1. Verify that the threshold probability \hat{p} for the random graphs in $G(n, p)$ to contain G given by:
\qquad

up to equivalence is $n^{-2}, n^{-\frac{3}{2}}, n^{-\frac{4}{3}}, n^{-\frac{5}{4}}, n^{-1} n^{-\frac{2}{3}}, n^{-\frac{1}{2}}$.
2. Let $\Gamma=[N]$. Let $\Gamma_{p_{1}, p_{2}, \ldots p_{N}}$ be the set where element $i=1,2, \ldots, N$ is chosen independent of the others with probability p_{i}. Let S be a family of non-empty subsets of Γ and for each $A \in S$ let $I_{A}=1\left(A \subset \Gamma_{p_{1}, \ldots, p_{N}}\right)$ Let $X=\sum_{A \in S} I_{A}$.
(a) Show that $P(X=0) \geq \exp \left(-\frac{E(X)}{1-\max _{i} p_{i}}\right)$
(b) Let $\Delta=\frac{1}{2} \sum_{A \neq B, A \cap B \neq \emptyset} E\left(I_{A} I_{B}\right)$. Then show that $P(X=0) \leq \exp (-\lambda+\Delta)$ and $P(X=$ $0) \leq \exp \left(-\frac{\lambda^{2}}{\lambda+2 \Delta}\right)$
3. Let G be a graph with at least one edge.
(a) For each $H \subseteq G$ there are $O\left(n^{2 v_{G}-v_{H}}\right)$ pairs $\left(G_{1}, G_{2}\right)$ copies of G in the complete graphs K_{n} with $G_{1} \cap G_{2}$ isomorphic to H.
(b) Suppose $\Phi_{G}=\min \left(E\left(X_{H}\right): H \subset G, e_{H}>0\right)$ with X_{H} being the number of copies of the given graph H in $G(n, p)$ and $\phi_{G} \rightarrow \infty$ then show that $\frac{X_{G}}{E\left(X_{G}\right)} \xrightarrow{p} 1$
(c) For every sequence $p \equiv p(n)<1$, show that $\exp \left(-\frac{1}{1-p} \Phi_{G}\right) \leq P(G(n, p) \not \subset G) \leq \exp \left(-c_{1} \phi_{G}\right)$, where c_{1} is a positive constant.
(d) If G is a strictly balanced graph(I.e. $\frac{e_{H}}{v_{H}}<\frac{e_{G}}{v_{G}}$ whenever $H \subset G$ and $n p^{m(G))} \rightarrow c>0$ then $X_{G} \xrightarrow{d} \operatorname{Poisson}(\lambda)$ with $\lambda=\frac{c^{v} G}{a u t(G)}$.
4. Project 1: (Preferred degree distribution) Person A specifies a degree distribution sequence to you, say $\left\{d_{i}: i \geq 1\right\}$. with expected degree size greater than or equal to 2 . Can you construct a random graph on n vertices \mathcal{G}_{n} such that degree of a randomly chosen vertex, D_{n}, satisfies $P\left(D_{n}=i\right) \rightarrow d_{i}$?

Suppose $d_{1}, \ldots d_{n}$ is given to you and $T=\sum_{k=1}^{n} d_{k}$ is even. Take T blank cards and write j on d_{j} cards. Then shuffle the pack thoroughly (7 times!). Deal the cards two at a time. For each pair (l, m) that comes out mark an edge from l to m.
(a) List out the problems one encounters with the above construction and make the idea mathematically precise.
(b) Can you prove a corrected version for which the produced graph will have the desired limiting degree distribution?
5. Project 2: (Preferential attachment model) "Starting with a small number (m_{0}) of vertices, at every time step we add a new vertex with $m\left(\leq m_{0}\right)$ edges that link the new vertex to m different vertices already present in the system. To incorporate preferential attachment, we assume that the probability Π that a new vertex will be connected to a vertex i depends on the connectivity k_{i} of that vertex, so that $\Pi(k)=\frac{k_{i}}{\sum_{j} k_{j}}$. After t steps the model leads to a random network with $t+m_{0}$ vertices and $m t$ edges."
There are two key issues with the above construction: (a) how to start? (b) how to choose vertices to attach ?.
(a) Can you first identify both the issues precisely. Then proceed to provide a mathematical correction of the above idea.
(b) What is your guess for the limiting degree distribution for this graph?

