
CS T RO N G L AW O F L A RG E N U M B E R S

In this section we shall state and prove the strong law of large numbers.

Theorem C.0.1. (Strong Law of Large Numbers) Let X1,X2, . . . be a sequence of i.i.d. random
variables. Assume that X1 has finite mean µ and finite variance σ2. Let A = {limn→∞Xn = µ}. Then

P (A) = 1. (C.0.1)

As remarked in Chapter 8, the above results states that the convergence of sample mean to µ actually
happens with Probability one. This mode of convergence of the sample mean to the true mean is called
“convergence with probability 1.” We define it precisely below.

Definition C.0.2. A sequence X1,X2, . . . is said to converge with probability one to a random variable X
if A = {limn→∞Xn = X}.

P (A) = 1. (C.0.2)

The following notation
Xn

w.p.1−→ X

is typically used to convey that the sequence X1,X2, . . . converges with probability one to X.

As alluded earlier that this is a stronger mode of convergence. We prove it in the next proposition.

Proposition C.0.3. Let X1,X2, . . . be a sequence of random variables on a sample space S. Suppose
Xn converges to a random variable X with probability 1 then Xn converges to a random variable X in
probability.

Proof- Let ε > 0 and δ > 0 be given. We need to show ∃N such that

P (|Xm −X| > ε) < δ, ∀m ≥ N . (C.0.3)

Let A = {ω ∈ S : limn→∞Xn(ω) = X}. We are given that

P (A) = 1. (C.0.4)

Suppose we denote, for η > 0 and n ≥ 1,

Aηn = {ω ∈ S : |Xn(ω)−X(ω)| ≤ ε }.

then
A = ∩η>0 ∪∞k=1 ∩

∞
n=kA

η
n.

This can be verified using the fact that ω ∈ A if and only if for all η > 0, there is a k ≡ k(ω) such that

|Xn(ω)−X(ω)| ≤ ε, ∀n ≥ k.

For m ≥ 1, define Bεm = ∩∞n=mAεn. Note
Bεm ⊂ Bεm+1, (C.0.5)

for all m ≥ 1. So by Exercise 1.1.13, we have

lim
m→∞

P (Bεm) ↑ P (∪∞m=1B
ε
m). (C.0.6)
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As A ⊂ ∪∞m=1B
ε
m, using (C.0.4) we have 1 = P (A) ≤ P (∪∞m=1B

ε
m) ≤ 1. So

P (∪∞m=1B
ε
m) = 1. (C.0.7)

By (C.0.6) and (C.0.7) ∃N such that

P (Bε0
m ) > 1− δ, ∀m ≥ N .

As Bεm ⊂ Aεm,
P (Aεm) > 1− δ, ∀m ≥ N .

Therefore by considering the complement of Aεm we obtain (C.0.3). �
We will need a technical Lemma regarding convergence in probabilty which we state and prove below.

Lemma C.0.4. Suppose a sequence of random variables Xn is such that

Xn
p→ X and Xn

p→ Y

for some random variables X,Y then P (X = Y ) = 1.

Proof- Let k ≥ 1. Let Ak = {| X − Y |≥ 1
k}. Notice that Ak ⊂ Ak+1 and ∪∞k=1Ak = {X 6= Y }. Let

k ≥ 1, δ > 0 be given. As Xn
p→ X and Xn

p→ Y , (applying Definition 8.2.3 with ε = 1
2k ), there exists N

such that for all n ≥ N

0 ≤ P
(
| Xn −X |>

1
2k

)
<

δ

2 and 0 ≤ P
(
| Xn − Y |>

1
2k

)
<

δ

2 . (C.0.8)

Using the triangle inequality we observe that | X − Y |≤| X −Xn | + | Xn − Y | for all n ≥ 1. So,

Ak ⊂ {| Xn −X |>
1
2k } ∪ {| Xn −X |>

1
2k } (C.0.9)

for all n ≥ 1. Combining (C.0.8) and (C.0.9) we have (using any n ≥ N)

0 ≤ P (Ak) ≤ P
(
| Xn −X |>

1
2k

)
+ P

(
| Xn − Y |>

1
2k

)
≤ δ

2 +
δ

2 = δ.

As δ > 0 was arbitrary we have P (Ak) = 0. Further by Exercise 1.1.13,

P (X 6= Y ) = lim
k→∞

P (Ak) = 0.

Hence P (X = Y ) = 1. �
Proof of Theorem C.0.1(Special Case)- We provide a complete proof of Theorem C.0.1 in the special

case when the random variables are i.i.d Bernoulli (p) random variables. We will proceed in two steps.
Step 1: Xn converges with probability one to a random variable X.
Let S = lim supn→∞Xn and S = lim infn→∞Xn. Clearly,

0 ≤ S ≤ S ≤ 1.

Fix ε > 0, then for every k define

Nk = inf{n ∈N :
Xk +Xk+1 . . .+Xk+n−1

n
≥ S − ε}.

The random variable Nk, in some sense, measures how close we are to S and our main effort will be
to control the size Nk. It is easy to see that Nk is finite a.e. and are all identically distributed (because
of independence of Xi). Hence we can choose an m such that P (Nk > m) < ε for all k. Define random
variables Yk and NY

k by the following mechanism:

Yk =

{
Xk if Nk ≤ m
1 if Nk > m

(C.0.10)

NY
k = inf{n ∈N :

Yk + Yk+1 . . .+ Yk+n−1
n

≥ S − ε}. (C.0.11)
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Clearly NY
k ≤ Nk and if k is such that Nk ≥ m then NY

k = 1 (since setting Yk = 1 ensures that we are
above S − ε immediately). So we have

NY
k ≤ m. a.e.

So for large enough n ∈N we can break up
∑n
k=1 Yk into pieces of lengths atmost M such that the

average over each piece is atleast S − ε. Then finally stop at the n-th term. Then it is clear that,
n∑
k=1

Yk ≥ (n−m)(S − ε). (C.0.12)

By our choice of m

E(Yk) = E(Xk1(Nk ≤ m)) + P (Nk > m) < E(Xk) + ε = E(X) + ε,

for any k. Take expectations in (C.0.12) and use the above inequality to obtain

n(E(X) + ε) ≥ (n−m)(E(S)− ε).

Divide by n and first let n→∞ followed by ε→ 0, to get

E(S) ≤ E(X). (C.0.13)

Let X̃k = 1−Xk. Applying the above argument to X̃ (verify this) we have

E(S̃) ≤ E(X̃).

Since S = −S̃ this implies
E(S) ≥ E(X). (C.0.14)

Now, S ≤ S a.e. So only way (C.0.14) and (C.0.13) can hold only if S = Sa.e. Therefore limn→∞Xn

exists almost everywhere and let us call it X. This completes step 1.
Step 2: We shall now use the Weak Law of Large numbers (Theorem 8.2.1), along with Proposition

C.0.3, and Lemma C.0.4 to complete the proof. The weak law implies that

Xn
p→ µ as n→∞.

From Step 1, we know that
Xn

w.p.1−→ X as n→∞.
Proposition C.0.3 then implies that

Xn
p→ X as n→∞.

Finally Lemma C.0.4 implies P (X = µ) = 1. Therefore

Xn
w.p.1−→ µ as n→∞.

�
Proof of Theorem C.0.1(General Case) The essence of the proof is contained in the special case

proven above. We provide a sketch of the proof.
Case 1:(0 ≤ X ≤ 1) An imitation of Step 1 of the proof for Bernoulli p random variables will show

that there is a limit. Step 2 of the above proof follows readily.
Case 2: Bounded Case When the random variable X is bounded, i.e. | X |≤ M for some M > 0.

One can consider Y = X−M
2M and Yi =

Xi−M
2M . As 0 ≤ Y ≤ 1 then one can use Case 1 for Yi to establish

that there is a limit. Step 2 of the above proof follows readily.
Case 3: (General Case by Truncation) One fixes α,β > 0 and defines

S(α) = min{S,α},X(β) = max{X,−β} and X
(β)
k = max{Xk,−β} ∀k ∈N.

The above quantities are all bounded. One imitates Step 1 of the above proof and this will result in
inequalities depending on α,β. One then allows α,β approach infinity to establish that Xn

w.p.1−→ X for
a random variable X. Step 2 of the above proof follows readily. We refer the reader to [AS09] for the
complete proof. �

Version: – April 25, 2016


