in A4.

Proof. Suppose a subgroup H of A4 has index 2, so |H| = 6. We will show for each g ∈ A4

that g2 ∈ H.
If g ∈ H then clearly g2 ∈ H. If g 6∈ H then gH is a left coset of H different from H

(since g ∈ gH and g 6∈ H), so from [G : H] = 2 the only left cosets of H are H and gH.
Which one is g2H? If g2H = gH then g2 ∈ gH, so g2 = gh for some h ∈ H, and that
implies g = h, so g ∈ H, but that’s a contradiction. Therefore g2H = H, so g2 ∈ H.

Every 3-cycle (abc) in A4 is a square: (abc) has order 3, so (abc) = (abc)4 = ((abc)2)2.
Thus H contains all 3-cycles in A4. The 3-cycles are

(123), (132), (124), (142), (134), (143), (234), (243)

and that is too much since there are 8 of them while |H| = 6. Hence H does not exist. �

We will now give three more proofs that there is no subgroup of index 2 in A4 as corollaries
of three different theorems from group theory.

Theorem 2. If G is a finite group and N CG then any element of G with order relatively
prime to [G : N ] lies in N . In particular, if N has index 2 then all elements of G with odd
order lie in N .

Proof. Let g be an element of G with order m, which is relatively prime to [G : N ]. Reducing

the equation gm = e modulo N gives gm = e in G/N . Also g[G:N ] = e, so the order of g in
G/N divides m and [G : N ]. These numbers are relatively prime, so g = e, which means
g ∈ N . �

Corollary 3. There is no subgroup of index 2 in A4.

Proof. If A4 has a subgroup with index 2 then by Theorem 2, all elements of A4 with odd
order are in the subgroup. But A4 contains 8 elements of order 3 (there are 8 different
3-cycles), and an index-2 subgroup of A4 has size 6, so not all elements of odd order can lie
in the subgroup. �

That proof is very closely related to the first proof we gave.

Theorem 4. If G is a finite group with a subgroup of index 2 then its commutator subgroup
has even index.

Proof. If [G : H] = 2 then H C G, so G/H is a group of size 2 and thus is abelian. So all
commutators of G are in H, which means H contains the commutator subgroup of G. The
index of the commutator subgroup therefore is divisible by [G : H] = 2. �
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Corollary 5. There is no subgroup of index 2 in A4.

Proof. We will show the commutator subgroup of A4 has odd index, so there is no index-2
subgroup by Theorem 4. The subgroup

V = {(1), (12)(34), (13)(24), (14)(23)}
is normal in A4 and A4/V has size 3, hence is abelian, so the commutator subgroup of A4

is inside V . Each element of V is a commutator (e.g., (12)(34) = [(123), (124)]), so V is the
commutator subgroup of A4. It has index 3, which is odd. �

Theorem 6. Every group of size 6 is cyclic or isomorphic to S3.

Proof. This is a special case of the classification of groups of order pq for primes p and q,
but we give a self-contained treatment in this special case.

Let G have size 6 and assume G is not cyclic. We want to show G ∼= S3. By Cauchy, G
contains elements a with order 2 and b with order 3. The subgroup H = {1, a} has index 3,
so the usual left multiplication action of G on the left coset space G/H is a homomorphism
G → Sym(G/H) ∼= S3. If g is in the kernel then gH = H, so g ∈ H. Thus, if the
kernel is nontrivial then it contains a. In particular, abH = bH. Since bH = {b, ba} and
abH = {ab, aba}, either b = ab or b = aba. The first choice is impossible, so b = aba. Since
a has order 2, ab = ba−1 = ba, which means a and b commute. Thus ab has order 2 · 3 = 6,
so G is cyclic. We were assuming G is not cyclic, so the kernel of the map G→ Sym(G/H)
is trivial, hence this is an isomorphism. �

Corollary 7. There is no subgroup of index 2 in A4.

Proof. If A4 has an index-2 subgroup H, that subgroup has size 6 and therefore is isomorphic
to either Z/(6) or S3. There are no elements in A4 with order 6, so the first choice is impos-
sible: H must be isomorphic to S3. In S3 there are three elements of order 2 (the transposi-
tions). The group A4 also has only three elements of order 2 ((12)(34), (13)(24), (14)(23)),
so these (2, 2)-cycles must lie in H. However, the elements of order 2 in S3 don’t commute
while the (2, 2)-cycles in A4 do commute, so we have a contradiction. Since H can’t be
isomorphic to S3, it doesn’t exist. �

For more proofs of this result, see [1].
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