1. Let $X \stackrel{d}{=} \operatorname{Bin}(n, p), \lambda=n p$ and $\phi(x)=(1+x) \ln (1+x)-x, x \geq-1$, (and $\phi(x)=\infty$ for $x<-1$). Show that

$$
P(X \geq E(X)+t) \leq \exp \left(-\lambda \phi\left(\frac{t}{\lambda}\right)\right) \leq \exp \left(-\frac{t^{2}}{2\left(\lambda+\frac{t}{3}\right)}\right)
$$

and

$$
P(X \geq E(X)-t) \leq \exp \left(-\lambda \phi\left(\frac{-t}{\lambda}\right)\right) \leq \exp \left(-\frac{t^{2}}{2 \lambda}\right)
$$

2. Let Γ be any set. Suppose, for any $0<p<1$, we construct $\Gamma_{p} \subset \Gamma$ by choosing each element of Γ independently with probability p. Let $0<p_{1}<1$ and $0<p_{2}<1$. Show that $\Gamma_{p_{1}} \cup \Gamma_{p_{2}}=\Gamma_{p}$ for some $0<p<1$ and find p in terms of p_{1} and p_{2}.
3. Let Γ be any set. Suppose, for any $0<M \leq|\Gamma|$, we choose $\Gamma_{M} \subset \Gamma$ uniformly from all the subsets of Γ of size M. Let $0<p<1, \Gamma_{p}$ be as above and Q be any arbitrary property. Show that $P\left(\Gamma_{M} \in Q\right)=P\left(\Gamma_{p} \in Q| | \Gamma_{p} \mid=m\right)$.
4. Let Q be an increasing property of subsets of a set $\Gamma \equiv \Gamma(n)$ and $0 \leq M_{1} \leq M_{2} \leq N=$ $|\Gamma(n)|$. Show that $P\left(\Gamma_{M_{1}} \in Q\right) \leq P\left(\Gamma_{M_{2}} \in Q\right)$.
5. For $0 \leq p \leq 1$. Let Γ and Γ_{p} be as above. Let Q be an increasing property of subsets. Show that The function $f:[0,1] \rightarrow[0,1]$ given by $f(p)=P\left(\Gamma_{p} \in Q\right)$ is strictly increasing and continuous. Hence there
6. Let $0<p \equiv p(n)<1, \Gamma=\{1, \ldots, n\}$. Let Q be the property of containing a 3 -term arithmetic progression. Let Γ_{p} be set formed choosing each element of Γ independently with probability p. Let X be the number of arithmetic progressions of length 3 .
(a) Show that there are constants c_{1}, c_{2} such that $c_{1} n^{2} p^{3} \leq E(X) \leq c_{2} n^{2} p^{3}$.
(b) Calculate $\operatorname{Var}(X)$.
(c) Decide for what sequences p does $P(X=0) \rightarrow 0$.
(d) Can you generalise this argument for arithmetic progression for length k and find a threshold for Q in such cases ?
7. Provide a counter-example to Proposition A, presented in lecture.
8. Project: Suppose G is a deterministic graph on n vertices. With each edge G associate two exponential clocks with parameter o and c. At intial time $t=0$ all edges in G are open. When the o clock ticks an edge becomes open and when the c clock ticks then edge in G becomes closed. At time $t>0$, one goes and chooses two vertices v, w in G. What is the chance that there is a connected path between v and w ?
