STRONG LAW OF LARGE NUMBERS

In this section we shall state and prove the strong law of large numbers.

TueoreEM C.0.1. (Strong Law of Large Numbers) Let X1, Xa,... be a sequence of i.i.d. random
variables. Assume that X1 has finite mean p and finite variance o2 Let A= {limp— o0 X, = u}. Then

P(A) =1. (C.0.1)

As remarked in Chapter 8, the above results states that the convergence of sample mean to p actually
happens with Probability one. This mode of convergence of the sample mean to the true mean is called
“convergence with probability 1.” We define it precisely below.

DEFINITION C.0.2. A sequence X1, Xa,... is said to converge with probability one to a random variable X
if A= {limp—00o Xn = X}.
P(A) =1. (C.0.2)
The following notation
.p.1
Xn 25 X
is typically used to convey that the sequence X1, Xa,... converges with probability one to X.

As alluded earlier that this is a stronger mode of convergence. We prove it in the next proposition.

ProrosiTion C.0.3. Let X1, Xo,... be a sequence of random variables on a sample space S. Suppose
Xn converges to a random wvariable X with probability 1 then Xy, converges to a random variable X in
probability.

Proof- Let € > 0 and § > 0 be given. We need to show 3N such that
P(|Xm—X|>¢€)<d,Vm>N. (C.0.3)
Let A={w € S :limp—oo Xn(w) = X}. We are given that
P(A) = 1. (C.0.4)
Suppose we denote, for n > 0 and n > 1,
A} ={weS: | Xn(w) - X(w)| <el.

then
A= Ny>0 Uper Moz An.

This can be verified using the fact that w € A if and only if for all > 0, there is a k = k(w) such that
| Xn(w) — X(w)| <e€ Vn >k

For m > 1, define By, = Np>,, A5,. Note

By, C By, (C.0.5)
for all m > 1. So by Exercise 1.1.13, we have
lim P(By,) 1 P(Upm=1Bm). (C.0.6)
m—ro0
257
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As A C Ugy_1 By, using (C.0.4) we have 1 = P(A) < P(Uj_1By,) < 1. So
P(UZ_1BS,) = 1. (C.0.7)
By (C.0.6) and (C.0.7) 3N such that
P(B2)>1-6,Ym>N.

As By, C Ay,
P(AS) >1—8,¥m > N.

Therefore by considering the complement of Aj, we obtain (C.0.3). |
We will need a technical Lemma regarding convergence in probabilty which we state and prove below.

LEMMA C.0.4. Suppose a sequence of random variables Xy is such that
Xn B X and Xn B Y
for some random variables X,Y then P(X =Y) = 1.

Proof- Let k > 1. Let A, ={| X -Y |> %} Notice that A C Apt+q and U2 A = {X # Y}, Let
k>1,§ >0 be given. As X, 2 X and X, B Y, (applying Definition 8.2.3 with ¢ = Q—Ik), there exists N
such that for all n > N

1 5 1 5
< - — < < - — = 0.
0_P(|Xn X|>%)<2 and 0_P(|Xn Y|>2k)<2 (C.0.8)
Using the triangle inequality we observe that | X =Y |<| X — X, |+ | X — Y | for all n > 1. So,
1 1
A Xn—X — Xn—X — .0.
£ C 1 Xn— X > o U] Xn = X |> o (C.09)

for all n > 1. Combining (C.0.8) and (C.0.9) we have (using any n > N)

1 1 5 6
< < — i — J— < —= - = .
0 < P(Ag) _P(|Xn X|>2k)+P(|Xn Y|>2k) 5+ 5 5

As § > 0 was arbitrary we have P(A;) = 0. Further by Exercise 1.1.13,

P(X #Y) = lim P(4y) =0,

Hence P(X =Y) = 1. |
Proof of Theorem C.0.1(Special Case)- We provide a complete proof of Theorem C.0.1 in the special
case when the random variables are i.i.d Bernoulli (p) random variables. We will proceed in two steps.
Step 1: X, converges with probability one to a random variable X.
Let S = lim SUPy,—s 00 X, and S =liminfn o0 Xn. Clearly,

0<S<S<L
Fix € > 0, then for every k define

X+ Xpy1 -+ Xpn—a

N =inf{n € N :
n

>S5 ¢}

The random variable Ny, in some sense, measures how close we are to S and our main effort will be
to control the size Nj. It is easy to see that Ny is finite a.e. and are all identically distributed (because
of independence of X;). Hence we can choose an m such that P(N, > m) < € for all k. Define random
variables Y3, and NV, ,3/ by the following mechanism:

_ Xk if ngm
Y, = {1 £ N >m (C.0.10)
Yo+ Yt oo 4 Vi1 - =
NY = inffnenN: ke T leno1 S5 (C.0.11)

n
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Clearly lef < N and if k is such that N > m then N,z/ =1 (since setting Yy = 1 ensures that we are
above S — ¢ immediately). So we have
NY <
r <m. a.e.

So for large enough n € IN we can break up Zzzl Y}, into pieces of lengths atmost M such that the
average over each piece is atleast S — €. Then finally stop at the n-th term. Then it is clear that,

> Vi (n—m)(S—e). (C.0.12)
k=1

By our choice of m
E(Yy) = E(Xk1(Ng <m)) + P(N, >m) < BE(Xg) +e=E(X) +¢,
for any k. Take expectations in (C.0.12) and use the above inequality to obtain

n(E(X)+e¢€) > (n—m)(E(S) — ).

Divide by n and first let n — oo followed by € — 0, to get

E(S) < B(X). (C.0.13)

Let )A(; = 1— X}.. Applying the above argument to X (verify this) we have

E(S) < B(X).

Since § = —§ this implies
E(S) > E(X). (C.0.14)
Now, S < S a.e. So only way (C.0.14) and (C.0.13) can hold only if S = Sa.e. Therefore limp—y00 Xn
exists almost everywhere and let us call it X. This completes step 1.
Step 2: We shall now use the Weak Law of Large numbers (Theorem 8.2.1), along with Proposition

C.0.3, and Lemma C.0.4 to complete the proof. The weak law implies that
X, 5 [ asn — oo.

From Step 1, we know that
Xn %1 X as n — oo.
Proposition C.0.3 then implies that
Xn 2 X asn — oo.

Finally Lemma C.0.4 implies P(X = u) = 1. Therefore

— w.p.l
Xn —p>uasn—>oo.

|

Proof of Theorem C.0.1(General Case) The essence of the proof is contained in the special case
proven above. We provide a sketch of the proof.

Case 1:(0 < X <1) An imitation of Step 1 of the proof for Bernoulli p random variables will show
that there is a limit. Step 2 of the above proof follows readily.

Case 2: Bounded Case When the random variable X is bounded, i.e. | X |< M for some M > 0.
One can consider Y = )(27\4M and Y; = XE&M. As 0 <Y <1 then one can use Case 1 for Y; to establish
that there is a limit. Step 2 of the above proof follows readily.

Case 3: (General Case by Truncation) One fixes «, 8 > 0 and defines

g(a) = min{S, oz},X(/B) = max{X, -} and X](CB) = max{Xy, -0} Vk € N.

The above quantities are all bounded. One imitates Step 1 of the above proof and this will result in

— wp.l
inequalities depending on «, 8. One then allows «a, 8 approach infinity to establish that X, P X for
a random variable X. Step 2 of the above proof follows readily. We refer the reader to [AS09] for the
complete proof. [
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