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E S T I M AT I O N A N D H Y P O T H E S I S T E S T I N G

In Chapter 7 we introduce the question of how an i.i.d. sample X1,X2, . . . ,Xn from an unknown distribution
may be used to estimate aspects of that distribution. In Chapter 8 we saw how the sample statistics
behave asymptotically. In this chapter we look at some specific examples where various parameters of the
distribution such as µ and σ are unknown, and the sample is used to estimate these parameters.

For example, suppose there is a coin which we assume has a probability p of showing heads each time it
is flipped. To gather information about p the coin is flipped 100 times. The results of these flips are viewed
as i.i.d. random variables X1,X2, . . . ,X100 with a Bernoulli(p) distribution. Suppose

∑100
n=1 Xn = 60,

meaning 60 of the 100 flips showed heads. How might we use this to infer something about the value of p?
The first two topics we will consider are the “method of moments” and the “maximum likelihood

estimate”. Both of these are direct forms of estimation in the sense that they produce a single-value estimate
for p. A benefit of such methods is that they produce a single prediction, but a downside is that the
prediction they make is most likely not exactly correct. These methods amount to a statement like “Since
60 of the 100 flips came up heads, we predict that the coin should come up heads 60% of the time in the
long run”. In some sense the 60% prediction may be the most reasonable one given what was observed in
the 100 flips, but it should also be recognised that 0.6 is unlikely to be the true value of p.

Another approach is that of the “confidence interval”. Using this method we abandon the hope of
realising a specific estimate and instead produce a range of values in which we expect to find the unknown
parameter. This yields a statement such as, “With 90% confidence the actual probability the coin will show
heads is between 0.52 and 0.68”. While this approach does not give a single-valued estimate, it has the
benefit that the result is more likely to be true.

Yet another approach is the idea of a “hypothesis test”. In this case we make a conjecture about the
value of the parameter and make a computation to test the credibility of the conjecture. The result may be
a statement such as, “If the coin had a 50% chance of showing heads, then observing 60 heads or more
in 100 flips should occur less than 3% of the time. This is a rare enough result, it suggests that the 50%
hypothesis of showing heads is inaccurate”.

For all of these methods, we will assume that the sample X1,X2, . . . ,Xn are i.i.d copies of a random
variable X with a probability mass function or probability density function f(x). For brevity, we shall
often refer to the distribution X, by which we will mean the distribution of the random variable X. We
shall further assume that f(x) depends on one or more unknown parameters p1, p2, . . . , pd and emphasise
this using the notation f(x | p1, p2, . . . , pd). We may abbreviate this f(x | p) where p represents the vector
of all parameters (p1, . . . , pd) ∈ P ⊂ Rd for some d ≥ 1. The set P may be all of Rd or some proper subset
depending on the nature of the parameters.

9.1 notations and terminology for estimators

Definition 9.1.1. Let X1,X2,X3, . . . ,Xn be an i.i.d. sample from the population with distribution X. Let
g : Rn → R. Then g(X1,X2, . . . ,Xn) is defined as a “point estimator” from the sample and the value from
a particular realisation is called an “estimate”.

In practice the function g is chosen keeping in mind the parameter of interest. We have seen the following
in Chapter 7.
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226 estimation and hypothesis testing

Example 9.1.2. Let E[X ] = µ. Let g : Rn → R be given by

g(x) =
1
n

n∑
i=1

xi.

Then g(X1,X2, . . . ,Xn) is the (now familiar) sample mean and it is an estimator for µ. We also saw that
E[g(X1,X2, . . . ,Xn)] = µ regardless of the true value of µ and we called such an estimator an unbiased
estimator. �

As noted in Chapter 7, we can view this as estimating the first moment of a distribution by the first
moment of the empirical distribution based on a sample. A generalization of this method is known as the
method of moments.

9.2 method of moments

Let X1,X2, . . . ,Xn be a sample with distribution X. Assume that X is either has probability mass function
or probability density function f(x | p) depending on parameter(s) p = (p1, . . . , pd). For d ≥ 1. Let
mk : Rn → R be given by

mk(x) =
1
n

n∑
i=1

xki .

Notice that mk(X1,X2, . . . ,Xn) is the k-th moment of the empirical distribution based on the sample
X1,X2, . . . ,Xn, which we will refer to simply as the k-th moment of the sample.

Let µk = E[Xk ], the k-th moment of the distribution X. Since the distribution of X depends
on (p1, p2, . . . pd) one can view µk as a function of p, which we can make explicit by the notation
µk ≡ µk(p1, p2, . . . pd). The method of moments estimator for (p1, p2, . . . pd) is obtained by equating the
first d moments of the sample to the corresponding moments of the distribution. Specifically, it requires
solving the d equations in d unknowns given by

µk(p1, p2, . . . pd) = mk(X1,X2, . . . ,Xn) , k = 1, 2, . . . d.

for p1, p2, . . . pd. There is no guarantee in general that these equations have a unique solution or that it can
be computed, but in practice it is usually possible to do so. The solution will be denoted by p̂1, p̂2, . . . p̂d
which will be writen in terms of the realised values for mk, k = 1, . . . , d. We will now explore this method
for two examples.
Example 9.2.1. Suppose X1,X2, . . . ,X10 is an i.i.d. sample with distribution Binomial(N , p) where neither
N nor p is known. Suppose the empirical realisation of these variables is 8, 7, 6, 11, 8, 5, 3, 7, 6, 9. One
can check that the average of these values is m1 = 7 while the average of their squares is m2 = 53.4. Since
X ∼ Binomial (N , p) the probability mass function is given by ???. We have previously shown that

E[X ] = Np and E[X2] = Var[X ] +E[X ]2 = Np(1− p) +N2p2.

Thus, the method of moments estimator for (N , p) is obtained by solving

7 = m1 = N̂ p̂ and 53.4 = m2 = N̂ p̂(1− p̂) + N̂2p̂2.

Using elementary algebra we see that

N̂ =
m2

1
m1 − (m2 −m2

1)
≈ 19

p̂ =
m1 − (m2 −m2

1)

m1
≈ 0.371.

The method of moments estimates that the distribution from which the sample came is Binomial(19, 0.371).
As we noted at the beginning of the chapter, we may wish to restrict the parameters based on the context
of the problem. Since the N value is surely some integer, the estimate of N̂ was rounded to the nearest
meaningful value in this case. �
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9.3 maximum likelihood estimate 227

Example 9.2.2. Suppose our quantity of interest X has a Normal (µ,σ2) distribution. Therefore our
probability density function is given by

f(x | µ,σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R.

Let X1,X2,X3, . . . ,Xn be an i.i.d. sample from the population. We have shown that

E[X ] = µ and E[X2] = Var[X ] +E[X ]2 = µ2 + σ2.

The method of moments estimator for µ,σ is found by solving

m1 = µ and m2 = µ2 + σ2.

from which

µ̂ = m1 = X and

σ̂ =

√
m2 −m2

1 =

√
n− 1
n

S.

�

It happens that the method of moment estimators may not be very reliable. For instance in the
first example the estimate for p could be negative, occurring when the sample mean is smaller than the
sample variance. Such defects can be somewhat rectified using moment matching and other techniques (see
[CasBer90]).

9.3 maximum likelihood estimate

Let n ≥ 1, p = (p1, p2, . . . , pd) ∈ Rd and X1,X2, . . . ,Xn be a sample from the population described by X.
Assume that X either has probability mass function or probability density function denoted by f(x | p)
depending on parameter(s) p ∈ P ⊂ Rd.

Definition 9.3.1. The likelihood function for the sample (X1,X2, . . . ,Xn) is the function L : P ×Rn → R

given by

L(p;X1, . . . Xn) =
n∏
i=1

f(Xi | p).

For a given (X1,X2, . . . ,Xn), suppose p̂ ≡ p̂(X1,X2, . . . ,Xn) is the point at which L(p;X1, . . . Xn) attains
its maximum as a function p. Then p̂ is called the maximum likelihood estimator of p (or abbreviated as
MLE of p) given the sample (X1,X2, . . . ,Xn).

One observes readily that the likelihood function is the joint density or joint mass function of
(X1,X2, . . . ,Xn). The MLE p̂ obtained is the most likely value of the parameter p, given that it is
the value at which f is maximised for the given realisation of (X1,X2, . . . ,Xn).
Example 9.3.2. Let p ∈ R and (X1,X2, . . . ,Xn) be from a population distributed as Normal with mean p
and variance 1. Then the likelihood function is given by

L(p;X1, . . . Xn) =
n∏
i=1

1√
2π
e−

(Xi−p)2
2 =

1
(
√

2π)n
e−

∑n

i=1
(Xi−p)2

2 .

To find the MLE, treating the given the realisation X1,X2, . . . ,Xn as fixed, one needs to maximise L as a
function of p. This is equivalent to finding the minimum of g : R→ R given by

g(p) =

n∑
i=1

(Xi − p)2.

Version: – April 25, 2016



228 estimation and hypothesis testing

Method 1: Since g(p) =
∑n
i=1(Xi −X)2 + (X − p)2 (See Exercise 9.3.1) and first term is always

non-negative, the minimum of g will occur when

p = X.

Method 2: The second method is to find the MLE using differential calculus. As g is a quadratic in p, it
is differentiable at all p and

g′(p) = −2
n∑
i=1

(Xi − p).

As the coefficient of p2 in g is n (which is positive), and g is quadratic, the minimum will occur in the
interior when g′(p) = 0. This occurs when p is equal to 1

n

∑n
i=1 Xi. So the MLE of p is given by

p̂ = X.

�

Example 9.3.3. Let p ∈ (0, 1) and (X1,X2, . . . ,Xn) be from a populatioon distributed as Bernoulli (p).
Now the probability mass function f can be written as

f(x | p) =

 p if x = 1
1− p if x = 0
0 otherwise.

=

{
px(1− p)1−x if x ∈ {0, 1}
0 otherwise.

Then the likelihood function is given by

L(p;X1, . . . Xn) =
n∏
i=1

pXi (1− p)1−Xi = p

∑n

i=1
Xi (1− p)n−

∑n

i=1
Xi .

To find the MLE, treating the given the realisation X1,X2, . . . ,Xn as fixed, one needs to maximise L as a
function of p. One needs to use calculus to find the MLE but differentiating L is cumbersome. So we will
look at the logarithm of L (called the log likelihood function).

T (p;X1, . . . Xn) = lnL(p;X1, . . . Xn)

=


ln
(

p
1−p

)
a+ n ln(1− p) if

∑n
i=1 Xi = a, 0 < a < n

n ln(1− p) if
∑n
i=1 Xi = 0

n ln(p) if
∑n
i=1 Xi = n

Therefore, in the first case, differentiating and settting it to zero p = a
n . This in fact can be verified to be

the global maximum. In the second case T is a decreasing function of p and maximum occurs at p = 0. In
the final case t is an increasing function of p and maximum occurs at p = 1. Therefore we can conclude that

p̂ =

∑n
i=1 Xi
n

.

�

As a final example, let us revisit Example 9.2.1, where we considered a Binomial distribution with both
parameters unknown.
Example 9.3.4. Suppose X1,X2, . . . ,Xn is an i.i.d. sample with distribution Binomial(N , p) where neither
N nor p is known. The likelihood function is given by

L(N , p;X1, . . . ,Xn) =
k∏
i=1

(
N

xi

)
pXi (1− p)N−Xi

... �
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9.4 confidence intervals 229

exercises

Ex. 9.3.1. Show that for any real numbers p,x1,x2, . . . ,xn
n∑
i=1

(xi − p)2 =

n∑
i=1

(xi − x)2 + (x− p)2.

9.4 confidence intervals

Let X1,X2, . . . ,Xn be an i.i.d. sample from a distribution X with unknown mean µ. The sample mean
X is an unbiased estimator for µ, but the empirical value of the sample mean will likely differ from µ by
some unknown amount. Suppose we want to produce an interval, centered around X which we can be
fairly certain contains the true average µ. This is known as a “confidence interval” and we explore how to
produce such a thing in two different settings below.

9.4.1 Confidence Intervals when the standard deviation σ is known

Let X have a probability mass function or probability density function f(x | µ) where the distribution
X has an unknown expected value µ, but a known standard deviation σ. Let X1,X2, . . . ,Xn be an i.i.d.
sample from the distribution X. Let β ∈ (0, 1) denote a “confidence level”. We want to find an interval
width a such that

P (|X − µ| < a) = β.
That is, the sample mean X will have a probability β of differing from the true mean µ by no more than
the quantity a.

Let
Z =

√
n(X − µ)

σ
.

Then E[Z] = 0 and V ar[Z] = 1. Observe,

β = P (|X − µ| < a) = P (|
√
n(X − µ)

σ
| <
√
na

σ
)

= P (|Z| <
√
na

σ
)

= P (−
√
na

σ
< Z <

√
na

σ
)

If X has a normal distribution, then Z ∼ Normal(0, 1) by Example 6.3.12. If the distribution of X is
unknown, but n is large, then by the Central Limit Theorem (Theorem 8.4.1), Z should still be roughly
normal, so we can make a valid assumption that Z ∼ Normal(0, 1). When n, σ, and β are known, one can
use the Normal tables (Table D.2) to find the unknown interval width a. The interval (X − a,X + a) is
then known as “a β confidence interval for µ”. The interpretation being that the random sample of size n
from the distribution X should produce confidence intervals that include the correct value of µ 95% with
probabilty β.
Example 9.4.1. Suppose X has a normal distribution with known standard deviation σ = 3.0 and an
unknown mean µ. A sample X1,X2, . . . ,X16 of i.i.d. random variables is taken from distribution X. The
sample average of these 16 values comes out to be X = 10.2. What would be a 95% confidence interval for
the actual mean µ?

In this case β = 0.95 so we must find the value of a for which

P (|X − µ| < a) = 0.95.

From the computation above, this is equivalent to the equation

P (−4a
3 < Z <

4a
3 ) = 0.95
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230 estimation and hypothesis testing

where Z ∼ Normal(0, 1). Using the normal table, this is equivalent to 4a
3 ≈ 1.96, and so a ≈ 1.47. In

other words, a 95% confidence interval for the actual mean of the distribution X is (8.73, 11.67).
It should be noted that the only random variable in the expression P (|X − µ| < a) = 0.95 is the X

variable. The interpretation is that random samples of size n = 16 from the distribution X should produce
confidence intervals that include the correct value of µ, 95% of the time. �

9.4.2 Confidence Intervals when the standard deviation σ is unknown

In most realistic situations the standard deviation σ would be unknown and would have to be estimated
from the sample standard deviation S. In this case a confidence interval may still be produced, but an
approximation via a normal distribution is insufficient.

Let X have normal distribution with density function f(x | µ,σ) where µ and σ are unknown. Let
X1,X2, . . . ,Xn be an i.i.d. sample from the distribution X. Let X be the sample mean and the sample
variance be denoted by S2. Let β ∈ (0, 1) denote a confidence level. As before, we want to find an interval
width a such that P (|X − µ| < a) = β.

Let
T =

√
n(X − µ)

S
.

From Corollary 8.1.10, T ∼ tn−1. In a simliar fashion as the previous example,

β = P (|X − µ| < a) = P (|
√
n(X − µ)

S
| < a)

= P (|T | <
√
na

S
)

= P (−
√
na

S
< T <

√
na

S
)

where T ∼ tn−1. Since n, S, and β are known, this equation can be solved to find the unknown interval
width a using the t-distribution.

Example 9.4.2. Suppose X has a normal distribution with unknown mean µ and unknown standard
deviation σ. A sample X1,X2, . . . ,X16 of i.i.d. random variables with distribution X is taken. The sample
average of these 16 values comes out to be X = 10.2 and the sample standard deviation is S = 3.0. What
would be a 95% confidence interval for the actual mean µ?

In this case β = 0.95 so we must find the value of a for
P (|X − µ| < a) = 0.95. This is equivalent to the equation

P (−4a
3 < T <

4a
3 ) = 0.95

Using the t-distribution, this is equivalent to 4a
3 ≈ 2.13, and so a ≈ 1.60. In other words, a 95%

confidence interval for the actual mean of the distribution X is (8.6, 11.80).
It is useful to compare this answer to the result from Example 9.4.1. Note that despite the similarity of

the mean and standard deviation, the 95% confidence interval based on the t-distribution is a bit wider
than the confidence interval based on the normal distribution. The reason is that in Example 9.4.1 the
standard deviation was known exactly, while in this example the standard deviation needed to be estimated
from the sample. This introduces an additional source of random error into the problem and thus the
confidence interval must be wider to ensure the same likelihood of containing the true value of µ. �

Example 9.4.3. Consider the example given at the start of the chapter. A coin is flipped 100 times with a
result of 60 heads and 40 tails. What would be a 90% confience interval for the actual probability p that
the coin shows heads on any given flip?

We represent a flip by X ∼ Bernoulli(p). From the i.i.d. sample X1,X2, . . . ,X100 we have p̂ =
60/100 = 0.6. Despite the fact that σ is unknown, it would be inapprorpiate to use a t-distribution for
the confidence interval in this case because X is far from a normal distribution. But we may still appeal
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9.5 hypothesis testing 231

to the Central Limit Theorem and accept the sample as providing a reasonable estimate for the standard
deviation. That is, if X ∼ Bernoulli(0.6), then σ = SD[X ] =

√
0.24. Using this approximation σ ≈

√
0.24

we may proceed as before...... �

exercises

Ex. 9.4.1. are t intervals always larger than Normal

9.5 hypothesis testing

The idea of hypothesis testing is another approach to comparing an observed quantity from a sample (such
as X) to an expected result based on an assumption about the distribution X. There are many different
types of hypothesis tests. What follows is far from an exhausive list, but we explore some particular forms
of hypothesis testing built around four familiar random distributions – the z-test, the t-test, the F-test, and
the χ2-test.

For any hypothesis test a “null hypothesis” is a specific conjecture made about the nature of the
distribution X. This is compared to an “alternate hypothesis” that specifies a particular manner in which
the null may be an inaccurate assumption.

A computation is then performed based on the differences between the sample data and the result
which would have been expected if the null hypothesis were true. This computation results in a quantity
called a “P-value” which describes the probability that sample would be at least as far from expectation as
was actually observed. The nature of this comparison between observation and expectation varies according
to the type of test performed and the assumptions of the null hypothesis. A small P-value is an indication
that the sample would be highly unusual (casting doubt on the null hypothesis), which a large P-value
indicates that the sample is quite consistent with the assumptions of the null.

9.5.1 The z-test: Test for sample mean when σ is known

Suppose X ∼ Normal(µ,σ2) where µ is an unknown mean, but σ is a known standard deviation. Let
X1,X2, . . . ,Xn be an i.i.d. sample from the distribution X. Select as a null hypothesis the assumption
that µ = c for some value c less than the observed average X. Since the sample average X is larger than
the assumed mean, the assumption µ > c may be an appropriate alternate hypothesis. If the null is true,
how likely is it we would have seen a sample mean as large as the observed value X ?

To answer this question, we assume the empirical values of the sample X1,X2, . . . ,Xn are known and
let Y1,Y2, . . . ,Yn be an i.i.d. sample from the same distribution X. The Yj variables effectively mimic the
sampling procedure, an idea that will be commonly used through all tests of significance we consider.

We then calculate P (Y ≥ X) where Y is viewed as a random variable andX is taken as the (deterministic)
observed sample average. The X statistic calculated from the observed data is known as the “test statistic”.
The probability P (Y ≥ X) desribes how likely it is that the test statistic would be at least as far away
from µ as what was observed. This probability can be computed precisely because the distribution of Y is
known exactly. Specifically, if the null hypothesis is true, then

Z =

√
n(Y − c)
σ

∼ Normal(0, 1).

So

P (Y ≥ X) = P (

√
n(Y − µ)
σ

≥
√
n(X − c)
σ

)

= P (Z ≥
√
n(X − c)
σ

).

In practice, before a sample is taken, a “signficance level” α ∈ (0, 1) is typically selected. If P (Y ≥
X) < α then the sample average is so far from the assumed mean c that the assumption µ = c is judged to
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be incorrect. This is known as “rejecting the null hypothesis”. Alternatively if P (Y ≥ X) ≥ α then the
sample mean is seen as consistent with the assumption µ = c and the null hypothesis is not rejected.
Example 9.5.1. Suppose X has a normal distribution with known standard deviation σ = 3.0. A sample
X1,X2, . . . ,X16 of i.i.d. random variables is taken, each with distribution X. If the observed sample mean
is X = 10.2, what conclusion would a z-test reach if the null hypothesis assumes µ = 9.5 (against an
alternate hypothesis µ > 9.5) at a signifiance level of α = 0.05? �

Under the null hypothesis, Y1,Y2,Y3, . . . ,Y16 ∼ Normal(9.5, 3.0) and independent, so

P (Y ≥ X) = P (Y ≥ 10.2)

= P (
4(Y − 9.5)

3 ≥ 4(10.2− 9.5))
3

= P (Z ≥ 4(10.2− 9.5)
3 ) ≈ 0.175

where the final approximation is made using the fact that Z ∼ Normal(0, 1). The 0.175 figure is the
P-value. Since it is larger than our significance level of α = 0.05 we would not reject null hypothesis. Put
another way, if the µ = 9.5 assumption is true, the sampling procedure will produce a result at least as
large as the sample average X = 10.2 about 17.5% of the time. This is common enough that we cannot
reject the µ = 9.5 assumption.
Example 9.5.2. Make the same assumptions as in Example 9.5.1, but this time test a null hypothesis
that µ = 8.5 (with an alternate hypothesis µ > 8.5 and a significance level of α = 0.05). Under the null
hypothesis Y1,Y2,Y3, . . . ,Y16 ∼ Normal(8.5, 3.0) and are independent, so

P (Y ≥ X) = P (Y ≥ 10.2)

= P (Z ≥ 4(10.2− 8.5)
3 ) ≈ 0.012

Since 0.012 is less than α = 0.05 the null hypothesis would be rejected and the test would reach the
conclusion that the true mean µ is some value larger than 8.5. Put another way, if the µ = 8.5 assumption
is true, the sampling procedure will produce a result as large as the sample average X = 10.2 only about
1.2% of the time. This is rare enough that we can reject the hypothesis that µ = 8.5. �

For a large sample, a z-test is commonly used even without the assumption that X has a normally
distribution. This is justified by appealing to the Central Limit Theorem.
Example 9.5.3. Suppose a programmer is writing an app to identify faces based on digital photographs
taken from social media. She wants to be sure that the app makes an accurate identification more than 90%
of the time in the long run. She takes a random sample of 500 such photos and her app makes the correct
identification 462 times - a 92.4% success rate. The programmer is hoping that this is an indication her app
has a better than 90% success rate in the long run. However it is also possible the long term success rate is
only 90%, but that the app happened to overperform this bar on the 500 photo sample. What does a z-test
say about a null hypothesis that the app is only 90% accurate (compared to an alternate hypothesis that
the app is more than 90% accurate with a significance level of α = 0.05)?

The random variables in question are modeled by a Bernoulli distribution, as the app either reaches
a correct conclusion or it does not. Under the null hypothesis Y1,Y2, . . . ,Y500 ∼ Bernoulli(0.9) and are
independent. The sample proportion does not precisely have a normal distribution, but the Central Limit
Theorem implies that the standardized quantity

Y1 + · · ·+ Y500 − 450√
45

should have approximately a Normal(0, 1) distribution. Therefore

P (
Y1 + · · ·+ Y500

500 ≥ X1 + · · ·+X500
500 )

= P (
Y1 + · · ·+ Y500 − 450√

45
≥ X1 + · · ·+X500 − 450√

45
)

≈ P (Z ≥ 462− 450√
45

) ≈ 0.03
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Since 0.03 is less than α = 0.05 the null hypothesis would be rejected and the test would reach the conclusion
that the success rate for the app is greater than 90%. �

The examples above concern tests on the right hand tail of a normal curve. That is, they test a null
hypothesis µ = c against an alternate hypothesis µ > c. It is also possible to perform a test on the left
hand tail (testing a null hypothesis µ = c against an alternate hypothesis µ < c) and even a two-tailed test
(testing a null µ = c against an alternate µ 6= c), an example of which follows below.

Example 9.5.4. Suppose X has a normal distribution random variable with unknown mean and σ = 6.
Suppose X1,X2, . . . ,X25 is an i.i.d. sample taken with distriubtion X and that X = 6.2. What conclusion
would a z-test reach if the null hypothesis assumes µ = 4 against an alternate hypothesis µ 6= 4 at a
signifiance level of α = 0.05 ? Since the alternate hypothesis doesn’t specify a particular direction in which
the null may be incorrect, the appropriate probability to compute is

P (|Y − 4| ≥ |X − 4|),

the probability that the absolute distance of a sample from the anticipated mean of 4.0 is larger than what
was actually observed.

P (|Y − 4| ≥ |X − 4|) = 1− P (|Y − 4| < 2.2)
= 1− P (−2.2 ≤ Y − 4 ≤ 2.2)

= 1− P (5(−2.2)
6 ≤ 5(Y − 4)

6 ≤ 5(2.2)
6 )

= 1− P (−11
6 ≤ Z ≤ 11

6 ) ≈ 0.0668

since Z ∼ Normal(0, 1). As 0.0668 is slightly above the required significance level α = 0.05 the test would
not reject the null hypothesis. �

9.5.2 The t-test: Test for sample mean when σ is unknown

As in the case of confidence intervals, when σ is unknown and estimated from the sample standard deviation
S, an adjustment must be made by using the t-distribution.

Suppose X is known to be normally distributed with X ∼ Normal(µ,σ2) where µ and σ are unkonwn.
Let X1,X2, . . . ,Xn be an i.i.d. sample from the distribution X. Select as a null hypothesis that µ = c and
select µ > c as an alternate hypothesis. Regard X1, . . . ,Xn as empirically known and let Y1, . . . ,Yn be
i.i.d. random variables which mimic the sampling procedure.

Under the null Y1, . . . ,Yn ∼ Normal(c,σ2) and are independent, from Corollary 8.1.10,
√
n(Y − c)
S

∼ tn−1

and so

P (Y ≥ X) = P (

√
n(Y − c)
S

≥
√
n(X − c)
S

)

= P (T ≥
√
n(X − c)
S

).

The other aspects of the hypothesis test are the same except that the t-distriubtion must be used to
calculate this final probability. As with the z-test, this could be performed as a one-tailed or a two-tailed
test depending on the appropriate alternate hypothesis.

Example 9.5.5. Suppose X has a normal distribution with unknown standard deviation. A sample
X1,X2, . . . ,X16 of i.i.d. random variables is taken, each with distribution X. The sample standard
deviation is S = 3.0. What conclusion would a t-test reach if the null hypothesis assumes µ = 9.5 at a
signifiance level of α = 0.05 (against the alternative hypothesis that µ > 9.5)? �

Version: – April 25, 2016



234 estimation and hypothesis testing

Under the null hypothesis, Y1,Y2, . . . ,Y16 ∼ Normal(9.5,σ) and independent, so

P (Y ≥ X) = P (Y ≥ 10.2)

= P (
4(Y − 9.5)

3 ≥ 4(10.2− 9.5))
3 )

= P (T ≥ 4(10.2− 9.5)
3 )

= P (T ≥ 14
15 ) ≈ 0.183

since T ∼ t15. As 0.183 > α = 0.05 the null hypothesis would not be rejected.
It is informative to compare this to Example 9.5.1 which was identical except that it was assumed that

σ = 3.0 was known exactly rather than estimated from the sample. Note that the P-value in the case of
the t-test (0.183) was slightly larger than in the case of the z-test (0.175). The reason is the use of S, a
random variable, in place of σ, a deterministic constant. This adds an additional random factor into the
computation and therefore makes larger deviations from the mean somewhat more likely.

9.5.3 A critical value approach

An alternate way to view the tests above is to focus on a “critical value”. Such a value is the dividing line
beyond which the null will be rejected. If a test is being performed with a significance level α, then we can
determine ahead of time where this line is and immediately reach a conclusion from the value of the test
statistic without calculating a P-value. To demonstrate this we will redo Example 9.5.1 using this approach.
In that example, X had a normal distribution with known standard deviation σ = 3.0 and Y1,Y2, . . . ,Y16
were i.i.d. with distribution X. The null hypothesis assumed µ = 9.5 while the alternate hypothesis was
µ > 9.5. The test had a signifiance level of α = 0.05.

To find the critical value, we begin with the same computation as in Example 9.5.1, but keep X as a
variable.

P (Y ≥ X) = P (
4(Y − 9.5)

3 ≥ 4(X − 9.5)
3 )

= P (Z ≥ 4(X − 9.5)
3 )

Whether or not the null is rejected depends entirely on whether this probability is above or below the
significance level α = 0.05, so the relevant question is what value of c ensures P (Z ≥ c) = 0.05. This is
something that can be calculated using Normal tables Table D.2 and in fact, c ≈ 1.645. We solve the
equation

4(X − 9.5)
3 = 1.645

which yields X ≈ 10.73. The figure 10.73 is the critical value. It is the dividing line we were seeking; if the
sample average is above 10.73 the null hypothesis will be rejected while a sample average less than 10.73
will not cause the test to reject the null. For this particular example it was assumed that the observed
sample average was X = 10.2 which is why the null hypothesis was not rejected.

9.5.4 The χ2-test : Test for sample variance

Suppose instead of an inquiry about an average, we are interested in the variability in a population. Suppose
X ∼ Normal(µ,σ2) with unknown σ. As with the previous hypothesis tests, we assume the empirical
values of the sample X1,X2, . . . ,Xn are known, and let Y1,Y2, . . . ,Yn be an i.i.d. sample with distribution
X which mimics the sampling procedure. Select as a null hypothesis the assumption that σ = c (and take
σ > c as an alternate hypothesis). How likely is it the sampling procedure would produce a sample standard
deviation as large as SX?
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We wish to calculate P (SY ≥ SX ), the probability a sample would produce a standard deviation at
least as large as what was observed. Under the null hypothesis, from Theorem 8.1.9

(n− 1)
c2 S2

Y ∼ χ
2
n−1.

Therefore,

P (SY ≥ SX ) = P (S2
Y ≥ S

2
X )

= P (
(n− 1)
c2 S2

Y ≥
(n− 1)
c2 S2

X )

= P (W ≥ (n− 1)
c2 S2

X )

which may be calculated since W ∼ χ2
n−1 and n, c, and SX are known.

Example 9.5.6. SupposeX is normally distributed with unknown standard deviation σ. LetX1,X2, . . . ,X16
be an i.i.d. sample with distriubtion X and a sample standard deviation SX = 3.5. What conclusion
would a χ2-test reach if the null hypothesis assumes σ = 3, with an alternate hypothesis that σ > 3, and a
signifiance level of α = 0.05?

The null hypothsis ensures

P (SY ≥ SX ) = P (
15
σ2 S

2
Y ≥

15
σ2 S

2
X )

= P (W ≥ 15
9 (3.5)2) ≈ 0.157

since W ∼ χ2
15. So there is about a 15.7% chance that a sample of size 16 would produce a standard

deviation as large as 3.5. As this P-value is larger than α the null hypothesis is not rejected. �

The shapes of the normal distribution and the t-distribution are symmetric about their means. This
implies that when considering an interval centered at the mean, the two tail probabilities are always equal
to each other. For example, if Z ∼ Normal(µ,σ2), then P (Z ≥ µ+ c) = P (Z ≤ µ− c) regardless of the
value of c. In particular, when carrying out a computation for a hypothesis test,

P (|Z − µ| ≥ c) = P (Z ≥ µ+ c) + P (Z ≤ µ− c)
= 2P (Z ≥ µ+ c)

since both tails have the same probability. However, this is not so for the chi-squared distribution. When
performing a two-tailed test involving a distribution which is not symmetric, the interval selected is the one
which has equal tail probabilities, each of which equal half of the confidence level. Due to this fact it is
usually best to use a critical value approach.

Example 9.5.7. SupposeX is normally distributed with unknown standard deviation σ. LetX1,X2, . . . ,X16
be an i.i.d. sample with distriubtion X and a sample standard deviation SX = 3.5, under the null hypothesis.
What conclusion would a χ2-test reach if the null hypothesis assumes σ = 3, with an alternate hypothesis
that σ 6= 3, and a signifiance level of α = 0.05?

As in the previous example, we let Y1, . . . ,Y16 replicate the sampling procedure and use that 15
σ2 S

2
Y

has a χ2
15 distribution. With a significance level of α = 0.05 the critical points will be the values of the

χ2
15 distribution that correspond to tail probabilities of 2.5%. It may be calculated that if W ∼ χ2

15, then
P (W ≤ 6.26) ≈ 0.025 while P (W ≥ 27.49) ≈ 0.025. As is readily observed 6.26 is the 0.025-th quantile
and 27.49 is the 0.975-th quantile. They define the low and high critical values beyond which would be
considered among the 5% most unusual occurances for W . The corresponding obsevered value in the sample
is 15

9 (3.5)2 ≈ 20.42 does not put it among this unusual 5% mark, so the null hypothesis would not be
rejected.

�
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9.5.5 The two-sample z-test: Test to compare sample means

Hypothesis tests may also be used to compare two samples to each other to see if the populations they
were derived from were similar. This is of particular use in many applications. For instance: are the
political opinions of one region different from another?; or are test scores at one school better than those at
another school? These questions could be approached by taking random samples from each population and
comparing them with each other.

Suppose X1,X2, . . . ,Xn1 is an i.i.d. sample from a distribution X ∼ Normal(µ1,σ2
1) and suppose

Y1,Y2, . . . ,Yn2 is an i.i.d. sample from a distribution Y ∼ Normal(µ2,σ2
2) independent of the Xj variables.

Assume σ1 and σ2 are known, but µ1 and µ2 are not. How might we test a null hypothesis that µ1 = µ2
against an alternative hypothesis µ1 6= µ2?

If the null hypothesis were true µ1 − µ2 = 0. We could calculate X − Y and determine if this difference
was close enough to 0 to make the null plausible. As usual, we mimic the sampling procedure, this time
with both samples. Let V1, . . . ,Vn1 be an i.i.d. sample with distribution X and let W1, . . . ,Wn2 be an i.i.d.
sample with distribution Y independent of the Vj variables. We would then calculate

P (|V −W | ≥ |X − Y |),

the probability that the difference of sample averages would be at least as large as what was observed.
As V ∼ Normal(µ1, σ

2
1
n1

) and W ∼ Normal(µ2, σ
2
2
n2

) . Under the null hypothesis the mean of V −W
is zero and they are independent with each having normal distribution. By Theorem 6.3.13 V −W ∼
Normal(0, σ

2
1
n1

+
σ2

2
n2

). Therefore,

P (|V −W | ≥ |X − Y |) = P (| V −W√
σ2

1
n1

+
σ2

2
n2

| ≥ |X − Y |√
σ2

1
n1

+
σ2

2
n2

)

= P (| Z | ≥ |X − Y |√
σ2

1
n1

+
σ2

2
n2

)

= 2P (Z ≤ − |X − Y |√
σ2

1
n1

+
σ2

2
n2

)

were Z ∼ Normal(0, 1).
Example 9.5.8. Suppose a biologist wants to know if the average weights of adult members of a species of
squirrel in one forest is the same as an identical species in a different location. Historical data suggests that
the weights of the species have a standard deviation σ = 10 grams and the biologist is willing to use this
assumption for his computations. Suppose he takes a sample of 30 squirrels from each location is is willing
to regard these as independent i.i.d. samples from the respective populations. The first sample average is
122.4 grams and the second sample average is 127.6 grams. What conclusion would a two-sample z-test
reach testing a null hypothesis that the population averages are the same against a alternate hypothesis
that they are different at a signifiance level of α = 0.05?

Nothing in the statement of the problem suggests that an assumption about the normality of the
populations, so we will need to appeal to the Central Limit Theorem and be content that this is a decent
approximation. Let X and Y represent the distributions of weights of the two populations. Under the null
hypothesis these distributions have equal means µ = µX = µY and σ = 10 for both distirubtions. Let
V1, . . . ,V30 and W1, . . . ,W30 be i.i.d samples from populations X and Y respectively. Observe that

V −W =
1
30

30∑
i=1

(Vi −Wi).

Now V1 −W1,V2 −W2,V3 −W3, . . . ,V30 −W30 are i.i.d. with zero mean and standard deviation√
102 + 102 = 10

√
2. By the Central Limit Theorem, the distribution of

Version: – April 25, 2016



9.5 hypothesis testing 237

√
30(V −W )

10
√

2
is approximately standard normal. Therefore,

P (|V −W | ≥ 5.2) = P (|
√

30(V −W )

10
√

2
| ≥
√

30(5.2)
10
√

2
)

= P (Z ≥ 0.52
√

15) ≈ 0.0440

where Z ∼ Normal(0, 1).
Since the P-value falls below the significance level, we would reject the null hypothesis and conclude

that the populations have different average weights. �

9.5.6 The F -test: Test to compare sample variances.

Let X1,X2, . . . ,Xn1 be an i.i.d. sample from a distribution X ∼ Normal(µ1,σ2
1) and Y1,Y2, . . . ,Yn2 be

an i.i.d. sample (independent of the Xj variables) from a distribution Y ∼ Normal(µ2,σ2
2). Suppose we

wish to test the null hypothesis σ1 = σ2 against the alternate hypothesis σ1 6= σ2.
Let V1, . . . ,Vn1 replicate the sample from X and W1, . . . ,Wn2 replicate the sample from Y . Let S2

V

and S2
W denote the respective sample variances. Based on the previous examples it may be tempting to

perform a test based on the probability that |S2
V − S

2
W | is as large as the observed difference |S2

X − S
2
Y |.

However, the random variable S2
V − S

2
W does not have a distribution we have already considered. Instead,

we will look at the ratio S2
V

S2
W

. If the null hypothesis is true, this value should be close to 1 and the ratio has
the benefit of being related to a familiar F -distribution.

The random variables (n1−1)
σ2

1
S2
V and (n2−1)

σ2
2

S2
W are independent and by Theorem 8.1.9 have the

distributions χ2
n1−1 and χ2

n2−1 respectively. Therefore from Example 8.1.7 the ratio S2
V ·σ

2
2

S2
W
·σ2

1
has a F (n1 −

1,n2 − 1) distribution, and under the null hypothesis, this ratio simplifies to

S2
V

S2
W

∼ F (n1 − 1,n2 − 1).

Since this is a distribution for which we may compute associated probabilities, we may use it to perform
the hypothesis test. As the F distribution is not symmetric, we take a critical values approach.
Example 9.5.9. Suppose X1,X2, . . . ,X30 is an i.i.d. sample from a distribution X ∼ Normal(µ1,σ2

1) and
suppose Y1,Y2, . . . ,Y25 is an i.i.d. sample from a distribution Y ∼ Normal(µ2,σ2

2) independent of the Xj
variables. If S2

X = 11.4 and S2
Y = 5.1, what conclusion would an F -test reach for null hypothesis suggesting

σ1 = σ2, an alternate hypothesis suggesting σ1 6= σ2, and a signifiance level of α = 0.05?
From the computation above, if R =

S2
V

S2
W

is the ratio of the sample variances, then R ∼ F (29, 24). From
this, it may be calculated that if P (R ≤ 0.464) ≈ 0.025 while P (R ≥ 2.22) ≈ 0.025. Since the observed
ratio 11.4

5.1 ≈ 2.24 is outside of the interval (0.464, 2.22), the null hypothesis would be rejected. �

9.5.7 A χ2-test for “goodness of fit”

A more common use of the χ2 is for something called a “goodness of fit” test. In this case we seek to
determine whether the distribution of results in a sample could plausibly have come from a distribution
specified by a null hypothesis. The test statistic is calculated by comparing the observed count of data
points within specified categories relative to the expected number of results in those categories according to
the assumed null.

Specifically, let X is a random variable with finite range {c1, c2, . . . , ck} for which P (X = cj) = pj > 0
for 1 ≤ j ≤ k. Let X1,X2, . . . ,Xn be the empirical results of a sample from the distribution X and let
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Yj = |{j : Xj = cj}|. That is, Yj is the number of data points in the sample that resulted in the cj outcome.

Then the statistic χ2 =
k∑
j=1

(Yj−npj )2

npj
has approximately the χ2(k− 1) distribution. Note that the npj

term is the expected number of observations of the outcome cj , so the numerator of the fractions in the χ2

computation measures the squared difference between the observed and expected counts.
A formal proof of the statement above requires a deeper understanding of linear algebra than we assume

as a prerequiste for this text, but below we demonstrate its truth in the special case where k = 2 and we
provide the formal technical details in the appendix. The approximation itself relies on the Central Limit
Theorem and as with that theorem, larger values of n will tend to lead to a better approximation. Before
proceeding to the proof, we present an example will help illustrate the use of the test.

Example 9.5.10. The student body at an undergraduate university is 20% seniors, 24% juniors, 26%
sophomores, and 30% freshman. Suppose a researcher takes a sample of 50 such students. Within the
sample there are 13 seniors, 16 juniors, 10 sophmores, and 11 freshmen. The researcher claims that his
sampling procedure should have produced independent selections from the student body, with each student
equally likely to be selected. Is this a plausible claim given the observed results?

If the claim is true (which we take as the null hypothesis), then selecting an individual for the sample
should be like the empirical result from a random variable X with a range of { senior, junior, sophomore,
freshman } where the probabilities of each outcome are the percentages desribed above. For instance,
psenior = P (X = “senior”) = 0.2. The expected value of results based on the null hypothesis is then 10
seniors, 12 juniors, 13 sophomores, and 15 freshmen. So,

χ2 = (13−10)2

10 + (16−12)2

12 + (10−13)2

13 + (11−15)2

15 ≈ 3.99

Notice that the χ2 statistic can never be less than zero, and that when observed results are close to
what was expected, the resulting fraction is small and does not contribute much to the sum. It is only when
there is a relatively large discrepency between observation and expectation that χ2 will have a large value.

Since there were four categories, if the null hypothesis is correct, this statistic resulted from a χ2(3)
distribution. To see if such a thing is plausible, we let W ∼ χ2(3) and calculate that P (W ≥ 3.99) ≈ 0.2625.
The researcher’s claim seems plausible. According to the χ2-test, samples this far from expectation should
be observed around 26% of the time. �

To give a bit more insight into this test, consider each term individually. Each of the variables
Y1,Y2, . . . ,Yn is a binomial random variable. For example Y1 represents the number of times the outcome
c1 is observed in n trials, when P (X = c1) = p1, so Y1 ∼ Binomial(n, p1). Therefore E[Y1] = np1 and
SD[Y1] =

√
np1(1− p1). From the Central Limiit Theorem, the normalized quantity Y1−np1√

np1(1−p1)
has

approximately the Normal(0, 1) distribution, and therefore its square (Y1−np1)
2

np1(1−p1)
has approximately a χ2(1)

distribution. Except for the (1− p1) term in the denominator, this is the first fraction in the sum of our
test statistic. The additional factor in the denominator is connected to the reason the resulting distribution
has n− 1 degrees of freedom instead of n degrees of freedom; the variables Y1,Y2, . . . ,Yn are dependent.
Untangling this dependence in the general case is complicated, but if k = 2 we can prove a rigorous
statement without the use of linear algebra.

Theorem 9.5.11. Let X be a random variable with finite range {c1, c2} for which P (X = cj) = pj > 0 for
j = 1, 2. Let X1,X2, . . . ,Xn be an i.i.d. sample with distribution X and let Yj = |{j : Xj = cj}|. Then

χ2 =
2∑
j=1

(Yj−npj )2

npj
has the same distribution as (Z−E[Z]

SD[Z]
)2 where Z ∼ Binomial(n, p1)
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Proof - To simplify notation, let p = p1 and note that p2 = 1− p. Also, let N = Y1 and note Y2 = n−N .
Then,

χ2 =
(N − np)2

np
+

((n−N)− n(1− p))2

n(1− p)

=
N2 − 2npN + n2p2

np(1− p)

= (
N − np√
np(1− p)

)2

Since N = Y1 ∼ Binomial(n, p), the result follows.
The central limit theorem guarantees N−np√

np(1−p)
converges in distribution to a Normal(0, 1) diistribution,

the χ2 quantity will have approximately a χ2(1) distribution for large values of n.
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