In this section we shall state and prove the strong law of large numbers.
Theorem C.0.1. (Strong Law of Large Numbers) Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables. Assume that X_{1} has finite mean μ and finite variance σ^{2}. Let $A=\left\{\lim _{n \rightarrow \infty} \bar{X}_{n}=\mu\right\}$. Then

$$
\begin{equation*}
P(A)=1 . \tag{C.0.1}
\end{equation*}
$$

As remarked in Chapter 8, the above results states that the convergence of sample mean to μ actually happens with Probability one. This mode of convergence of the sample mean to the true mean is called "convergence with probability 1 ." We define it precisely below.

Definition C.0.2. A sequence X_{1}, X_{2}, \ldots is said to converge with probability one to a random variable X if $A=\left\{\lim _{n \rightarrow \infty} \bar{X}_{n}=X\right\}$.

$$
\begin{equation*}
P(A)=1 \text {. } \tag{C.0.2}
\end{equation*}
$$

The following notation

$$
X_{n} \xrightarrow{w . p .1} X
$$

is typically used to convey that the sequence X_{1}, X_{2}, \ldots converges with probability one to X.

As alluded earlier that this is a stronger mode of convergence. We prove it in the next proposition.
Proposition C.0.3. Let X_{1}, X_{2}, \ldots be a sequence of random variables on a sample space S. Suppose X_{n} converges to a random variable X with probability 1 then X_{n} converges to a random variable X in probability.

Proof- Let $\epsilon>0$ and $\delta>0$ be given. We need to show $\exists N$ such that

$$
\begin{equation*}
P\left(\left|X_{m}-X\right|>\epsilon\right)<\delta, \forall m \geq N . \tag{С.0.3}
\end{equation*}
$$

Let $A=\left\{\omega \in S: \lim _{n \rightarrow \infty} X_{n}(\omega)=X\right\}$. We are given that

$$
\begin{equation*}
P(A)=1 \text {. } \tag{C.0.4}
\end{equation*}
$$

Suppose we denote, for $\eta>0$ and $n \geq 1$,

$$
A_{n}^{\eta}=\left\{\omega \in S:\left|X_{n}(\omega)-X(\omega)\right| \leq \epsilon\right\} .
$$

then

$$
A=\cap_{\eta>0} \cup_{k=1}^{\infty} \cap_{n=k}^{\infty} A_{n}^{\eta}
$$

This can be verified using the fact that $\omega \in A$ if and only if for all $\eta>0$, there is a $k \equiv k(\omega)$ such that

$$
\left|X_{n}(\omega)-X(\omega)\right| \leq \epsilon, \forall n \geq k .
$$

For $m \geq 1$, define $B_{m}^{\epsilon}=\cap_{n=m}^{\infty} A_{n}^{\epsilon}$. Note

$$
\begin{equation*}
B_{m}^{\epsilon} \subset B_{m+1}^{\epsilon} \tag{C.0.5}
\end{equation*}
$$

for all $m \geq 1$. So by Exercise 1.1.13, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P\left(B_{m}^{\epsilon}\right) \uparrow P\left(\cup_{m=1}^{\infty} B_{m}^{\epsilon}\right) . \tag{С.0.6}
\end{equation*}
$$

As $A \subset \cup_{m=1}^{\infty} B_{m}^{\epsilon}$, using (C.0.4) we have $1=P(A) \leq P\left(\cup_{m=1}^{\infty} B_{m}^{\epsilon}\right) \leq 1$. So

$$
\begin{equation*}
P\left(\cup_{m=1}^{\infty} B_{m}^{\epsilon}\right)=1 \tag{C.0.7}
\end{equation*}
$$

By (C.0.6) and (C.0.7) $\exists N$ such that

$$
P\left(B_{m}^{\epsilon_{0}}\right)>1-\delta, \forall m \geq N
$$

As $B_{m}^{\epsilon} \subset A_{m}^{\epsilon}$,

$$
P\left(A_{m}^{\epsilon}\right)>1-\delta, \forall m \geq N
$$

Therefore by considering the complement of A_{m}^{ϵ} we obtain (C.0.3).
We will need a technical Lemma regarding convergence in probabilty which we state and prove below.
Lemma C.0.4. Suppose a sequence of random variables X_{n} is such that

$$
X_{n} \xrightarrow{p} X \text { and } X_{n} \xrightarrow{p} Y
$$

for some random variables X, Y then $P(X=Y)=1$.
Proof- Let $k \geq 1$. Let $A_{k}=\left\{|X-Y| \geq \frac{1}{k}\right\}$. Notice that $A_{k} \subset A_{k+1}$ and $\cup_{k=1}^{\infty} A_{k}=\{X \neq Y\}$. Let $k \geq 1, \delta>0$ be given. As $X_{n} \xrightarrow{p} X$ and $X_{n} \xrightarrow{p} Y$, (applying Definition 8.2 .3 with $\epsilon=\frac{1}{2 k}$), there exists N such that for all $n \geq N$

$$
\begin{equation*}
0 \leq P\left(\left|X_{n}-X\right|>\frac{1}{2 k}\right)<\frac{\delta}{2} \quad \text { and } \quad 0 \leq P\left(\left|X_{n}-Y\right|>\frac{1}{2 k}\right)<\frac{\delta}{2} \tag{C.0.8}
\end{equation*}
$$

Using the triangle inequality we observe that $|X-Y| \leq\left|X-X_{n}\right|+\left|X_{n}-Y\right|$ for all $n \geq 1$. So,

$$
\begin{equation*}
A_{k} \subset\left\{\left|X_{n}-X\right|>\frac{1}{2 k}\right\} \cup\left\{\left|X_{n}-X\right|>\frac{1}{2 k}\right\} \tag{C.0.9}
\end{equation*}
$$

for all $n \geq 1$. Combining (C.0.8) and (C.0.9) we have (using any $n \geq N$)

$$
0 \leq P\left(A_{k}\right) \leq P\left(\left|X_{n}-X\right|>\frac{1}{2 k}\right)+P\left(\left|X_{n}-Y\right|>\frac{1}{2 k}\right) \leq \frac{\delta}{2}+\frac{\delta}{2}=\delta
$$

As $\delta>0$ was arbitrary we have $P\left(A_{k}\right)=0$. Further by Exercise 1.1.13,

$$
P(X \neq Y)=\lim _{k \rightarrow \infty} P\left(A_{k}\right)=0
$$

Hence $P(X=Y)=1$.
Proof of Theorem C.0.1(Special Case)- We provide a complete proof of Theorem C.0.1 in the special case when the random variables are i.i.d Bernoulli (p) random variables. We will proceed in two steps.

Step 1: \bar{X}_{n} converges with probability one to a random variable X.
Let $\bar{S}=\lim \sup _{n \rightarrow \infty} \bar{X}_{n}$ and $\underline{S}=\lim \inf _{n \rightarrow \infty} \bar{X}_{n}$. Clearly,

$$
0 \leq \underline{S} \leq \bar{S} \leq 1
$$

Fix $\epsilon>0$, then for every k define

$$
N_{k}=\inf \left\{n \in \mathbb{N}: \frac{X_{k}+X_{k+1} \ldots+X_{k+n-1}}{n} \geq \bar{S}-\epsilon\right\}
$$

The random variable N_{k}, in some sense, measures how close we are to \bar{S} and our main effort will be to control the size N_{k}. It is easy to see that N_{k} is finite a.e. and are all identically distributed (because of independence of $\left.X_{i}\right)$. Hence we can choose an m such that $P\left(N_{k}>m\right)<\epsilon$ for all k. Define random variables Y_{k} and N_{k}^{Y} by the following mechanism:

$$
\begin{align*}
Y_{k} & =\left\{\begin{array}{lll}
X_{k} & \text { if } & N_{k} \leq m \\
1 & \text { if } & N_{k}>m
\end{array}\right. \tag{C.0.10}\\
N_{k}^{Y} & =\inf \left\{n \in \mathbb{N}: \frac{Y_{k}+Y_{k+1} \ldots+Y_{k+n-1}}{n} \geq \bar{S}-\epsilon\right\} . \tag{C.0.11}
\end{align*}
$$

Clearly $N_{k}^{Y} \leq N_{k}$ and if k is such that $N_{k} \geq m$ then $N_{k}^{Y}=1$ (since setting $Y_{k}=1$ ensures that we are above $\bar{S}-\epsilon$ immediately). So we have

$$
N_{k}^{Y} \leq m . \quad \text { a.e. }
$$

So for large enough $n \in \mathbb{N}$ we can break up $\sum_{k=1}^{n} Y_{k}$ into pieces of lengths atmost M such that the average over each piece is atleast $\bar{S}-\epsilon$. Then finally stop at the n-th term. Then it is clear that,

$$
\begin{equation*}
\sum_{k=1}^{n} Y_{k} \geq(n-m)(\bar{S}-\epsilon) \tag{C.0.12}
\end{equation*}
$$

By our choice of m

$$
E\left(Y_{k}\right)=E\left(X_{k} 1\left(N_{k} \leq m\right)\right)+P\left(N_{k}>m\right)<E\left(X_{k}\right)+\epsilon=E(X)+\epsilon,
$$

for any k. Take expectations in (C.0.12) and use the above inequality to obtain

$$
n(E(X)+\epsilon) \geq(n-m)(E(\bar{S})-\epsilon)
$$

Divide by n and first let $n \rightarrow \infty$ followed by $\epsilon \rightarrow 0$, to get

$$
\begin{equation*}
E(\bar{S}) \leq E(X) \tag{C.0.13}
\end{equation*}
$$

Let $\widetilde{X_{k}}=1-X_{k}$. Applying the above argument to \widetilde{X} (verify this) we have

$$
E(\overline{\widetilde{S}}) \leq E(\widetilde{X})
$$

Since $\underline{S}=-\overline{\widetilde{S}}$ this implies

$$
\begin{equation*}
E(\underline{S}) \geq E(X) \tag{C.0.14}
\end{equation*}
$$

Now, $\underline{S} \leq \bar{S}$ a.e. So only way (C.0.14) and (C.0.13) can hold only if $\underline{S}=\bar{S} a . e$. Therefore $\lim _{n \rightarrow \infty} \bar{X}_{n}$ exists almost everywhere and let us call it X. This completes step 1 .

Step 2: We shall now use the Weak Law of Large numbers (Theorem 8.2.1), along with Proposition C.0.3, and Lemma C.0.4 to complete the proof. The weak law implies that

$$
\bar{X}_{n} \xrightarrow{p} \mu \text { as } n \rightarrow \infty
$$

From Step 1, we know that

$$
\bar{X}_{n} \xrightarrow{w . p .1} X \text { as } n \rightarrow \infty .
$$

Proposition C.0.3 then implies that

$$
\bar{X}_{n} \xrightarrow{p} X \text { as } n \rightarrow \infty .
$$

Finally Lemma C.0.4 implies $P(X=\mu)=1$. Therefore

$$
\bar{X}_{n} \xrightarrow{w \cdot p .1} \mu \text { as } n \rightarrow \infty .
$$

Proof of Theorem C.0.1(General Case) The essence of the proof is contained in the special case proven above. We provide a sketch of the proof.

Case 1: $(\mathbf{0} \leq \mathbf{X} \leq \mathbf{1})$ An imitation of Step 1 of the proof for Bernoulli p random variables will show that there is a limit. Step 2 of the above proof follows readily.

Case 2: Bounded Case When the random variable X is bounded, i.e. $|X| \leq M$ for some $M>0$. One can consider $Y=\frac{X-M}{2 M}$ and $Y_{i}=\frac{X_{i}-M}{2 M}$. As $0 \leq Y \leq 1$ then one can use Case 1 for Y_{i} to establish that there is a limit. Step 2 of the above proof follows readily.

Case 3: (General Case by Truncation) One fixes $\alpha, \beta>0$ and defines

$$
\bar{S}_{(\alpha)}=\min \{\bar{S}, \alpha\}, X^{(\beta)}=\max \{X,-\beta\} \text { and } X_{k}^{(\beta)}=\max \left\{X_{k},-\beta\right\} \forall k \in \mathbb{N} .
$$

The above quantities are all bounded. One imitates Step 1 of the above proof and this will result in inequalities depending on α, β. One then allows α, β approach infinity to establish that $\bar{X}_{n} \xrightarrow{w . p .1} X$ for a random variable X. Step 2 of the above proof follows readily. We refer the reader to [AS09] for the complete proof.

