STRONG LAW OF LARGE NUMBERS

In this section we shall state and prove the strong law of large numbers.

THEOREM C.0.1. (Strong Law of Large Numbers) Let X_1, X_2, \ldots be a sequence of *i.i.d.* random variables. Assume that X_1 has finite mean μ and finite variance σ^2 . Let $A = \{\lim_{n \to \infty} \overline{X}_n = \mu\}$. Then

$$P(A) = 1.$$
 (C.0.1)

As remarked in Chapter 8, the above results states that the convergence of sample mean to μ actually happens with Probability one. This mode of convergence of the sample mean to the true mean is called "convergence with probability 1." We define it precisely below.

DEFINITION C.0.2. A sequence X_1, X_2, \ldots is said to converge with probability one to a random variable X if $A = \{\lim_{n \to \infty} \overline{X}_n = X\}.$

$$P(A) = 1.$$
 (C.0.2)

The following notation

 $X_n \xrightarrow{w.p.1} X$

is typically used to convey that the sequence X_1, X_2, \ldots converges with probability one to X.

As alluded earlier that this is a stronger mode of convergence. We prove it in the next proposition.

PROPOSITION C.0.3. Let X_1, X_2, \ldots be a sequence of random variables on a sample space S. Suppose X_n converges to a random variable X with probability 1 then X_n converges to a random variable X in probability.

Proof- Let $\epsilon > 0$ and $\delta > 0$ be given. We need to show $\exists N$ such that

$$P(|X_m - X| > \epsilon) < \delta, \,\forall m \ge N.$$
(C.0.3)

Let $A = \{ \omega \in S : \lim_{n \to \infty} X_n(\omega) = X \}$. We are given that

$$P(A) = 1.$$
 (C.0.4)

Suppose we denote, for $\eta > 0$ and $n \ge 1$,

$$A_n^{\eta} = \{ \omega \in S : |X_n(\omega) - X(\omega)| \le \epsilon \}.$$

then

$$A = \cap_{\eta > 0} \cup_{k=1}^{\infty} \cap_{n=k}^{\infty} A_n^{\eta}.$$

This can be verified using the fact that $\omega \in A$ if and only if for all $\eta > 0$, there is a $k \equiv k(\omega)$ such that

$$|X_n(\omega) - X(\omega)| \le \epsilon, \ \forall n \ge k.$$

For $m \geq 1$, define $B_m^{\epsilon} = \bigcap_{n=m}^{\infty} A_n^{\epsilon}$. Note

$$B_m^{\epsilon} \subset B_{m+1}^{\epsilon}, \tag{C.0.5}$$

for all $m \ge 1$. So by Exercise 1.1.13, we have

$$\lim_{m \to \infty} P(B_m^{\epsilon}) \uparrow P(\bigcup_{m=1}^{\infty} B_m^{\epsilon}).$$
(C.0.6)

Version: – April 25, 2016

As $A \subset \bigcup_{m=1}^{\infty} B_m^{\epsilon}$, using (C.0.4) we have $1 = P(A) \leq P(\bigcup_{m=1}^{\infty} B_m^{\epsilon}) \leq 1$. So

$$P(\cup_{m=1}^{\infty} B_m^{\epsilon}) = 1. \tag{C.0.7}$$

By (C.0.6) and (C.0.7) $\exists N$ such that

$$P(B_m^{\epsilon_0}) > 1 - \delta, \, \forall m \ge N.$$

As $B_m^{\epsilon} \subset A_m^{\epsilon}$,

$$P(A_m^{\epsilon}) > 1 - \delta, \forall m \ge N.$$

Therefore by considering the complement of A_m^{ϵ} we obtain (C.0.3).

We will need a technical Lemma regarding convergence in probability which we state and prove below.

LEMMA C.0.4. Suppose a sequence of random variables X_n is such that

$$X_n \xrightarrow{p} X$$
 and $X_n \xrightarrow{p} Y$

for some random variables X, Y then P(X = Y) = 1.

Proof- Let $k \ge 1$. Let $A_k = \{ | X - Y | \ge \frac{1}{k} \}$. Notice that $A_k \subset A_{k+1}$ and $\bigcup_{k=1}^{\infty} A_k = \{ X \ne Y \}$. Let $k \ge 1, \delta > 0$ be given. As $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$, (applying Definition 8.2.3 with $\epsilon = \frac{1}{2k}$), there exists N such that for all $n \ge N$

$$0 \le P\left(|X_n - X| > \frac{1}{2k}\right) < \frac{\delta}{2}$$
 and $0 \le P\left(|X_n - Y| > \frac{1}{2k}\right) < \frac{\delta}{2}$. (C.0.8)

Using the triangle inequality we observe that $|X - Y| \leq |X - X_n| + |X_n - Y|$ for all $n \geq 1$. So,

$$A_k \subset \{ |X_n - X| > \frac{1}{2k} \} \cup \{ |X_n - X| > \frac{1}{2k} \}$$
(C.0.9)

for all $n \ge 1$. Combining (C.0.8) and (C.0.9) we have (using any $n \ge N$)

$$0 \leq P(A_k) \leq P\left(|X_n - X| > \frac{1}{2k}\right) + P\left(|X_n - Y| > \frac{1}{2k}\right) \leq \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

As $\delta > 0$ was arbitrary we have $P(A_k) = 0$. Further by Exercise 1.1.13,

$$P(X \neq Y) = \lim_{k \to \infty} P(A_k) = 0.$$

Hence P(X = Y) = 1.

Proof of Theorem C.0.1 (Special Case)- We provide a complete proof of Theorem C.0.1 in the special case when the random variables are i.i.d Bernoulli (p) random variables. We will proceed in two steps.

Step 1: \overline{X}_n converges with probability one to a random variable X.

Let $\overline{S} = \limsup_{n \to \infty} \overline{X}_n$ and $\underline{S} = \liminf_{n \to \infty} \overline{X}_n$. Clearly,

$$0 \le \underline{S} \le \overline{S} \le 1.$$

Fix $\epsilon > 0$, then for every k define

$$N_k = \inf\{n \in \mathbb{N} : \frac{X_k + X_{k+1} \dots + X_{k+n-1}}{n} \ge \overline{S} - \epsilon\}.$$

The random variable N_k , in some sense, measures how close we are to \overline{S} and our main effort will be to control the size N_k . It is easy to see that N_k is finite a.e. and are all identically distributed (because of independence of X_i). Hence we can choose an m such that $P(N_k > m) < \epsilon$ for all k. Define random variables Y_k and N_k^Y by the following mechanism:

$$Y_k = \begin{cases} X_k & \text{if } N_k \le m \\ 1 & \text{if } N_k > m \end{cases}$$
(C.0.10)

$$N_k^Y = \inf\{n \in \mathbb{N} : \frac{Y_k + Y_{k+1} \dots + Y_{k+n-1}}{n} \ge \overline{S} - \epsilon\}.$$
 (C.0.11)

Version: - April 25, 2016

. .

Clearly $N_k^Y \leq N_k$ and if k is such that $N_k \geq m$ then $N_k^Y = 1$ (since setting $Y_k = 1$ ensures that we are above $\overline{S} - \epsilon$ immediately). So we have

$$N_k^Y \le m. \ a.e.$$

So for large enough $n \in \mathbb{N}$ we can break up $\sum_{k=1}^{n} Y_k$ into pieces of lengths at M such that the average over each piece is at least $\overline{S} - \epsilon$. Then finally stop at the *n*-th term. Then it is clear that,

$$\sum_{k=1}^{n} Y_k \ge (n-m)(\overline{S}-\epsilon). \tag{C.0.12}$$

By our choice of m

$$E(Y_k) = E(X_k 1(N_k \le m)) + P(N_k > m) < E(X_k) + \epsilon = E(X) + \epsilon$$

for any k. Take expectations in (C.0.12) and use the above inequality to obtain

$$n(E(X) + \epsilon) \ge (n - m)(E(\overline{S}) - \epsilon).$$

Divide by n and first let $n \to \infty$ followed by $\epsilon \to 0$, to get

$$E(\overline{S}) \le E(X). \tag{C.0.13}$$

Let $\widetilde{X_k} = 1 - X_k$. Applying the above argument to \widetilde{X} (verify this) we have

$$E(\widetilde{S}) \le E(\widetilde{X}).$$

Since $\underline{S} = -\overline{\widetilde{S}}$ this implies

 $E(\underline{S}) \ge E(X). \tag{C.0.14}$

Now, $\underline{S} \leq \overline{S}$ a.e. So only way (C.0.14) and (C.0.13) can hold only if $\underline{S} = \overline{S}a.e.$ Therefore $\lim_{n\to\infty} \overline{X}_n$ exists almost everywhere and let us call it X. This completes step 1.

Step 2: We shall now use the Weak Law of Large numbers (Theorem 8.2.1), along with Proposition C.0.3, and Lemma C.0.4 to complete the proof. The weak law implies that

$$\overline{X}_n \xrightarrow{p} \mu \text{ as } n \to \infty.$$

From Step 1, we know that

Proposition C.0.3 then implies that
$$\overline{X}_n \xrightarrow{w.p.1} X$$
 as $n \to \infty$.

$$\overline{X}_n \xrightarrow{p} X \text{ as } n \to \infty.$$

Finally Lemma C.0.4 implies $P(X = \mu) = 1$. Therefore

$$\overline{X}_n \stackrel{w.p.1}{\longrightarrow} \mu \text{ as } n \to \infty.$$

Proof of Theorem C.0.1(General Case) The essence of the proof is contained in the special case proven above. We provide a sketch of the proof.

Case 1: $(0 \le X \le 1)$ An imitation of Step 1 of the proof for Bernoulli *p* random variables will show that there is a limit. Step 2 of the above proof follows readily.

Case 2: Bounded Case When the random variable X is bounded, i.e. $|X| \le M$ for some M > 0. One can consider $Y = \frac{X-M}{2M}$ and $Y_i = \frac{X_i-M}{2M}$. As $0 \le Y \le 1$ then one can use Case 1 for Y_i to establish that there is a limit. Step 2 of the above proof follows readily.

Case 3: (General Case by Truncation) One fixes $\alpha, \beta > 0$ and defines

$$\overline{S}_{(\alpha)} = \min\{\overline{S}, \alpha\}, X^{(\beta)} = \max\{X, -\beta\} \text{ and } X_k^{(\beta)} = \max\{X_k, -\beta\} \ \forall k \in \mathbb{N}.$$

The above quantities are all bounded. One imitates Step 1 of the above proof and this will result in inequalities depending on α, β . One then allows α, β approach infinity to establish that $\overline{X}_n \xrightarrow{w.p.1} X$ for a random variable X. Step 2 of the above proof follows readily. We refer the reader to [AS09] for the complete proof.