
6S U M M A R I S I N G C O N T I N U O U S R A N D O M VA R I A B L E S

In this chapter we shall revisit concepts that have been discussed for discrete random variables
and see their analogues in the continuous setting. We then introduce generating functions and
conclude this chapter with a discussion on bivariate normal random variables.

6.1 expectation, and variance

The notion of expected value carries over from discrete to continuous random variables, but instead
of being described in terms of sums, it is defined in terms of integrals.

Definition 6.1.1. Let X be a continuous random variable with piecewise continuous density f(x).
Then the expected value of X is given by

E[X ] =

∫ ∞
−∞

xf(x) dx.

provided that the integral converges absolutely1. In this case we say that X has “finite expectation”.
If the integral diverges to ±∞ we say the random variable has infinite expectation. If the integral
diverges, but not to ±∞ we say the expected value is undefined.

The next three examples illustrate the three posibilities: the first is an example where expec-
tation exists as a real number; the next is an example of an infinite expected value; and the final
example shows that the expected value may not be defined at all.

Example 6.1.2. Let X ∼ Uniform(a, b). Then the expected value of X is given by

E[X ] =

∫ ∞
−∞

x · f(x) dx =

∫ b

a
x · 1

b− a
dx =

1
2(b− a) (b

2 − a2) =
b+ a

2 .

This result is intuitive since it says that the average value of a Uniform(a, b) random variable is
the midpoint of its interval. �

Example 6.1.3. Let 0 < α < 1 and X ∼ Pareto(α) which is defined to have the probability density
function

f(x) =


α

xα+1 1 ≤ x <∞

0 otherwise

E[X ] =

∫ ∞
1

x · α

xα+1 dx = α lim
M→∞

∫ M

1
x−αdx =

α

−α+ 1 (−1 + lim
M→∞

M−α+1) =∞

as 0 < α < 1.
Thus this Pareto random variable has an infinite expected value. �

Version: – January 19, 2021



166 summarising continuous random variables

Example 6.1.4. Let X ∼ Cauchy(0, 1). Then the probability density function of X is given by

f(x) =
1
π

1
1 + x2 for all x ∈ R.

Now,

E[X ] =

∫ ∞
−∞

x · 1
π(1 + x2)

dx

Now by Exercise 6.1.10, we know that as M → −∞,N →∞ the
∫ N
M

x
1+x2 dx does not converge or

diverge to ±∞. So E[X ] is not defined for this Cauchy random variable. �

Expected values of functions of continuous random variables may be computed using their
respective probability density function by the following theorem.

Theorem 6.1.5. Let X be continuous random variables with probability density function fX : R→
R.

(a) Let g : R→ R be piecewise continuous and Z = g(X) Then the expected value of Z given by

E[g(X)] =

∫ ∞
−∞

g(x)fX (x) dx

(b) Let Y be a continuous random variable such that (X,Y ) have a joint probability density
function f : R2 → R. Suppose h : R2 → R be piecewise continuous. Then,

E[h(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

h(x, y)f(x, y) dx dy.

Proof- The proof is beyond the scope of this book. For (a) when g is as in Exercise 5.3.10
then one can provide the proof using only the tools of basic calculus (we will leave this case as an
exercise to the reader) �

We illustrate the use of the above theorem with a couple of examples.
Example 6.1.6. A piece of equipment breaks down after a functional lifetime that is a random
variable T ∼ Exp( 1

5 ). An insurance policy purchased on the equipment pays a dollar amount
equal to 1000− 200t if the equipment breaks down at a time 0 ≤ t ≤ 5 and pays nothing if the
equipment breaks down after time t = 5. What is the expected payment of the insurance policy?

For t ≥ 0 the policy pays g(t) = max{1000− 200t, 0} so,

E[g(T )] =

∫ ∞
0

1
5e

(1/5)t max{1000− 200t, 0} dt

=

∫ 5

0

1
5e

(1/5)t(1000− 200t) dt

= 1000e−1 ≈ $367.88

�

Example 6.1.7. Let X,Y ∼ Uniform(0, 1). What is the expected value of the larger of the two
variables?

We offer two methods of solving this problem. The first is to define Z = max{X,Y } and then
determine the density of Z. To do so, we first find its distribution. FZ(z) = P (Z ≤ z), but
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6.1 expectation, and variance 167

max{X,Y } is less than or equal to z exactly when both X and Y are less than or equal to z. So
for 0 ≤ z ≤ 1,

FZ(z) = P ((X ≤ z) ∩ (Y ≤ z))
= P (X ≤ z) · P (Y ≤ z)
= z2

Therefore fZ(z) = F ′Z(z) = 2z after which the expected value can be obtained through integration

E[Z] =

∫ 1

0
z · 2z dz = 2

3z
3 |10=

2
3 .

An alternative method is to use Theorem 6.1.5 (b) to calculate the expectation directly without
finding a new density. Since X and Y are independent, their joint distribution is the product of
their marginal distributions. That is,

f(x, y) = fX (x)fY (y) =

{
1 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
0 otherwise

Therefore,

E[max{X,Y }] =

∫ ∞
−∞

∫ ∞
−∞

max{x, y} · f(x, y) dx dy

=

∫ 1

0

∫ 1

0
max{x, y} · 1 dx dy

The value of max{x, y} is x if 0 < y ≤ x < 1 and it is y if 0 < x ≤ y < 1. So,

E[max{X,Y }] =

∫ 1

0

∫ y

0
y dx dy+

∫ 1

0

∫ 1

y
x dx dy

=

∫ 1

0
xy |x=yx=0 dy+

∫ 1

0

1
2x

2 |x=1
x=y dy

=

∫ 1

0
y2 dy+

∫ 1

0

1
2 −

1
2y

2 dy

=
1
3 +

1
3 =

2
3 .

�

Results from calculus may be used to show that the linearity properties from Theorem 4.1.7
such as apply to continuous random variables as well as to discrete ones. We restate it here for
completeness.

Theorem 6.1.8. Suppose that X and Y are continuous random variables with piecewise continuous
joint density function function f : R2 → R. Assume that both have finite expected value. If a and
b are real numbers then

(a) E[aX ] = aE[X ];

(b) E[aX + b] = aE[X ] + b

(c) E[X + Y ] = E[X ] +E[Y ]; and
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168 summarising continuous random variables

(d) E[aX + bY ] = aE[X ] + bE[Y ].

(e) If X ≥ 0 then E[X ] ≥ 0.

Proof- See Exercise 6.1.11. �
We will use these now-familiar properties in the continuous setting. As in the discrete setting

we can define the variance and standard deviation of a continuous random variable.

Definition 6.1.9. Let X be a random variable with probability density function f : R → R.
Suppose X has finite expectation. Then

(a) the variance of the random variable is written as V ar[X ] and is defined as

V ar[X ] = E[(X −E[X ])2] =

∫ ∞
−∞

(x−E[X ])2fX (x)dx,

(b) the standard deviation of X is written as SD[X ] and is defined as

SD[X ] =
√
V ar[X ]

Since the above terms are expected values, there is the possibility that they may be infinite because
the integral describing the expectation diverges to infinity. As the integrand is strictly positive, it
isn’t possible for the integral to diverge unless it diverges to infinity.

The properties of variance and standard deviation of continuous random variables match those
of their discrete counterparts. A list of these properties follows below.

Theorem 6.1.10. Let a ∈ R and let X be a continuous random variable with finite variance (and
thus, with finite expected value as well). Then,

(a) V ar[X ] = E[X2]− (E[X ])2 .

(b) V ar[aX ] = a2 · V ar[X ];

(c) SD[aX ] = |a| · SD[X ];

(d) V ar[X + a] = V ar[X ]; and

(e) SD[X + a] = SD[X ].

If Y is another independent continuous random variable with finite variance (and thus, with finite
expected value as well) then

(f) E[XY ] = E[X ]E[Y ];

(g) V ar[X + Y ] = V ar[X ] + V ar[Y ]; and

(h) SD[X + Y ] =
√
(SD[X ])2 + (SD[Y ])2.

Proof- The proof is essentially an imitation of the proofs presented in Theorem 4.1.10, Theorem
4.2.5, Theorem 4.2.4, and Theorem 4.2.6. One needs to use the respective densities, integrals in
lieu of sums, and use Theorem 6.1.11 and Theorem 6.1.5 when needed. We will leave this as an
exercise to the reader. �
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6.1 expectation, and variance 169

Example 6.1.11. Let X ∼ Normal (0, 1). In this example we shall show that E[X ] = 0 and
V ar[X ] = 1. Before that we collect some facts about the probability density function of X, given
by (5.2.7). Using (5.2.9) with z = 0, we can conclude that∫ ∞

0

1√
2π
e−

x2
2 dx =

1
2 (6.1.1)

Observe that there exists c1 > 0 such that

max{| x |,x2}e−
x2
2 ≤ c1e−c1|x|

for all x ∈ R. Hence ∫ ∞
−∞
| x | 1√

2π
e−

x2
2 dx ≤ c1

∫ ∞
−∞

e−c1|x| <∞∫ ∞
−∞

x2 1√
2π
e−

x2
2 dx ≤ c1

∫ ∞
−∞

e−c1|x| <∞ (6.1.2)

Using the above we see that

E[X ] =

∫ ∞
−∞

x
1√
2π
e−

x2
2 dx <∞

So we can split integral expression in definition of E[X ] as

E[X ] =

∫ 0

−∞
x

1√
2π
e−

x2
2 dx+

∫ ∞
0

x
1√
2π
e−

x2
2 dx.

Further the change of variable y = −x will imply that∫ 0

−∞
x

1√
2π
e−

x2
2 dx = −

∫ ∞
0

y
1√
2π
e−

y2
2 dy.

So E[X ] = 0. Again by (6.1.2),

V ar[X ] =

∫ ∞
−∞

(x−E[X ])2 1√
2π
e−

x2
2 dx =

∫ ∞
−∞

x2 1√
2π
e−

x2
2 dx < ∞

To evaluate the integral we make a change of variable to obtain∫ ∞
−∞

x2 1√
2π
e−

x2
2 =

∫ 0

−∞
x2 1√

2π
e−

x2
2 dx+

∫ ∞
0

x2 1√
2π
e−

x2
2 dx = 2

∫ ∞
0

x2 1√
2π
e−

x2
2 dx.

Then we use integration by parts like Lemma 5.5.4. Set u(x) = x and v(x) = e−
x2
2 , which imply

u′(x) = 1 and v′(x) = −xe−
x2
2 . Therefore for a > 0,∫ a

0
x2e−

x2
2 dx =

∫ a

0
u(x)(−v′(x))dx = u(x)(−v(x)) |a0 −

∫ a

0
u′(x)(−v(x))dx

= a2e−
a2
2 +

∫ a

0
e−

x2
2

Using the fact that lima→∞ a2e−
a2
2 = 0 and (6.1.1) we have

V ar[X ] = 2 1√
2π

∫ ∞
0

x2e−
x2
2 dx =

1√
π

lim
a→∞

∫ a

0
x2e−

x2
2 dx =

1√
π

lim
a→∞

[
a2e−

a2
2 +

∫ a

0
e−

x2
2 dx

]
=

1√
π

[
0 +

∫ ∞
0

e−
x2
2 dx

]
=

1√
π
[0 +

√
π] = 1
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170 summarising continuous random variables

Suppose Y ∼ Normal (µ,σ2) then we know by Corollary 5.3.3 that W = Y−µ
σ ∼ Normal (0, 1).

By Example 6.1.11, E[W ] = 0 and V ar[W ] = 1. Also Y = σW + µ, so by Theorem 6.1.8(b)
E[Y ] = σE[W ] + µ = µ and by Theorem 6.1.10 (d) and (b) V ar[Y ] = σ2V ar[W ] = σ2. �

Example 6.1.12. Let X ∼ Uniform(a, b). To calculate the variance of X first note that Theorem
6.1.5(a) gives

E[X2] =

∫ ∞
−∞

x2 · f(x) dx =

∫ b

a
x2 · 1

b− a
dx =

1
3(b− a) (b

3 − a3) =
b2 + ab+ a2

3 .

Now, since E[X ] = b+a
2 (see Example 6.1.2), the variance may be found as

V ar[X ] = E[X2]− (E[X ])2 =
b2 + ab+ a2

3 − (
b+ a

2 )2 =
(b− a)2

12 .

Taking square roots, we obtain SD[X ] = b−a√
12 . So the standard deviation of a continuous, uniform

random variable is 1√
12 times of the length of its interval. �

The Markov and Chebychev inequalities also apply to continuous random variables. As with
discrete variables, these help to estimate the probabilities that a random variable will fall within
a certain number of standard deviations from its expected value.

Theorem 6.1.13. Let X be a continuous random variable with probability density function f and
finite non-zero variance.

(a) (Markov’s Inequality) Suppose X is supported on non-negative values, i.e. f(x) = 0 for
all x < 0. Then for any c > 0,

P (X ≥ c) ≤ µ

c
.

(b) (Chebychev’s Inequality) For any k > 0,

P (|X − µ| ≥ kσ) ≤ 1
k2 .

Proof - (a) By definition of µ and assumptions on f , we have

µ =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

xf(x)dx.

Using an elementary fact from integrals we know that∫ ∞
0

xf(x)dx =

∫ c

0
xf(x)dx+

∫ ∞
c

xf(x)dx

We note that the first integral is non-negative so we have

µ ≥
∫ ∞
c

xf(x)dx.

As f(·) ≥ 0, we have xf(x) ≥ cf(x) whenever x > c. So again using facts about integrals

µ ≥
∫ ∞
c

cf(x)dx = c

∫ ∞
c

f(x)dx = cP (X > c).

The last equality follows from definition. Hence we have the result.
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6.1 expectation, and variance 171

(b) The event (|X −µ| ≥ kσ) is the same as the event ((X −µ)2 ≥ k2σ2). The random variable
(X − µ)2 is certainly non-negative, is continuous by Exercise 5.3.9, and its expected value is the
variance of X which we have assumed to be finite. Therefore we may apply Markov’s inequality
to (X − µ)2 to get

P (|X − µ| ≥ kσ) = P ((X − µ)2 ≥ k2σ2) ≤ E[(X − µ)2]

k2σ2 =
V ar[X ]

k2σ2 =
σ2

k2σ2 =
1
k2 .

Though the theorem is true for all k > 0, it doesn’t give any useful information unless k > 1.
�

exercises

Ex. 6.1.1. Suppose X has probability density function given by

fX (x) =

{
1− | x | −1 ≤ x ≤ 1
0 otherwise

(a) Compute the distribution function of X.

(b) Compute E[X ] and V ar[X ].

Ex. 6.1.2. Suppose X has probability density function given by

fX (x) =

{ cos(x)
2 −π2 ≤ x ≤

π
2

0 otherwise

(a) Compute the distribution function of X.

(b) Compute E[X ] and V ar[X ].

Ex. 6.1.3. Find E[X ] and V ar[X ] in the following situations:

(a) X ∼ Normal(µ,σ2), with µ ∈ R and σ > 0.

(b) X has probability density function given by

fX (x) =


x 0 ≤ x ≤ 1
2− x 1 ≤ x ≤ 2
0 otherwise

Ex. 6.1.4. Let 1 < α and X ∼ Pareto(α). Calculate E[X ] to show that it is finite.
Ex. 6.1.5. Let X be a random variable with density f(x) = 2x for 0 < x < 1 (and f(x) = 0
otherwise).

(a) Calculate E[X ]. You should get a result larger than 1
2 . Explain why this should be expected

even without computations.

(b) Calculate SD[X ].

Ex. 6.1.6. Let X ∼ Uniform(a, b) and let k > 0. Let µ and σ be the expected value and standard
deviation calculated in Example 6.1.12.
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172 summarising continuous random variables

(a) Calculate P (|X − µ| ≤ kσ). Your final answer should depend on k, but not on the values of
a or b.

(b) What is the value of k such that results of more than k standard deviations from expected
value are unachievable for X?

Ex. 6.1.7. Let X ∼ Exponential(λ).

(a) Prove that E[X ] = 1
λ and SD[X ] = 1

λ .

(b) Let µ and σ denote the mean and standard deviation of X respectively. Use your computa-
tions from (a) to calculate P (|X − µ| ≤ kσ). Your final answer should depend on k, but not
on the value of λ.

(c) Is there a value of k such that results of more than k standard deviations from expected
value are unachievable for X?

Ex. 6.1.8. Let X ∼ Gamma(n,λ) with n ∈ N and λ > 0. Using Example 5.5.3, Exercise 6.1.7(a)
and Theorem 6.1.8(c) calculate E[X ]. Using Theorem 6.1.10 calculate V ar[X ].
Ex. 6.1.9. Let X ∼ Uniform(0, 10) and let g(x) = max{x, 4}. Calculate E[g(X)].
Ex. 6.1.10. Show that as M → −∞,N →∞

∫ N
M

x
1+x2 dx does not have a limit.

Ex. 6.1.11. Using the hints provided below prove the respective parts of Theorem 6.1.8.

(a) For a = 0 the result is clear. Let a 6= 0 and fX : R→ R be the probability density function of
X. Use Lemma 5.3.2 to find the probability density function of aX. Compute the expectation
of aX to obtain the result. Alternatively use Theorem 6.1.5(a).

(b) Use Theorem 6.1.5(b).

(c) Use the joint density of (X,Y ) to write E[X + Y ]. Then use (5.4.2) an (5.4.3) to prove the
result.

(d) Use the same technique as in (b).

(e) If X ≥ 0 then its marginal density fX : R→ R is positive only when the x ≥ 0. The result
immediately follows from definition of expectation.

Ex. 6.1.12. Prove Theorem 6.1.10.

6.2 covariance, correlation, conditional expectation and conditional
variance

Covariance of continuous random variables (X,Y ) is used to describe how the two random variables
relate to each other. The properties proved about covariances for discrete random variables in
Section 4.5 apply to continuous random variables as well via essentially the same arguments. We
define covariance and state the properties next.

Definition 6.2.1. Let X and Y be random variables with joint probability density function f :
R2 → R. Suppose X and Y have finite expectation. Then the covariance of X and Y is defined
as

Cov[X,Y ] = E[(X −E[X ])(Y −E[Y ])] =

∫ ∞
−∞

∫ ∞
−∞

(x−E[X ])(y−E[Y ])f(x, y)dxdy, (6.2.1)
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6.2 covariance, correlation, conditional expectation and conditional variance 173

Since it is defined in terms of an expected value, there is the possibility that the covariance
may be infinite or not defined at all. We now state the properties of Covariance.

Theorem 6.2.2. Let X,Y be continuous random variables such that they have joint probability
density function. Assume that 0 6= σ2

x = Var(X) <∞, 0 6= σ2
y = Var(Y ) <∞. Then

(a) Cov[X,Y ] = E[XY ]−E[X ]E[Y ].

(b) Cov[X,Y ] = Cov[Y ,X ];

(c) Cov[X,X ] = V ar[X ].

(d) −σXσY ≤ Cov[X,Y ] ≤ σXσY

(e) If X and Y are independent then Cov[X,Y ] = 0.

Let a, b be real numbers. Suppose Z is another continuous random variable, and σz = Var(Z) <∞.
Further (X,Z), (Y ,Z), (X, aY + bZ), and (aX+ bY ,Z) all have (their respective) joint probability
functions. Then

(f) Cov[X, aY + bZ] = a ·Cov[X,Y ] + b ·Cov[X,Z];

(g) Cov[aX + bY ,Z] = a ·Cov[X,Z] + b ·Cov[Y ,Z];

Proof- See Exercise 6.2.13 �

Definition 6.2.3. Let (X,Y ) be continuous random variables both with finite variance and co-
variance. From Theorem 6.2.2(d) the quantity ρ[X,Y ] = Cov[X,Y ]

σXσY
is in the interval [−1, 1]. It is

known as the“correlation” of X and Y . As discussed earlier, both the numerator and denominator
include the units of X and the units of Y . The correlation, therefore, has no units associated
with it. It is thus a dimensionless rescaling of the covariance and is frequently used as an absolute
measure of trends between the two continuous random variables as well.

Example 6.2.4. Let X ∼ Uniform (0, 1) and be independent of Y ∼ Uniform (0, 1). Let U =
min(X,Y ) and V = max(X,Y ). We wish to find ρ[U ,V ]. First, 0 < u < 1

P (U ≤ u) = 1− P (U > u) = 1− P (X > u,Y > u) = 1− P (X > u)P (Y > u) = 1− (1− u)2,

as X,Y are independent uniform random variables. Second, for 0 < v < 1,

P (V ≤ v) = P (X ≤ v,Y ≤ v) = P (X ≤ v)P (Y ≤ v) = v2,

as X,Y are independent uniform random variables. Therefore the distribution function of U and
V are given by

FU (u) =


0 if u < 0
1− (1− u)2 if 0 < u < 1
1 if u ≥ 1.

and FV (v) =


0 if v < 0
v2 if 0 < v < 1
1 if v ≥ 1.

As FU ,FV are piecewise differentiable, the probability density function of U and V are obtained
by differentiating FU and FV respectively.

fU (u) =

{
2(1− u) if 0 < u < 1
0 otherwise

and fV (v) =

{
2v if 0 < v < 1
0 otherwise.
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Thirdly, 0 < u < v < 1

P (U ≤ u,V ≤ v) = P (V ≤ v)− P (U > u,V ≤ v)
= v2 − P (u < X ≤ v,u < Y ≤ v)
= v2 − P (u < X ≤ v)P (u < Y ≤ v)
= v2 − (v− u)2,

where we have used the formula for distribution function of V and the fact that X,Y are indepen-
dent uniform random variables. It is easily seen that P (U ≤ u,V ≤ v) = 0 for all other possibilities
of (u, v). As the joint distribution function is piecewise differentiable in each variable, the joint
probability density function of U and V , f : R2 → R, exists and is obtained by differentiating it
partially in u and v.

f(u, v) =
{

2 if 0 < u < v < 1
0 otherwise

Now,

E[U ] =

∫ 1

0
u2(1− u)du = u2 − 2u

3

3 |
1
0=

1
3

E[V ] =

∫ 1

0
v2vdv = 2v

3

3 |
1
0=

2
3

E[U2] =

∫ 1

0
u22(1− u)du = 2u

3

3 − 2u
4

4 |
1
0=

1
6

E[V 2] =

∫ 1

0
v22vdv = 2v

4

4 |
1
0=

1
2

E[UV ] =

∫ 1

0

[∫ v

0
uv2du

]
dv =

∫ 1

0
2v
[
u2

2 |
1
0

]
dv =

∫ 1

0
2v v

2

2 dv =
v4

4 |
1
0=

1
4

Therefore

V ar[U ] = E[U2]− (E[U ])2 =
2
3 −

1
9 =

5
9

V ar[V ] = E[V 2]− (E[V ])2 =
1
2 −

4
9 =

1
18

Cov[U ,V ] = E[UV ]−E[U ]E[V ] =
1
4 −

1
3

2
3 =

5
36

ρ[U ,V ] =
Cov[U ,V ]√

V ar[V ]
√
V ar[U ]

=
5
36√

5
9

√
1
18

=
1

2
√

2

�

As seen in Theorem 6.2.2 (e), independence of X and Y guarantees that they are uncorrelated
(i.e ρ[X,Y ] = 0). The converse is not true (See Example 4.5.6 for discrete case). It is possible that
Cov[X,Y ] = 0 and yet that X and Y are dependent, as the next example shows.
Example 6.2.5. Let X ∼ Uniform (−1, 1). Let Y = X2. Note from Example 6.1.2 and Example
6.1.12 we have E[X ] = 0,E[Y ] = E[X2] = 1

3 . Further using the probability density function of
X,

E[XY ] = E[X3] =

∫ 1

−1
x3 1

2 =
x4

8 |
1
−1= 0.

Version: – January 19, 2021



6.2 covariance, correlation, conditional expectation and conditional variance 175

So ρ[X,Y ] = 0. Clearly X and Y are not independent. We verify this precisely as well. Consider
the

P (X ≤ −1
4 ,Y ≤ 1

4 ) = P (X ≤ −1
4 ,X2 ≤ 1

4 ) = P (−1
2 ≤ X ≤ −

1
4 ) =

1
8 ,

as X ∼ Uniform (−1, 1). Whereas,

P (X ≤ −1
4 )P (Y ≤

1
4 ) = P (X ≤ −1

4 )P (X
2 ≤ 1

4 ) = P (X ≤ −1
4 )P (−

1
2 ≤ X ≤

1
2 ) =

3
8

1
2 =

3
16 .

Clearly
P (X ≤ −1

4 ,Y ≤ 1
4 ) 6= P (X ≤ −1

4 )P (Y ≤
1
4 )

implying they are not independent. �

We are now ready to define conditional expectation and variance.

Definition 6.2.6. Let (X,Y ) be continuous random variables with a piecewise continuous joint
probability density function f . Let fX be the marginal density of X. Assume x is a real number
for which fx(x) 6= 0. The conditional expectation of Y given X = x is defined by

E[Y | X = x] =

∫ ∞
−∞

yfY |X=x(y)dy =

∫ ∞
−∞

y
f(x, y)
fX (x)

dy

whenever it exists. The conditional variance of Y given X = x is defined by

V ar[Y |X = x] = E[(Y −E[Y |X = x])2|X = x]

=

∫ ∞
−∞

(
y−

∫ ∞
−∞

y
f(x, y)
fX (x)

dy

)2 f(x, y)
fX (x)

dy.

The results proved in Theorem 4.4.4, Theorem 4.4.6, Theorem 4.4.8, and Theorem 4.4.9 are
all applicable when X and Y are continuous random variables having joint probability density
function f . The proofs of these results in the continuous setting follow very similarly (though
using facts about integrals from analysis).

Theorem 6.2.7. Let (X,Y ) be continuous random variables with joint probability density function
f : R→ R. Assume that h, g : R→ R be defined as

g(y) =

{
E[X|Y = y] if fY (y) > 0
0 otherwise

and h(y) =
{
V ar[X|Y = y] if fY (y) > 0
0 otherwise

are well-defined piecewise continuous functions. Let k : R → R be a piecewise continous function.
Then

E[k(X) | Y = y] =

∫ ∞
−∞

k(x)fX|Y =y(x)dx, (6.2.2)

E[g(Y )] = E[X ], (6.2.3)

and
V ar[X ] = E[h(Y )] + V ar[g(Y )]. (6.2.4)
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Proof- The proof of (6.2.2) is beyond the scope of this book. We shall omit it. To prove (6.2.3)
we use the definition of g and Theorem 6.1.8 (a) to write

E[g(Y )] =

∫ ∞
−∞

g(y)fY (y)dy =

∫ ∞
−∞

[∫ ∞
−∞

xfX|Y =y(x)dx

]
fY (y)dy

Using the definition of conditional density and rearranging the order of integration we obtain that
the above is

=

∫ ∞
−∞

[∫ ∞
−∞

x
f(x, y)
fY (y)

dx

]
fY (y)dy =

∫ ∞
−∞

x

[∫ ∞
−∞

f(x, y)dy
]
dx =

∫ ∞
−∞

xfX (x)dx = E[X ].

So we are done. To prove (6.2.4), using Exercise 6.2.8

h(y) = E[X2 | Y = y]− (E[X | Y = y])2 = E[X2 | Y = y]− (g(y))2

From the above we have,

E[h(Y )] = E[X2] +E[g(Y )2]

V ar[g(Y )] = E[g(Y )2]− (E[g(Y )])2 = E[g(Y )2]− (E[X ])2

Therefore summing the two equations we have (6.2.4). �
As before it is common to use E[X|Y ] to denote g(Y ) after which the result may be expressed

as E[E[X|Y ]] = E[X ]. This can be slightly confusing notation, but one must keep in mind that
the exterior expected value in the expression E[E[X|Y ]] refers to the averge of E[X|Y ] viewed as
a function of Y .

Similarly one denotes h(Y ) by V ar[X|Y ]. Then we can rewrite (6.2.4) as

V ar[X ] = E[V ar[X|Y ]] + V ar[E[X|Y ]].

Example 6.2.8. Let X ∼ Uniform (0, 1) and be independent of Y ∼ Uniform (0, 1). Let U =
min(X,Y ) and V = max(X,Y ). In Example 6.2.4 we found ρ[U ,V ]. During that computation
we showed that the marginal densities of U and V were given by

fU (u) =

{
2(1− u) if 0 < u < 1
0 otherwise

and fV (v) =

{
2v if 0 < v < 1
0 otherwise.

and the joint density of (U ,V ) was given by

f(u, v) =
{

2 if 0 < u < v < 1
0 otherwise

Let 0 < u < 1. The conditional density of V | U = u, is given by

fV |U=u(v) =
f(u, v)
fU (u)

, for v ∈ R.

So,

fV |U=u(v) =

{
1

1−u if u < v < 1
0 otherwise

Therefore (V | U = u) ∼ Uniform (u, 1). So the conditional expectation is given by

E[V | U = u] =

∫ 1

u

v

1− udv =
1− u2

2(1− u) =
1 + u

2 .
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The conditional variance is given by

V ar[V | U = u] = E[V 2 | U = u]− (E[V | U = u])2

=

∫ 1

u

v2

1− udv−
(

1 + u

2

)2

=
1− u3

3(1− u)dv−
(1 + u)2

4 =
(1− u)2

12 .

We could have also concluded these from properties of Uniform distribution computed in Example
6.1.2 and Example 6.1.12. We will use this approach in the next example. �

Example 6.2.9. Let (X,Y ) have joint probability density function f given by

f(x, y) =
√

3
4π e

− 1
2 (x

2−xy+y2) −∞ < x, y <∞.

These random variables were considered in Example 5.4.12. We showed there that X is a Normal
random variable with mean 0 and variance 4

3 and Y is also a Normal random variable with mean 0
and variance 4

3 . We observed that they are not independent as well and the conditional distribution
of Y given X = x was Normal with mean x

2 and variance 1. Either by direct computation or by
definition we observe that

E[Y | X = x] =
x

2 V ar[Y | X = x] = 1.

We could compute the V ar[Y ] using (6.2.4), i.e

V ar[Y ] = V ar[E[Y | X ]] +E[V ar[Y | X = x]]

= V ar[
X

2 ] +E[1]

=
1
4V ar[X ] + 1 =

1
4

4
3 + 1 =

4
3 .

�

exercises

Ex. 6.2.1. Let (X,Y ) be uniformly distributed on the triangle 0 < x < y < 1.

(a) Compute E[X|Y = 1
6 ].

(b) Compute E[(X − Y )2].

Ex. 6.2.2. X is a random variable with mean 3 and variance 2. Y is a random variable with mean
−1 and variance 6. The covariance of X and Y is −2. Let U = X + Y and V = X − Y . Find the
correlation coefficient of U and V .
Ex. 6.2.3. Suppose X and Y are both uniformly distributed on [0, 1]. Suppose Cov[X,Y ] = −1

24 .
Compute the variance of X + Y .
Ex. 6.2.4. A dice game between two people is played by a pair of dice being thrown. One of the
dice is green and the other is white. If the green die is larger than the white die, player number
one earns a number of points equal to the value on the green die. If the green die is less than or
equal to the white die, then player number two earns a number of points equal to the value of the
green die. Let X be the random variable representing the number of points earned by player one
after one throw. Let Y be the random variable representing the number of points earned by player
two after one throw.
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(a) Compute the expected value of X and of Y .

(b) Without explicitly computing it, would you expect Cov[X,Y ] to be positive or negative?
Explain.

(c) Calculate Cov[X,Y ] to confirm your intuition.

Ex. 6.2.5. Suppose X has variance σ2
X , Y has variance σ2

Y , and the pair (X,Y ) has correlation
coefficient ρ[X,Y ].

(a) In terms of σX , σY , and ρ[X,Y ], find Cov[X,Y ] and Cov[X + Y ,X − Y ].

(b) What must be true of σ2
X and σ2

Y if X + Y and X − Y are uncorrelated?

Ex. 6.2.6. Let (X,Y ) have the joint probability density function f : R2 → R given by

fX,Y (x, y) =
{

3(x+ y) if x > 0, y > 0, and x+ y < 1
0 otherwise

(a) Find E[X|Y = 1
2 ] and V ar[X|Y = 1

2 ]

(b) Are X and Y independent ?

Ex. 6.2.7. Suppose Y is uniformly distributed on (0, 1), and suppose for 0 < y < 1 the conditional
density of X | Y = y is given by

fX|Y =y(x) =

{
2x
y2 if 0 < x < y

0 otherwise.

(a) Show that, as a function of x, fX|Y =y(x) is a density.

(b) Compute the joint p.d.f. of (X,Y ) and the marginal density of X.

(c) Compute the expected value and variance of X given that Y = y, with 0 < y < 1.

Ex. 6.2.8. Let (X,Y ) have joint probability density function f : R2 → R. Show that V ar[X |
Y = y] = E[X2 | Y = y]− (E[X | Y = y])2 .
Ex. 6.2.9. For random variables (X,Y ) as in Exercise 5.4.1, find

(a) E[X ] and E[Y ]

(b) V ar[X ] and V ar[Y ]

(c) Cov[X,Y ] and ρ[X,Y ]

Ex. 6.2.10. From Example 5.4.12, consider(X,Y ) have joint probability density function f given
by

f(x, y) =
√

3
4π e

− 1
2 (x

2−xy+y2) −∞ < x, y <∞.

Find

(a) E[X ] and E[Y ]

(b) V ar[X ] and V ar[Y ]
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(c) Cov[X,Y ] and ρ[X,Y ]

Ex. 6.2.11. From Example 5.4.13, suppose T = {(x, y) | 0 < x < y < 4} and let (X,Y ) ∼ Uniform
(T ). Find

(a) E[X ] and E[Y ]

(b) V ar[X ] and V ar[Y ]

(c) Cov[X,Y ] and ρ[X,Y ]

Ex. 6.2.12. From Example 5.4.9, consider the open disk in R2 given by C = {(x, y) : x2 + y2 < 25}
and | C |= 25π denote its area. Let (X,Y ) have a joint density f : R2 → R given by

f(x, y) =
{

1
|C| if (x, y) ∈ C
0 otherwise.

Find

(a) E[X ] and E[Y ]

(b) V ar[X ] and V ar[Y ]

(c) Cov[X,Y ] and ρ[X,Y ]

Ex. 6.2.13. Using the hints provided below prove the respective parts of Theorem 6.2.2

(a) Use the linearity properties of the expected value from Theorem 6.1.8.

(b) Use definition of covariance.

(c) Use the definitions of variance and covariance.

(d) Imitate the proof of Theorem 4.5.7.

(e) Use part (a) of this problem and part (f) of Theorem ??.

(f) Use the linearity properties of the expected value from Theorem 6.1.8.

(g) Use the linearity properties of the expected value from Theorem 6.1.8.

Ex. 6.2.14. Let X,Y be continuous random variable with piecewise continuous densities f(x) and
g(y) and well-defined expected values. Suppose X ≤ Y then show that E[X ] ≤ E[Y ].
Ex. 6.2.15. Let T be the triangle bounded by the lines y = 0, y = 1− x, and y = 1 + x. Suppose
a random vector (X,Y ) has a joint p.d.f.

f(X,Y )(x, y) =
{

3y if
0 otherwise.

Compute E[Y |X = 1
2 ].

Ex. 6.2.16. Let (X,Y ) be random variables with joint probability density function f : R2 → R.
Assume that both random variables have finite variances and that their covariance is also finite.

(a) Show that V ar[X + Y ] = V ar[X ] + V ar[Y ] + 2Cov[X,Y ].

(b) Show that when X and Y are positively correlated (i.e. ρ[X,Y ] > 0) then V ar[X + Y ] >
V ar[X ] + V ar[Y ], while when X and Y are negatively correlated (i.e. ρ[X,Y ] < 0), then
V ar[X + Y ] < V ar[X ] + V ar[Y ].
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6.3 moment generating functions

We have already seen for the distribution of a discrete random variable or a continuous random
variable is determined by its distribution function. In this section we shall discuss the concept
of moment generating functions. Under suitable assumptions, these functions will determine the
distribution of random variables. They are also serve as tools in computations and come in handy
for convergence concepts that we will discuss.

The moment generating function generates or determine the moments which in turn, under
suitable hypothesis determine the distribution of the corresponding random variable. We begin
with a definition of a moment.

Definition 6.3.1. Suppose X is a random variable. For a positive integer k, the quantity

mk = E[Xk]

is known as the “kth moment of X”. As before the existence of a given moment is determined by
whether the above expectation exists or not.

We have previously seen many computations of the first moment E[X ] and also seen that the
second moment E[X2] is related to the variance of the random variable. The next theorem states
that if a moment exists then it guarantees the existence of all lesser moments.

Theorem 6.3.2. Let X be a random variable and let k be a positive integer. If E[Xk] < ∞ then
E[Xj ] <∞ for all positive integers j < k.

Proof - Suppose X is a continuous random variable. Suppose E[Xk] exists and is finite, so
that E[|Xk|] < ∞. Divide R in two pieces by letting R1 = {x ∈ T : |x| < 1} and letting
R2 = {x ∈ T : |x| ≥ 1}. If j < k then |x|j ≤ |x|k for x ∈ R2 so,

E[|Xj |] =
∫

R

|x|jfX (x) dx =

∫
R1

|x|jfX (x) dx+

∫
R2

|x|jfX (x) dx

≤
∫
R1

1 · fX (x) dx+

∫
R2
|x|kfX (x) dx

≤
∫
R1
fX (x) dx+

∫
R2
|x|kfX (x) dx

= 1 +E[|Xk|] <∞

Therefore E[Xj ] exists and is finite. See Exericse 6.3.7 when X is a discrete random variable. �
When a random variable has finite moments for all positive integers, then these moments provide

a great deal of information about the random variable itself. In fact, in some cases, these moments
serve to completely describe the distribution of the random variable. One way to simultaneously
describe all moments of such a variable in terms of a single expression is through the use of a
“moment generating function”.

Definition 6.3.3. Suppose X is a random variable and D = {t ∈ R : E[etX ] exists}. The function
M : D → R given by

M(t) = E[etX ],
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is called the moment generating function for X.

The notation MX (t) will also be used when clarification is needed as to which variable a
particular moment generating function belongs. Note that M (0) = 1 will always be true, but for
other values of t, there is no guarantee that the function is even defined as the expected value
might be infinite. However, when M (t) has derivatives defined at zero, these values incorporate
information about the moments of X. For a discrete random variable X : S → T with T = {xi :
i ∈N}, then for t ∈ D (as in Definition 6.3.3)

MX (t) =
∑
i≥1

etxiP (X = xi).

For a continuous random variable X with probability density function fX : R→ R then for t ∈ D
(as in Definition 6.3.3)

MX (t) =

∫
R

etxfX (x)dx.

We compute moment generating function for a Poisson (λ) and a Gamma (n,λ), with n ∈N,λ > 0.
Example 6.3.4. Suppose X ∼ Poisson (λ) then for all t ∈ R,

MX (t) =
∞∑
k=0

etkP (X = k) =
∞∑
k=0

etk
λke−λ

k!
= e−λ

∞∑
k=0

(
etλ
)k

k!
= e−λee

tλ = e−λ(1+e
t).

So the moment generating function of X exists for all t ∈ R. Suppose Y ∼ Gamma (n,λ) then
t < λ,

MY (t) =

∫
R
ety

λn

Γ(n)
yn−1e−λydy =

λn

Γ(n)

∫
R
yn−1e−(λ−t)ydy =

λn

Γ(n)
Γ(n)

(λ− t)n
=

(
λ

λ− t

)n
,

where we have used (5.5.3). The moment generating function of Y will not be finite if t ≥ λ. �

We summarily compile some facts about moment generating functions. The proof of some of
the results are beyond the scope of this text.

Theorem 6.3.5. Suppose for a random variable X, there exists δ > 0 such that MX (t) exists
(−δ, δ).

(a) The kth moment of X exists and is given by

E[Xk] =M
(k)
X (0),

where M (k)
X denotes the kth derivative of MX .

(b) For 0 6= a ∈ R such that at, t ∈ (−δ, δ) we have

MaX (t) =MX (at).

(c) Suppose Y is another independent random variable such that MY (t) exists for t ∈ (−δ, δ).
Then

MX+Y (t) =MX (t)MY (t).

for t ∈ (−δ, δ).
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Proof - (a) A precise proof is beyond the scope of this book. We provide a sketch. Express etX as
a power series in t.

etX = 1 + tX +
t2X2

2 + · · ·+ tnXn

n!
+ . . .

The expected value of the left hand side is the moment generating function for X while linearity
may be used on the right hand side. So the power series of M(t) is given by

M (t) = 1 + t ·E[X ] +
t2

2 ·E[X
2] + · · ·+ tn

n!
·E[Xn] + . . .

Taking k derivatives of both sides of the equation (which is valid in the interval of convergence)
yields

M (k)(t) = E[Xk] + t ·E[Xk+1] +
t2

2 ·E[X
k+2] + . . .

Finally, when evaluating both sides at t = 0 all but one term on the right hand side vanishes and
the equation becomes simply M (k)(0) = E[Xk].

(b) MaX (t) = E[e(aX)t] = E[eX(at)] =MX (at).
(c) Using Theorem 4.1.10 or Theorem 6.1.10 (f) we have

MX+Y (t) = E[et(X+Y )] = E[etXetY ] = E[etX ]E[etY ] =MX (t)MY (t).

�
Theorem 6.3.5 applies equally well for both discrete and continuous variables. A discrete

example is presented next.
Example 6.3.6. Let X ∼ Geometric(p). We shall find MX (t) and use this function to calculate
the expected value and variance X. For any t ∈ R,

MX (t) = E[etX ] =
∞∑
n=1

etnP (X = n) =
∞∑
n=1

(et)n · p(1− p)n−1 = pet ·
∞∑
n=1

(et · (1− p))n−1

=
pet

1− et(1− p)

Having completed that computation, the expected value and variance can be computed simply by
calculating derivatives.

M ′X (t) =
pet

[1− (1− p)et]2

and so E[X ] =M ′X (0) = p
p2 = 1

p . Similarly,

M ′′X (t) =
pet + p(1− p)e2t

[1− (1− p)et]3

and so E[X2] = M ′′X (0) = 2p−p2

p3 = 2
p2 − 1

p . Therefore, V ar[X ] = E[X2]− (E[X ])2 = 1−p
p2 . Both

the expected value and variance are in agreement with the previous computations for the goemetric
random variable.

Let Y ∼ Normal(µ,σ2). The density of Y is fY (y) = 1
σ
√

2π e
−(y−µ)2/2σ2 . For any t ∈ R,

MY (t) = E[etY ] =

∫ ∞
−∞

ety · 1
σ
√

2π
e−(y−µ)

2/2σ2
dy =

∫ ∞
−∞

1
σ
√

2π
e−(y

2−(2µy+2σ2ty)+µ2)/2σ2
dy

= eµt+(1/2)σ2t2
∫ ∞
−∞

1
σ
√

2π
e−(y−(µ+σ

2t))2/2σ2
dy

= eµt+(1/2)σ2t2 (6.3.1)
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where the integral in the final step is equal to one since it integrates the density of a Normal(µ+
σ2t,σ2) random variable. One can easily verify that the M ′Y (0) = µ and M ′′Y (0) = µ2 + σ2. �

As with the expected value and variance, moment generating functions behave well when applied
to linear combinations of independent variables (courtesy Theorem 6.3.5 (b) and (c)).
Example 6.3.7. Supppose we wish to find the moment generating function of X ∼ Binomial(n, p).
We have seen that such a random variable may arise as the sum of indpendent Bernoulli variables.
That is, X = Y1 + · · ·+ Yn where Yj ∼ Bernoulli(p). But it is routine to compute

MYj (t) = E[etYj ] = et·1P (Yj = 1) + et·0P (Yj = 0) = pet + (1− p).

Therefore by linearity (inductively applying Theorem 6.3.5 (c)),

MX (t) =MY1+···+Yn(t) =MY1(t) · . . . ·MYn(t) = (pet + (1− p))n.

�

Moment generating functions are an extraordinarily useful tool in analyzing the distributions of
random variables. Two particularly useful tools involve the uniqueness and limit properties of such
generating functions. Unfortunately these theorems require analysis beyond the scope of this text
to prove. We will state the uniqueness fact (unproven) below and the limit property in Chapter 8.
First we generalize the definition of moment generating functions to pairs of random variables.

Definition 6.3.8. Suppose X and Y are random variables. Then the function

M (s, t) = E[esX+tY ]

is called the (joint) moment generating function for X and Y . The notation MX,Y (s, t) will be
used when confusion may arise as to which random variables are being represented.

Moment generating functions completely describe the distributions of random variables. We
state the result precisely.

Theorem 6.3.9. (M.G.F. Uniqueness Theorem)

(a) (One variable) Suppose X and Y are random variables and MX (t) = MY (t) in some open
interval containing the origin. Then X and Y are equal in distribution.

(b) (Two variable) Suppose (X,W ) and (Y ,Z) are pairs of random variables and suppose MX,W (s, t) =
MY ,Z(s, t) in some rectangle containing the origin. Then (X,W ) and (Y ,Z) have the same
joint distribution.

An immediate application of the theorem is an alternate proof of Corollary 5.3.3 based on
moment generating functions.
Example 6.3.10. Let X ∼ Normal(µ,σ2) and let Y = X−µ

σ . Show that Y ∼ Normal(0, 1).
We know X is normal, (6.3.1) shows that the moment generating function of X is MX (t) =

eµt+(1/2)σ2t2 , for all t ∈ R. So consider the moment generating function of Y . For all t ∈ R

MY (t) = E[etY ] = E[et(X−µ)/σ ] = E[etX/σe−tµ/σ ] = e−tµ/σ ·MX (
t

σ
)

= e−tµ/σ · eµ(t/σ)+(1/2)σ2(t/σ)2
= e

t2
2 .
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But this expression is the moment generating function of a Normal(0, 1) random variable. So
by the uniqueness of moment generating functions, Theorem 6.3.9 (a), the distribution of Y is
Normal(0, 1). �

Just as the joint density of a pair of random variables factors as a product of marginal densities
exactly when the variables are independent (Theorem 5.4.7), a similar result holds for moment
generating functions.

Theorem 6.3.11. Suppose (X,Y ) are a pair of continuous random variables with moment gener-
ating function M (s, t). Then X and Y are indpendent if and only if

M (s, t) =MX (s) ·MY (t).

Proof - One direction of the proof follows from basic facts about independence. If X and Y are
independent, then by Exercise 6.3.4 , we have

M (s, t) = E[esX+tY ] = E[esXetY ] = E[esX ]E[etY ] =MX (s) ·MY (t).

To prove the opposite direction, we shall use Theorem 6.3.9(b). Let X̂ and Ŷ be independent, but
have the same distributions as X and Y respectively. Since MX,Y (s, t) = MX (s)MY (t) we have
the following series of equalities:

MX,Y (s, t) =MX (s)MY (t) =MX̂ (s)MŶ (t) =MX̂,Ŷ (s, t).

By Theorem 6.3.9(b), this means that (X,Y ) and (X̂, Ŷ ) have the same distribution. This would
imply that

P (X ∈ A,Y ∈ B) = P (X̂ ∈ A, Ŷ ∈ B) = P (X̂ ∈ A)P (Ŷ ∈ B) = P (X ∈ A)P (Y ∈ B),

for any events A and B. Hence X and Y are independent. �
Notice that the method employed in Example 6.3.10 did not require considering integrals di-

rectly. Since the manipulation of integrals can be complicated (particularly when dealing with
multiple integrals), the moment generating function method will often be simpler as the next
example illustrates.
Example 6.3.12. Let a, b be two real numbers. Let X ∼ Normal(µ1,σ2

1) and Y ∼ Normal(µ2,σ2
2)

be independent. Observe that

MaX+bY (t) = MX,Y (at, bt)

Using Theorem 6.3.11, we have that the above is

MX (at)MY (bt) = eaµ1t+(1/2)a2σ2
1t

2
ebµ2t+(1/2)b2σ2

2t
2
= e(aµ1+bµ2)t+(1/2)(a2σ2

1+b
2σ2

2)t
2

which is the moment generating function of a Normal random variable with mean aµ1 + bµ2 and
variance a2σ2

1 + b2σ2
2). So aX + bY ∼ Normal(aµ1 + bµ2, a2σ2

1 + b2σ2
2). �

We conclude this section with a result on finite linear combinations of independent normal
random variables.

Theorem 6.3.13. Let X1,X2, . . . ,Xn be independent, normally distributed random variables with
mean µi and variance σ2

i respectively for i = 1, 2, . . . n. Let a1, a2, . . . , an be real-valued numbers,
not all of which are zero. Then then the linear combination Y = a1X1 + a2X2 + · · ·+ anXn is
also normally distributed with mean

∑n
i=1 aiµi and variance

∑n
i=1 a

2
i σ

2
i .

Proof- This follows from the preceeding example by induction and is left as an exercise. �
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exercises

Ex. 6.3.1. Let X ∼ Normal(0, 1). Use the moment generating function of X to calcluate E[X4].
Ex. 6.3.2. Let Y ∼ Exponential(λ).

(a) Calculate the moment generating function MY (t).

(b) Use (a) to calculate E[Y 3] and E[Y 4], the third and fourth moments of an exponential
distriubtion.

Ex. 6.3.3. Let X1,X2, . . . ,Xn be i.i.d. random variables.

(a) Let Y = X1 + · · ·+Xn. Prove that MY (t) = [MX1(t)]
n.

(b) Let Z = (X1 + · · ·+Xn)/n. Prove that MZ(t) = [MX1(
t
n )]

n.

Ex. 6.3.4. Let X and Y be two independent discrete random variables. Let h : R → R and
g : R→ R. Show that

E[h(X)g(Y )] = E[h(X)]E[g(Y )].

Show that the above holds if X and Y are independent continous random variables.
Ex. 6.3.5. Suppose X is a discrete random variable and D = {t ∈ R : E[tX ] exists}. The function
ψ : D → R given by

ψ(t) = E[tX ],

is called the probability generating function for X. Calculate the probability generating function
of X when X is

(a) X ∼ Bernoulli(p), with 0 < p < 1.

(b) X ∼ Binomial(n, p), with 0 < p < 1, n ≥ 1.

(c) X ∼ Geometric(p), with 0 < p < 1.

(d) X ∼ Poisson (λ), with 0 < λ.

Ex. 6.3.6. Let X,Y : S → T be dicrete random variables with the number of elements in T is
finite. Prove part (a) of Theorem 6.3.9 in this case.
Ex. 6.3.7. Prove Theorem 6.3.2 when X is a discrete random variable.

6.4 bivariate normals

In Example 6.3.12, we saw that if X and Y are independent, normally distributed random variables,
any linear combination aX + bY is also normally distributed. In such a case the joint density
of (X,Y ) is determined easily (courtesy Theorem 5.4.7). We would like to understand random
variables that are not independent but have normally distributed marginals. Motivated by the
observations in Example 6.3.12 we provide the following definition.

Definition 6.4.1. A pair of random variables (X,Y ) is called “bivariate normal” if aX + bY is
a normally distributed random variable for all real numbers a and b.
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We need to be somewhat cautious in the above definition. Since the variables are dependent
it may turn out that aX + bY = 0 or some constant. (E.g: Y = −X,or Y = −X + 2 with
a = 1, b = 1 ). We shall follow the convention that a constant c random variable in such cases is a
normal random variable with mean c and variance 0.

If (X,Y ) are bivariate normal then asX = X+ 0Y and Y = 0X+Y bothX and Y individually
are normal random variables. The converse if not true (See Exercise 6.4.3). However the joint
distribution of bivariate normal random variables are determined by their means, variances and
covariances. This fact is proved next.

Theorem 6.4.2. Suppose (X,Y ) and (Z,W ) are two bivariate normal random variables. If

E[X ] = E[Z] = µ1, E[Y ] = E[W ] = µ2

V ar[X ] = V ar[Z] = σ2
1 , V ar[Y ] = V ar[W ] = σ2

2

and
Cov[X,Y ] = Cov[Z,W ] = σ12 (6.4.1)

then (X,Y ) and (Z,W ) have the same joint distribution.

Proof- As (X,Y ) and (Z,W ) are bivariate normal random variables, given real numbers s, t
sX + tY and sZ + tW are normal random variables. Using (6.4.1) and the properties of mean and
covariance (see Theorem 6.2.2) we have

E[sX + tY ] = sE[X ] + tE[Y ] = sµ1 + tµ2,
E[sZ + tW ] = sE[Z] + tE[W ] = sµ1 + tµ2,

V ar[sX + tY ] = s2V ar[X ] + t2V ar[Y ] + 2stCov[X,Y ]

= s2σ2
1 + t2σ2

2 + 2stσ12,
and

V ar[sZ + tW ] = s2V ar[Z] + t2V ar[W ] + 2stCov[Z,W ]

= s2σ2
1 + t2σ2

2 + 2stσ12.

From the above, sX + tY and sZ + tW have the same mean and variance. So they have the same
distribution (as normal random variables are determined by their mean and variances). By Theo-
rem 6.3.9 (a) they have the same moment generating function. So, the (joint) moment generating
function of (X,Y ) at (s,t) is

MX,Y (s, t) = E[esX+tY ] =MsX+tY (1) =MsZ+tW (1) = E[esZ+tW ] =MZ,W (s, t)

Therefore (Z,W ) has the same joint m.g.f. as (X,Y) and Theorem 6.3.9 (b) implies that they have
the same joint distribution. �

Though, in general, two variables which are uncorrelated may not be independent, it is a
remarkable fact that the two concepts are equivalent for bivariate normal random variables.

Theorem 6.4.3. Let (X,Y ) be a bivariate normal random variable. Then Cov[X,Y ] = 0 if and
only if X and Y are independent.

Proof - That independence implies a zero covariance is true for any pair of random variables (use
Theorem 6.1.10 (e)), so we need to only consider the reverse implication.

Suppose Cov[X,Y ] = 0. Let µX and σ2
X denote the expected value and variance of X and

µY and σ2
Y the corresponding values for Y . Let s and t be real numbers. Then, by the bivariate
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Figure 6.1: The density function of Bivariate Normal distributions. The set of panels on top show a three-
dimensional view of the density function for various values of the correlation ρ. The bottom set
of panels show contour plots, where each ellipse corresponds to the (y1, y2) pairs corresponding
to a constant value of g(y1, y2).

normality of (X,Y ), we know sX + tY is normally distributed. Moreover by properties of expected
value and variance we have

E[sX + tY ] = sE[X ] + tE[Y ] = sµX + tµY

and
V ar[sX + tY ] = s2V ar[X ] + 2stCov[X,Y ] + t2V ar[Y ] = s2σ2

X + t2σ2
Y .

That is, sX + tY ∼ Normal(sµX + tµY , s2σ2
X + t2σ2

Y ). So for all s, t ∈ R

MX,Y (s, t) = E[esX+tY ] =MsX+tY (1) = e(sµX+tµY )+(1/2)(s2σ2
X
+t2σ2

Y
)

= esµx+(1/2)s2σ2
X · etµY +(1/2)t2σ2

Y

=MX (s) ·MY (t).

Hence by Theorem 6.3.11 X and Y are independent. �
We conclude this section by finding the joint density of a Bivariate normal random variable.

See Figure 6.1 for a graphical display of this density.
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Theorem 6.4.4. Let (Y1,Y2) be a bivariate Normal random variable, with µ1 = E[Y1],µ2 =
E[Y2], 0 6= σ2

1 = V ar[Y1], 0 6= σ2
2 = V ar[Y2], and σ12 = Cov[Y1,Y2]. Assume that the correlation

coefficient |ρ[Y1,Y2]| 6= 1. Then the joint probability density function of (Y1,Y2), g : R2 → [0,∞)
is given by

g(y1, y2) =

exp
(
− 1

2(1−ρ2)

[(
y1−µ1
σ1

)2
+
(
y2−µ2
σ2

)2
− 2ρ

(
y1−µ1
σ1

)(
y2−µ2
σ2

)])
2πσ1σ2

√
1− ρ2

(6.4.2)

Proof- Let a, b be two real numbers. We will show that

P (Y1 ≤ a,Y2 ≤ b) =
∫ a

−∞

∫ b

−∞
g(y1, y2)dy2dy1. (6.4.3)

From the discussion that follows (5.4.1), we can then conclude that the joint density of (Y1,Y2) is
indeed given by g. To show (6.4.3) we find an alternate description of (Y1,Y2) which is the same
in distribution. Let Z1,Z2 be two independent standard normal random variables. Define

U = σ1Z1 + µ1 (6.4.4)
V = σ2(ρZ1 +

√
1− ρ2Z2) + µ2

Let α,β ∈ R. Then

αU + βV = (ασ1 + βσ2ρ)Z1 + (βσ2
√

1− ρ2)Z2 + α1µ1 + βµ2.

As Z1 and Z2 are independent standard normal random variables by Theorem 6.3.13, (ασ1 +
βσ2ρ)Z1 + (βσ2

√
1− ρ2)Z2 ∼ Normal (0, (ασ1 + βσ2ρ)2 + (βσ2

√
1− ρ2)2). Further using Corol-

lary 5.3.3 (a) we have that αU + βV ∼ Normal (α1µ1 + βµ2, (ασ1 + βσ2ρ)2 + (βσ2
√

1− ρ2)2). As
α,β were arbitrary real numbers by Definition 6.4.1, (U ,V ) is a bivariate normal random variable.

Using Theorem 6.1.8 and Theorem 6.1.10 (d) that,

µ1 = E[U ],µ2 = E[V ],σ2
1 , and Var[U ].

Also in addition, using Exercise 6.2.16 and Theorem 6.2.2 (f), we have

V ar[V ] = σ2
2ρ

2V ar[Z1] + σ2
2(1− ρ2)V ar[Z2] + 2(σ2(ρ+

√
1− ρ2)Cov[Z1,Z2]

= σ2
2ρ

2 + σ2
2(1− ρ2) + 0 = σ2

2

and
Cov[U ,V ] = Cov[σ1Z1 + µ1,σ2(ρZ1 +

√
1− ρ2Z2)]

= σ1σ2ρCov[Z1,Z1] + σ1σ2
√

1− ρ2Cov[Z1,Z2]

= σ1σ2ρ+ 0 = σ12.

As bivariate normal random variables are by their means and covariances (by Theorem 6.4.2),
(Y1,Y2) and (U ,V ) have the same joint distribution. By the above, we have

P (Y1 ≤ a,Y2 ≤ b) = P (U ≤ a,V ≤ b). (6.4.5)

By elementary algebra we can also infer from (6.4.4)

Z1 =
U − µ1
σ1

, Z2 =
V − µ2

σ2
√

1− ρ2
− ρZ1√

1− ρ2
.
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So

{U ≤ a, V ≤ b} =

{
Z1 ≤

a− µ1
σ1

, Z2 ≤
b− µ2

σ2
√

1− ρ2
− ρZ1√

1− ρ2

}

So, using this fact in (6.4.5) we get

P (Y1 ≤ a,Y2 ≤ b) = P

(
Z1 ≤

a− µ1
σ1

, Z2 ≤
b− µ2

σ2
√

1− ρ2
− ρZ1√

1− ρ2

)

=

∫ a−µ1
σ1

−∞

∫ b−µ2
σ2
√

1−ρ2
− ρz1√

1−ρ2

−∞

exp(− z
2
1+z

2
2

2 )

2π dz2dz1 (6.4.6)

First performing a u-substitution in the inner integral for each fixed z1,

z2 =
y2 − µ2

σ2
√

1− ρ2
− ρz1√

1− ρ2

yields that the inner integral in (6.4.6) for each z1 ∈ R

∫ b−µ2
σ2
√

1−ρ2
− ρz1√

1−ρ2

−∞

exp(− z
2
1+z

2
2

2 )

2π dz2 =

∫ b

−∞

exp(−
z2

1+

(
y2−µ2

σ2
√

1−ρ2
− ρz1√

1−ρ2

)2

2 )

2πσ2
√

1− ρ2
dy2

=

∫ b

−∞

exp(− 1
2(1−ρ2) [(1− ρ

2)z2
1 + ( y2−µ2

σ2
− ρz1)2])

2πσ2
√

1− ρ2
dy2

=

∫ b

−∞

exp(− 1
2(1−ρ2) [z

2
1 + ( y2−µ2

σ2
)2 − 2ρ( y2−µ2

σ2
)z1])

2πσ2
√

1− ρ2
dy2.

Substituting the above into (6.4.6), we have

P (Y1 ≤ a,Y2 ≤ b) =

∫ a−µ1
σ1

−∞

∫ b

−∞

exp(− 1
2(1−ρ2) [z

2
1 + ( y2−µ2

σ2
)2 − 2ρ( y2−µ2

σ2
)z1])

2πσ2
√

1− ρ2
dy2.dz1

(6.4.7)

Performing a u-subsitution
z1 =

y1 − µ1
σ1

on the outer integral above we obtain

P (Y1 ≤ a,Y2 ≤ b)

=

∫ a

−∞

∫ b

−∞

exp(− 1
2(1−ρ2)

[
(
y1−µ1
σ1

)2
+ ( y2−µ2

σ2
)2 − 2ρ( y2−µ2

σ2
)
(
y1−µ1
σ1

)
])

2πσ1σ2
√

1− ρ2
dy2dy1

Thus we have established (6.4.3). �

exercises

Ex. 6.4.1. Let X1,X2 be two independent Normal random variables with mean 0 and variance 1. Show
that (X1,X2) is a bivariate normal random variable.
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Ex. 6.4.2. Let (X1,X2) be a bivariate normal random variable. Assume that the correlation coefficient
|ρ[X1,X2]| 6= 1. Show that X1 and X2 are Normal random variables by calculating their marginal densities.

Ex. 6.4.3. Let X1,X2 be two independent normal random variables with mean 0 and variance 1. Let
(Y1,Y2) be a bivariate normal random variable with zero means, variances equal to 1 and correlation
ρ = ρ[Y1,Y2], with ρ2 6= 1. Let f be the joint probability density function of (X1,X2) and g be the joint
probability density function of (Y1,Y2). For 0 < α < 1, let (Z1,Z2) be a bivariate random variable with
joint density given by

h(z1, z2) = αg(z1, z2) + (1− α)f(z1, z2),

for any real numbers z1, z2.

(a) Write down the exact expressions for f and g.

(b) Verify that h is indeed a probability density function.

(c) Show that Z1 and Z2 are Normal random variables by calculating their marginal densities.

(d) Show that (Z1,Z2) is not a bivariate normal random variable.

Ex. 6.4.4. Suppose X1,X2, . . . ,Xn are independent and normaly distributed. Let Y = c1X1 + · · ·+ cnXn
and let Z = d1X1 + · · ·+ dnXn be linear combinations of these variables (for real numbers cj and dj).
Then (Y ,Z) is bivariate normal.

Ex. 6.4.5. Prove Theorem 6.3.13. Specifically, suppose for i = 1, 2, . . . ,n that Xi ∼ Normal(µi,σ2
i ) with

X1,X2, . . . ,Xn independent. Let a1, a2, . . . , an be real numbers, not all zero, and let Y = a1X1 + a2X2 +
· · ·+ anXn. Prove that Y is normally distributed and find its mean and variance in terms of the a’s, µ’s,
and σ’s.

Ex. 6.4.6. Let (X1,X2) be a bivariate Normal random variable. Define

Σ =

 Cov[X1,X1] Cov[X1,X2]

Cov[X1,X2] Cov[X2,X2]


and µ1 = E[X1],µ2 = E[X2],µ2×1 =

[
µ1
µ2

]
.

Σ is referred to as the covariance matrix of (X1,X2) and µ is the mean matrix of (X1,X2).

(a) Compute det(Σ).

(b) Show that the joint density of (X1,X2) can be rewritten in matrix notation as

g(x1,x2) =
1

2π
√

det(Σ)
exp
(
−1

2
[
x1 − µ1 x2 − µ2

]
Σ−1

[
x1 − µ1
x2 − µ2

])
(c)

A2×2 =

[
a11 a12
a21 a22

]
, η2×1 =

[
η1
η2

]
such that aij are real numbers. Suppose we define

Y = AX =

[
a11X1 + a12X2 + η1
a21X1 + a22X2 + η2

]
.

Then (Y1,Y2) is also a bivariate Normal random variable, with covariance matrix AΣAT and mean
matrix Aµ+ η.
Hint: Compute means, variances and covariances of Y1, Y2 and use Theorem 6.4.2
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