
2
S A M P L I N G A N D R E P E AT E D T R I A L S

Consider an experiment and an event A within the sample space. We say the experiment is a
success if an outcome from A occurs and failure otherwise. Let us consider the following examples:

Experiment Sample Space Event Description Event A P(A)

Toss a fair coin {H,T} Head appears {H} 1
2

Roll a die {1, 2, 3, 4, 5, 6} Six appears {6} 1
6

Roll a die {1, 2, 3, 4, 5, 6} A multiple of 3 appears {3, 6} 1
3

In typical applications we would repeat an experiment several times independently and would be
interested in the total number of successes achieved, a process that may be viewed as sampling
from a large population. For instance, a manager in a factory making nuts and bolts, may devise
an experiment to choose uniformly from a collection of manufactured bolts and call the experiment
a success if the bolt is not defective. Then she would want to repeat such a selection every time
and quantify the number of successes.

2.1 bernoulli trials

We will now proceed to construct a mathematical framework for independent trials of an experiment
where each trial is either a success or a failure. Let p be the probability of success at each trial.
The sequence so obtained is called a sequence of Bernoulli trials with parameter p. The trials are
named after James Bernoulli (1654-1705).

We will occasionally want to consider a single Bernoulli trial, so we will use the notation
Bernoulli(p) to indicate such a distribution. Since we are only interested in the result of the trial, we
may view this as a probability on the sample space S = {success, failure} where P ({success}) =
p, but more often we will be interested in multiple independent trials. We discuss this in the next
example.

Example 2.1.1. Suppose we roll a die twice and ask how likely it is that we observe exactly one
6 between the two rolls. In the previous chapter (See Example 1.4.3) we would have viewed the
sample space S as thirty-six equally likely outcomes, each of which was an ordered pair of results
of the rolls. But since we are only concerned with whether the die roll is a 6 (success) or not a 6
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32 sampling and repeated trials

(failure) we could also view it as two Bernoulli( 1
6 ) trials. Using notation from Example 1.4.3, note

that P (success on the first roll) = P (E) = 1
6 and P (success on the second roll) = P (F ) = 1

6 . So

P ({success, success})
= P (E ∩ F )

(using independence)
= P (E)P (F )

= P (success on the first roll) · P (success on the second roll)

=
1
6 ·

1
6 =

1
36 .

We could alternately view S as having only four elements - (success,success), (success,failure),
(failure,success), and (failure,failure). The four outcomes are not equally likely, but the fact that
the trials are independent allows us to easily compute the probability of each. Through similar
computations,

P ({(success, failure)}) = 5/36,
P ({(failure, success)}) = 5/36,
and P ({(failure, failure)}) = 25/36.

To complete the problem, the event of rolling exactly one 6 among the two dice requires exactly
one success and exactly one failure. From the list above, this can happen in either of two orders,
so the probability of observing exactly one 6 is 5

36 + 5
36 = 10

36 . �

For any two real numbers a, b and any integer n ≥ 1, it is well known that

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k. (2.1.1)

This is the binomial expansion due to Blaise Pascal(1623-1662). It turns out when a and b are
positive numbers with a + b = 1, the terms in the right hand side above have a probabilistic
interpretation. We illustrate it in the example below.
Example 2.1.2. After performing n independent Bernoulli(p) trials we are typically interested in
the following questions:

(a) What is the probability of observing exactly k successes?

(b) What is the most likely number of successes?

(c) How many attempts must be made before the first success is observed?

(d) On average how many successes will there be?

Ans (a) - Binomial(n,p): If n = 1, then the answer is clear, namely P ({one success}) = p and
P ({zero successes}) = 1− p. For, n > 1 let ω = (ω1,ω2, . . . ,ωn) be an n-tuple of outcomes. So we
may view the sample space S as the set of all ω where each ωi is allowed to be either “success” or
“failure”. Let Ai represent either the event {the ith trial is a success} or {the ith trial is a failure}.
Then by independence

P (A1 ∩A2 ∩ . . .∩An) =
n∏
i=1

P (Ai). (2.1.2)

Version: – January 19, 2021



2.1 bernoulli trials 33

Trial

N
um

be
r 

of
 s

uc
ce

ss
es

 (
cu

m
ul

at
iv

e)

0

10

20

30

40

50

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 

0 10 20 30 40 50                      0.000.020.040.060.080.100.12                        

Figure 2.1: The Binomial distribution as number of successes in fifty Bernoulli ( 1
3 ) trials. The paths on

the left count the cumulative successes in the fifty trials. The graph on the right show the
actual probability given by the Binomial(50, 1

3 ) distribution.
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34 sampling and repeated trials

Let Bk denote the event that there are k successes among the n trials. Then

P (Bk) =
∑
ω∈Bk

P ({ω}).

But if ω ∈ Bk, then in notation (2.1.2), exactly k of the Ai represent success trials and the other
n− k represent the failure trials. The order in which the successes and failures appear does not
matter since the probabilities are being multiplied together. So for every ω ∈ Bk,

P ({ω}) = pk(1− p)n−k.

Consequently, we have
P (Bk) = |Bk|pk(1− p)n−k.

But Bk is the event of all outcomes for which there are k successes and the number of ways in
which k successes can occur in n trials is known to be (nk). Therefore, for 0 ≤ k ≤ n,

P (Bk) =

(
n

k

)
pk(1− p)n−k. (2.1.3)

Note that if we are only interested in questions involving the number of successes, we could ignore
the set S described above and simply use {0, 1, 2, . . . ,n} as our sample space with P ({k}) =
(nk)p

k(1− p)n−k. We call this a binomial distribution with parameters n and p (or a Binomial(n, p)
for short). It is also worth noting that the binomial expansion (2.1.1) shows

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1,

which simply provides additional confirmation that we have accounted for all possible outcomes in
our list of Bernoulli trials. See Figure 2.1 for a simulated example of fifty replications of Bernoulli(1

3 )
trials.
Ans (b) - Mode of a Binomial: The problem is trivial if p = 0 or p = 1, so assume 0 < p < 1.
Using the same notation for Bk as in part (a), pick a particular number of successes k for which
0 ≤ k < n. We want to determine the value of k that makes P (Bk) as large as possible; such
a value is called the “mode” . To find this value, it is instructive to compare the probability of
(k+ 1) successes to the probability of k successes –

P (Bk+1)

P (Bk)
=

( n
k+1)p

k+1(1− p)n−(k+1)

(nk)p
k(1− p)n−k

=
n!

(k+ 1)!(n− (k+ 1))! ·
k!(n− k)!

n!
· p

k+1(1− p)n−(k+1)

pk(1− p)n−k

=
p

1− p ·
n− k
k+ 1 .

If this ratio were to equal 1 we could conclude that {(k+ 1) successes} was exactly as likely as
{k successes}. Similarly if the ratio were bigger than 1 we would know that {(k + 1) successes}
was the more likely of the two and if the ratio were less than 1 we would see that {k successes}
was the more likely case. Setting P (Bk+1)

P (Bk)
≥ 1 and solving for k yields the following sequence of

equivalent inequalities:
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P (Bk+1)

P (Bk)
≥ 1

p

1− p ·
n− k
k+ 1 ≥ 1

pn− pk ≥ k+ 1− pk− p
k ≤ p(n+ 1)− 1.

In other words if k starts at 0 and begins to increase, the probability of achieving exactly k

successes will increase while k < p(n+ 1)− 1 and then will decrease once k > p(n+ 1)− 1. As
a consequence the most likely number of successes is the integer value of k for which k − 1 ≤
p(n+ 1)− 1 < k. This gives the critical value of k = bp(n+ 1)c, the greatest integer less than or
equal to p(n+ 1).

An unusual special case occurs if p(n + 1) is already an integer. Then the sequence of in-
equalities above is equality throughout, so if we let k = bp(n+ 1)c = p(n+ 1) we find a ratio
P (Bk)/P (Bk−1) exactly equal to 1. In this case {k − 1 successes} and {k successes} share the
distinction of being equally likely.
Ans (c) - Geometric(p): It is possible we could see the first success as early as the first trial and,
in fact, the probability of this occurring is just p, the probability that the first trial is a success.
The probability of the first success coming on the kth trial requires that the first k − 1 trials be
failures and the kth trial be a success. Let Ai be the event {the ith trial is a success} and let Ck
be the event {the first success occurs on the kth trial}. So,

P (Ck) = P (Ac1 ∩Ac2 ∩ . . .∩Ack−1 ∩Ak).

As usual P (Ai) = p and P (Aci ) = 1− p, so by independence

P (Ck) = P (Ac1)P (A
c
2) . . . P (A

c
k−1)P (Ak) = (1− p)k−1p

for k > 0. If we view these as probabilities of the outcomes of a sample space {1, 2, 3, . . . }, we call
this a geometric distribution with parameter p (or a Geometric(p) for short).
Ans (d) - Average: This is a natural question to ask but it requires a precise definition of what
we mean by “average” in the context of probability. We shall do this in Chapter 4 and return to
answer (d) at that point in time.

�

Bernoulli trials may also be used to determine probabilities associated with who will win a
contest that requires a certain number of individual victories. Below is an example applied to a
“best two out of three” situation.
Example 2.1.3. Jed and Sania play a tennis match. The match is won by the first player to win
two sets. Sania is a bit better than Jed and she will win any given set with probability 2

3 . How
likely is it that Sania will win the match? (Assume the results of each set are independent).

This can almost be viewed as three Bernoulli( 2
3 ) trials where we view a success as a set won by

Sania. One problem with that perspective is that an outcome such as (win,win,loss) never occurs
since two wins put an end to the match and the third set will never be played. Nevertheless, the
same tools used to solve the earlier problem can be used for this one as well. Sania wins the match
if she wins the first two sets (which happens with probability 4

9 ). She also wins the match with
either a (win,loss,win) or a (loss,win,win) sequence of sets, each of which has probability 4

27 of
occurring.
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So the total probability of Sania winning the series is 4
9 + 4

27 + 4
27 = 20

27 .
Alternatively, it is possible to view this somewhat artificially as a genuine sequence of three

Bernoulli( 2
3 ) trials where we pretend the players will play a third set even if the match is over by

then. In effect the (win, win) scenario above is replaced by two different outcomes - (win, win, win)
and (win, win, loss). Sania wins the match if she either wins all three sets (which has probability
8
27 ) or if she wins exactly two of the three (which has probability 3 · 4

27 ).
This perspective still leads us to the correct answer as 8

27 + 3 · 4
27 = 20

27 . �

2.1.1 Using R to compute probabilities

R can be used to compute probabilities of both the Binomial and Geometric distribution quite
easily. We can compute them directly from the respective formulas. For example, with n = 10 and
p = 0.25, all Binomial probabilities are given by
> k <- 0:5
> choose(5, k) * 0.25ˆk * 0.75ˆ(5-k)
[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 0.0146484375
[6] 0.0009765625
Similarly, the Geometric probabilities with p = 0.25 for k = 0, 1, 2, . . . , 10 are given by
> k <- 0:10
> 0.25 * 0.75ˆk
[1] 0.25000000 0.18750000 0.14062500 0.10546875 0.07910156 0.05932617
[7] 0.04449463 0.03337097 0.02502823 0.01877117 0.01407838

Actually, as both Binomial and Geometric are standard distributions, R has built-in functions to
compute these probabilities as follows:
> dbinom(0:5, size = 5, prob = 0.25)
[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 0.0146484375
[6] 0.0009765625
> dgeom(0:10, prob = 0.25)
[1] 0.25000000 0.18750000 0.14062500 0.10546875 0.07910156 0.05932617
[7] 0.04449463 0.03337097 0.02502823 0.01877117 0.01407838

exercises

Ex. 2.1.1. Three dice are rolled. How likely is it that exactly one of the dice shows a 6?
Ex. 2.1.2. A fair die is rolled repeatedly.

(a) What is the probability that the first 6 appears on the fifth roll?

(b) What is the probability that no 6’s appear in the first four rolls?

(c) What is the probability that the second 6 appears on the fifth roll?
Ex. 2.1.3. Suppose that airplane engines operate independently in flight and fail with probability
p (0 ≤ p ≤ 1). A plane makes a safe flight if at least half of its engines are running. Kingfisher
Air lines has a four–engine plane and Paramount Airlines has a two–engine plane for a flight from
Bangalore to Delhi. Which airline has the higher probability for a successful flight?
Ex. 2.1.4. Two intramural volleyball teams have eight players each. There is a 10% chance that
any given player will not show up to a game, independently of any another. The game can be
played if each team has at least six members show up. How likely is it the game can be played?
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Ex. 2.1.5. Mark is a 70% free throw shooter. Assume each attempted free throw is independent
of every other attempt. If he attempts ten free throws, answer the following questions.

(a) How likely is it that Mark will make exactly seven of ten attempted free throws?

(b) What is the most likely number of free throws Mark will make?

(c) How do your answers to (a) and (b) change if Mark only attempts 9 free throws instead of
10?

Ex. 2.1.6. Continuing the previous exercise, Kalyani isn’t as good a free throw shooter as Mark,
but she can still make a shot 40% of the time. Mark and Kalyani play a game where the first one
to sink a free throw is the winner. Since Kalyani isn’t as skilled a player, she goes first to make it
more fair.

(a) How likely is it that Kalyani will win the game on her first shot?

(b) How likely is it that Mark will win this game on his first shot? (Remember, for Mark even
to get a chance to shoot, Kalyani must miss her first shot).

(c) How likely is it that Kalyani will win the game on her second shot?

(d) How likely is it that Kalyani will win the game?

Ex. 2.1.7. Recall from the text above that the R code
> dbinom(0:5, size = 5, prob = 0.25)
[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 0.0146484375
[6] 0.0009765625
produces a vector of six outputs corresponding to the probabilities that a Binomial(5, 0.25) distribu-
tion takes on the six values 0-5. Specifically, the output indicates that the probability of the value
0 is approximately 0.2373046875, the probability of the value 1 is approximately 0.3955078125 and
so on. In Example 2.1.2 we derived a formula for the most likely outcome of such a distribution.
In the case of a Binomial(5, 0.25) that formula gives the result b(5+ 1)(0.25)c = 1. We could have
verified this via the R output above as well, since the second number on the list is the largest of
the probabilities.

(a) Use the formula from example 2.1.2 to find the most likely outcome of a Binomial(7, 0.34)
distribution.

(b) Type an appropirate command into R to produce a vector of values corresponding to the
probabilities that a Binomial(7, 0.34) distribution takes on the possible values in its range.
Use this list to verify your answer to part (a).

(c) Use the formula from Example 2.1.2 to find the most likely outcome of a Binomial(8, 0.34)
distribution.

(d) Type an appropirate command into R to produce a vector of values corresponding to the
probabilities that a Binomial(8, 0.34) distribution takes on the possible values in its range.
Use this list to verify your answer to part (c).

Ex. 2.1.8. It is estimated that 0.8% of a large shipment of eggs to a certain supermarket are
cracked. The eggs are packaged in cartons, each with a dozen eggs, with the cracked eggs being
randomly distributed. A restaurant owner buys 10 cartons from the supermarket. Call a carton
“defective” if it contains at least one cracked egg.
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(a) If she notes the number of defective cartons, what are the possible outcomes for this experi-
ment?

(b) If she notes the total number of cracked eggs, what are the possible outcomes for this exper-
iment?

(c) How likely is it that she will find exactly one cracked egg among all of her cartons?

(d) How likely is it that she will find exactly one defective carton?

(e) Explain why your answer to (d) is close to, but slightly larger than, than your answer to (c).

(f) What is the most likely number of cracked eggs she will find among her cartons?

(g) What is the most likely number of defective cartons she will find?

(h) How do you reconcile your answers to parts (g) and (h)?

Ex. 2.1.9. Steve and Siva enter a bar with $30 each. A round of drinks cost $10. For each round,
they roll a die. If the roll is even, Steve pays for the round and if the roll is odd, Siva pays for it.
This continues until one of them runs out of money.

(a) What is the Probability that Siva runs out of money?

(b) What is the Probability that Siva runs out of money if Steve has cheated by bringing a die
that comes up even only 40% of the time?

Ex. 2.1.10. Let 0 < p < 1. Show that the mode of a Geometric(p) distribution is 1.
Ex. 2.1.11. Scott is playing a game where he rolls a standard die until it shows a 6. The number
of rolls needed therefore has a Geometric( 1

6 ) distribution. Use the appropriate R commands to do
the following:

(a) Produce a vector of values for j = 1, . . . , 6 corresponding to the probabilities that it will take
Scott j rolls before he observes a 6.

(b) Scott figures that since each roll has a 1
6 probability of producing a 6, he’s bound to get that

result at some point after six rolls. Use the results from part (a) to determine the probability
that Scott’s expectations are met and a 6 will show up in one his first six rolls.

Ex. 2.1.12. Suppose a fair coin is tossed n times. Compute the following:

(a) P ({4 heads occur }|{3 or 4 heads occur});

(b) P ({k− 1 heads occur}|{k− 1 or k heads occur}); and

(c) P ({k heads occur}|{k− 1 or k heads occur}).

Ex. 2.1.13. At a basketball tournament, each round is on a “best of seven games” basis. That
is, Team I and Team 2 play until one of the teams has won four games. Suppose each game
is won by Team I with probability p, independently of all previous games. Are the events A =
{Team I wins the round} and B = {the round lasts exactly four games} independent?
Ex. 2.1.14. Two coins are sitting on a table. One is fair and the other is weighted so that it always
comes up heads.

(a) If one coin is selected at random (each equally likely) and flipped, what is the probability
the result is heads?
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(b) One coin is selected at random (each equally likely) and flipped five times. Each flip shows
heads. Given this information about the coin flip results, what is the conditional probability
that the selected coin was the fair one?

Ex. 2.1.15. For 0 < p < 1 we defined the geometric distribution as a probability on the set
{1, 2, 3, . . . } for which P ({k}) = p(1−p)k−1. Show that these outcomes account for all possibilities
by demonstrating that

∑∞
k=1 P ({k}) = 1.

Ex. 2.1.16. The geometric distribution described the waiting time to observe a single success.
A “negative binomial” distribution with parameters n and p (NegBinomial(n, p)) is defined the
number of Bernoulli(p) trials needed before observing n successes. The following problem builds
toward calculating some associated probabilities.

(a) If a fair die is rolled repeatedly and a number is recorded equal to the number of rolls until
the second 6 is observed, what is the sample space of possible outcomes for this experiment?

(b) For k in the sample space you identified in part (a), what is P ({k})?

(c) If a fair die is rolled repeatedly and a number is recorded equal to the number of rolls until
the nth 6 is observed, what is the sample space of possible outcomes for this experiment?

(d) For k in the sample space you identified in part (c), what is P ({k})?

(e) If a sequence of Bernoulli(p) trials (with 0 < p < 1) is performed and a number is recorded
equal to the number of trials until the nth success is observed, what is the sample space of
possible outcomes for this experiment?

(f) For k in the sample space you identified in part (e), what is P ({k})?

(g) Show that you have accounted for all possibilities in part (f) by showing∑
k∈S

P ({k}) = 1.

2.2 poisson approximation

Calculating binomial probabilities can be challenging when n is large. Let us consider the following
example:
Example 2.2.1. A small college has 1460 students. Assume that birthrates are constant through-
out the year and that each year has 365 days. What is the probability that five or more students
were born on Independence day?

The probability that any given student was born on Independence day is 1
365 . So the exact

probability is

1−
4∑

k=0

(
1460
k

)( 1
365

)k(364
365

)1460−k.

Repeatedly dealing with large powers of fractions or large combinatorial computations is not so
easy, so it would be convenient to find a faster way to estimate such a probability. �

The example above can be thought of as a series of Bernoulli trials where a success means
finding a student whose birthday is Independence day. In this case p is small ( 1

365 ) and n is large
(1460). To approximate we will consider a limiting procedure where p → 0 and n →∞, but with
limits carried out in such a way that np is held constant. The computation below is called a
Poisson approximation.
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Theorem 2.2.2. Let λ > 0, k ≥ 1, n ≥ λ and p = λ
n . Defining Ak as

Ak = {k successes in n Bernoulli(p) Trials},

it then follows that

lim
n→∞

P (Ak) =
e−λλk

k!
. (2.2.1)

Proof -

P (Ak) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
=

n(n− 1) . . . (n− k+ 1)
k!

λk

nk

(
1− λ

n

)n−k
=

λk

k!
n(n− 1) . . . (n− k+ 1)

nk

(
1− λ

n

)n(
1− λ

n

)−k
=

λk

k!
1(1− 1

n
) . . . (1− k− 1

n
)

(
1− λ

n

)n(
1− λ

n

)−k
=

λk

k!

k−1∏
r=1

(
1− r

n

)(
1− λ

n

)n(
1− λ

n

)−k
.

Standard limit results imply that

lim
n→∞

(1− r

n
) = 1 for all r ≥ 1;

lim
n→∞

(
1− λ

n

)−k
= 1 for all λ ≥ 0, k ≥ 1; and

lim
n→∞

(
1− λ

n

)n
= e−λ for all λ ≥ 0.

As P (Ak) is a finite product of such expressions, the result is now immediate using the properties
of limits. �

Returning to Example 2.2.1 and using the above approximation, we would take λ = pn =
1460
365 = 4. So if E is the event {five or more Independence day birthdays},

P (E) = 1−
4∑

k=0

(
1460
k

)( 1
365

)k(364
365

)1460−k

≈ 1−
[
e−4 + 4e−4 +

42

2 e
−4 +

43

6 e
−4 +

44

24e
−4
]

.

Calculation demonstrates this is a good approximation. To seven digits of accuracy, the correct
value is 0.37116294 while the Poisson approximation gives an answer of 0.37116306. These can be
obtained using R as follows:
> 1 - sum(dbinom(0:4, size = 1460, prob = 1/365))
[1] 0.3711629
> lambda <- 1460 / 365
> 1 - sum(exp(-lambda) * lambdaˆ(0:4) / factorial(0:4))
[1] 0.3711631
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It also turns out that the right hand side of (2.2.1) defines a probability on the sample space
of non-negative integers. The distribution is named after Siméon Poisson (1781-1840).

Poisson (λ): Let λ ≥ 0 and S = {0, 1, 2, 3, . . .} with probability P given by

P ({k}) = e−λλk

k!

for k ∈ S. This distribution is called Poisson with parameter λ (or Poisson(λ) for short).
As with Binomial and Geometric, R has a built-in function to evaluate Poisson probabilities as

well. An alternative to the calculation above is:
> 1 - sum(dpois(0:4, lambda = 1460 / 365))
[1] 0.3711631

It is important to note that for this approximation to work well, p must be small and n must
be large. For example, we may modify our question as follows:
Example 2.2.3. A class has 48 students. Assume that birthrates are constant throughout the year
and that each year has 365 days. What is the probability that five or more students were born in
September? �

The correct answer to this question is
> 1 - sum(dbinom(0:4, size = 48, prob = 1/12))
0.3710398
However, the Poisson approximation remains unchanged at 0.3711631, because np = 48/12 =
1460/365 = 4, and only matches the correct answer up to 3 digits rather than 6. Figure 2.2 shows
a point-by-point approximation of both Binomial distributions by Poisson.

At this point we have defined many named distributions. Frequently a problem will require the
use of more than one of these as evidenced in the next example.
Example 2.2.4. A computer transmits three digital messages of 12 million bits of information each.
Each bit has a probability of one one-billionth that it will be incorrectly received, independent of
all other bits. What is the probability that at least two of the of the three messages will be received
error free?

Since n = 12, 000, 000 is large and since p = 1
1,000,000,000 is small it is appropriate to use a

Poisson approximation where λ = np = 0.012. A message is error free if there isn’t a single
misread bit, so the probability that a given message will be received without an error is e−0.012.

Now we can think of each message being like a Bernoulli trial with probability e−0.012, so the
number of messages correctly received is then like a Binomial(3, e−0.012). Therefore the probability
of receiving at least two error-free messages is(

3
3

)
(e−0.012)3(1− e−0.012)0 +

(
3
2

)
(e−0.012)2(1− e−0.012)1 ≈ 0.9996.

There is about a 99.96% chance that at least two of the messages will be correctly received. �

exercises

Ex. 2.2.1. Do the problems below to familiarize yourself with the “sum” command in R.

(a) If a fair coin is tossed 100 times, what is the probability exactly 55 of the tosses show heads?

(b) Example 2.2.3 showed how to use R to add the probabilities of a range of outcomes for
common distributions. Use this code as a guide to calculate the probability at least 55 tosses
show heads.
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Figure 2.2: The Poisson approximation to the Binomial distribution. In both plots above, the points
indicate Binomial probabilities for k = 0, 1, 2, . . . , 20; the top plot for Binomial(1460, 1

365 ),
and the bottom for Binomial(48, 1

12 ). The lengths of the vertical lines, “hanging” from the
points, represent the corresponding probabilities for Poisson(4). For a good approximation,
the bottom of the hanging lines should end up at the x-axis. As we can see, this happens in
the top plot but not for the bottom plot, indicating that Poisson(4) is a good approximation
for the first Binomial distribution, but not as good for the second.
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Ex. 2.2.2. Consider an experiment described by a Poisson( 1
2 ) distribution and answer the following

questions.

(a) What is the probability the experiment will produce a result of 0?

(b) What is the probability the experiment will produce a result larger than 1?

Ex. 2.2.3. Suppose we perform 500 independent trials with probability of success being 0.02.

(a) Use R to compute the probability that there are six or fewer successes. Obtain a decimal
approximation accurate to five decimal places.

(b) Use the Poisson approximation to estimate the probability that there are six or fewer successes
and compare it to your answer to (a).

Now suppose we perform 5000 independent trials with probability of success being 0.002.

(c) Use R to compute the probability that there are six or fewer successes. Obtain a decimal
approximation accurate to five decimal places.

(d) Use the Poisson approximation to estimate the probability that there are six or fewer successes
and compare it to your answer to (c).

(e) Which approximation (b) or (d) is more accurate? Why?

Ex. 2.2.4. For a certain daily lottery, the probability is 1
10000 that you will win. Suppose you play

this lottery every day for three years. Use the Poisson approximation to estimate the chance that
you will win more than once.
Ex. 2.2.5. A book has 200 pages. The number of mistakes on each page has a Poisson(1) distribu-
tion, and is independent of the number of mistakes on all other pages.

(a) What is the chance that there are at least 2 mistakes on the first page?

(b) What is the chance that at least eight of the first ten pages are free of mistakes?

Ex. 2.2.6. Let λ > 0. For the problems below, assume the probability space is a Poisson(λ)
distribution.

(a) Let k be a non-negative integer. Calculate the ratio P ({k+1})
P ({k}) .

(b) Use (a) to calculate the mode of a Poisson(λ).

Ex. 2.2.7. A number is to be produced as follows. A fair coin is tossed. If the coin comes up heads
the number will be the outcome of an experiment corresponding to a Poisson(1) distribution. If the
coin comes up tails the number will be the outcome of an experiment corresponding to a Poisson(2)
distribution. Given that the number produced was a 2, determine the conditional probability that
the coin came up heads.
Ex. 2.2.8. Suppose that the number of earthquakes that occur in a year in California has a
Poisson distribution with parameter λ. Suppose that the probability that any given earthquake
has magnitude at least 6 on the Richter scale is p.

(a) Given that there are exactly n earthquakes in a year, find an expression (in terms of n and
p) for the conditional probability that exactly one of them is magnitude at least 6.

Version: – January 19, 2021



44 sampling and repeated trials

(b) Find an expression (in terms of λ and p) for the probability that there will be exactly one
earthquake of magnitude at least 6 in a year.

(c) Find an expression (in terms of n, λ, and p) for the probability that there will be exactly k
earthquakes of magnitude at least 6 in a year.

Ex. 2.2.9. We defined a Poisson distribution as a probability on S = {0, 1, 2, . . . } for which

P ({k}) = e−λλk

k!
,

for k ≥ 1. Prove that this completely accounts for all possibilities by proving that
∞∑
k=0

e−λλk

k!
= 1.

(Hint: Consider the power series expansion of the exponential function).
Ex. 2.2.10. Consider n vertices labeled {1, 2, . . . ,n}. Corresponding to each distinct pair {i, j}
we perform an independent Bernoulli (p) experiment and insert an edge between i and j with
probability p. The graph constructed this way is denoted as G(n, p).

(a) Let 1 ≤ i ≤ n. We say j is a neighbour of i if there is an edge between i and j. For some
1 ≤ k ≤ n determine the probability that i has k neighbours ?

(b) Let λ > 0 and n large enough so that 0 < p = λ
n < 1 and letAk = { vertex 1 has k neighbours}

what is the
lim
n→∞

P (Ak)?

2.3 sampling with and without replacement

Imagine a small town with 5000 residents, exactly 1000 of whom are under the age of eighteen.
Suppose we randomly select four of these residents and ask how many of the four are under the age
of eighteen. There is some ambiguity in how to interpret this idea of selecting four residents. One
possibility is “sampling with replacement” where each selection could be any of the 5000 residents
and the selections are all genuinely independent. With this interpretation, the sample is simply
a series of four independent Bernoulli( 1

5 ) trials, in which case the answer may be found using
techniques from the previous sections. Note, however, that the assumption of independence allows
for the possibility that the same individual will be chosen two or more times in separate trials.
This is a situation that might seem peculiar when we think about choosing four people from a
population of 5000, since we may not have four different individuals at the end of the process. To
eliminate this possibility consider “sampling without replacement” where it is assumed that if an
individual is chosen for inclusion in the sample, that person is no longer available to be picked in
a later selection. Equivalently we can consider all possible groups of four which might be selected
and view each grouping as equally likely. This change means the problem can no longer be solved
by viewing the situation as a series of independent Bernoulli trials. Nevertheless, other tools that
have been previously developed will serve to answer this new problem.
Example 2.3.1. For the town described above, what is the probability that, of four residents
randomly selected (without replacement), exactly two of them will be under the age of eighteen?

Since we are selecting four residents from the town of 5000, there are (5000
4 ) ways this may be

done. If each of these is equally likely, the desired probability may be calculated by determining
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how many of these selections result in exactly two people under the age of eighteen. This requires
selecting two of the 1000 who are in that younger age group and also selecting two of the 4000
who are older. So there are (1000

2 )(4000
2 ) ways to make such choices and therefore the probability

of selecting exactly two residents under age eighteen is (1000
2 )(4000

2 )/(5000
4 ).

It is instructive to compare this to the solution if it is assumed the selection is done with
replacement. In that case, the answer is the simply the probability that a Binomial(4, 1

5 ) produces
a result of two. From the previous sections, the answer is (4

2)(
1
5 )

2( 4
5 )

2.
To compare these answers we give decimal approximations of both. To six digits of accuracy

(1000
2 )(4000

2 )

(5000
4 )

≈ 0.153592 and
(

4
2

)
(
1
5 )

2(
4
5 )

2 = 0.1536,

so while the two answers are not equal, they are very close. This is a reflection of an important
fact in statistical analysis – when samples are small relative to the size of the populations they
came from, the two methods of sampling give very similar results. �

2.3.1 The Hypergeometric Distribution

Analyzing such problems more generally, consider a population of N people. Suppose r of these
N share a common characteristic and the remaining N − r do not have this characteristic. We
take a sample of size m (without replacement) from the population and count the number of
people among the sample that have the specified characteristic. This experiment is described by
probabilities known as a hypergeometric distribution. Notice that the largest possible result is
min{m, r} since the number cannot be larger than the size of the sample nor can it be larger than
the number of people in the population with the characteristic. On the other extreme, it may be
that the sample is so large it is guaranteed to select some people with the characteristic simply
because the number of people without has been exhausted. More precisely, for every selection over
N − r in the sample we are guaranteed to select at least one person who has the characteristic. So
the minimum possible result is the larger of 0 or (m− (N − r)).

HyperGeo(N , r,m): Let r and m be non-negative integers and let N be an integer with
N > max{r,m}. Let S be the set of integers ranging from max{0,m− (N − r)} to min{m, r}
inclusive with probability P given by

P ({k}) =
(rk)(

N−r
m−k)

(Nm)

for k ∈ S. Such a distribution is called hypergeometric with parameters N , r, and m (or
HyperGeo(N , r,m)).

Of course, R can be used to compute hypergeometric probabilities as well. Example 2.3.1 can be
phrased in terms of a HyperGeo(5000, 1000, 4) distribution, with P ({k}) being the desired answer.
This probability can be computed as:
> dhyper(2, 4000, 1000, 4)
[1] 0.1535923
Note however, that instead of N , the parameter used by R is N − r.

2.3.2 Hypergeometric Distributions as a Series of Dependent Trials

It is also possible (and useful) to view sampling without replacement as a series of dependent
Bernoulli trials for which each trial reduces the possible outcomes of subsequent trials. In this case
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each trial is described in terms of conditional probabilities based on the results of the preceding
observations. We illustrate this by revisiting the previous example.
Example 2.3.1 Continued: We first solved this problem by considering every group of four as equally
likely to be selected. Now consider the sampling procedure as a series of four separate Bernoulli
trials where a success corresponds to the selection of a person under eighteen and a failure as the
selection of someone older. We still want to determine the probability that a sample of size four
will produce exactly two successes. One complication with this perspective is that the successes
and failures could come in many different orders, so first consider the event where the series of
selections follow the pattern “success-success-failure-failure”. More precisely, for j = 1, 2, 3, 4 let

Aj = {The jth selection is a person younger than eighteen}.

Clearly P (A1) = 1000
5000 . Given that the first selection is someone under eighteen, there are now

only 4999 people remaining to choose among, and only 999 of them are under eighteen. Therefore
P (A2|A1) =

999
4999 . Continuing with that same reasoning,

P (Ac3|A1 ∩A2) =
4000
4998

and
P (Ac4|A1 ∩A2 ∩Ac3) =

3999
4997 .

From those values, Theorem 1.3.8 may be used to calculate

P (success− success − failure− failure) = P (A1 ∩A2 ∩Ac3 ∩Ac4)

=
1000
5000 ·

999
4999 ·

4000
4998 ·

3999
4997 .

Next we must account for the fact that this figure only considers the case where the two younger
people were chosen as the first two selections. There are (4

2) different orderings that result in two
younger and two older people, and it happens that each of these has the same probability calculated
above. For example,

P (failure− success − success− failure) = P (Ac1 ∩A2 ∩A3 ∩Ac4)

=
4000
5000 ·

1000
4999 ·

999
4998 ·

3999
4997 .

The individual fractions are different, but their product is the same. This will always happen for
different orderings of a specific number of successes since the denominators (5000 through 4997)
reflect the steady reduction of one available choice with each additional selection. Similarly the
numerators (1000 and 999 together with 4000 and 3999) reflect the number of people available
from each of the two different categories and their reduction as previous choices eliminate possible
candidates. Therefore the total probability is the product of the number of orderings and the
probability of each ordering.

P (two under eighteen) =
(

4
2

)
· 4000

5000 ·
1000
4999 ·

999
4998 ·

3999
4997 .

We leave it to the reader to verify that this is equal to (1000
2 )(4000

2 )/(5000
4 ), the answer we found

when we originally solved the problem via a different method.
The following theorem generalizes this previous example.
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Theorem 2.3.2. Let S be a sample space with a hypergeometric distribution with parameters N ,
r, and m. Then P ({k}) equals(

m

k

)[
r

N

r− 1
N − 1 . . .

r− (k− 1)
N − (k− 1)

] [
N − r
N − k

N − r− 1
N − k− 1 . . .

N − r− (m− 1− k)
N − (m− 1)

]
for any k ∈ S.
Proof- Following the previous example as a model, this can be proven by viewing the hypergeomet-
ric distribution as a series of dependent trials. The first k fractions are the probabilities the first k
trials each result in successes conditioned on the successes of the preceding trials. The remaining
m− k fractions are the conditional probabilities the remaining trials result in failures. The leading
factor of (mk ) accounts for the number of different patterns of k successes and m− k failures, each
of which is equally likely. It is also possible to prove the equality directly using combinatorial
identities and we leave this as Exercise 2.3.4. �

2.3.3 Binomial Approximation to the Hypergeometric Distribution

We saw with Example 2.3.1 that sampling with and without replacement may give very similar
results. The following theorem makes a precise statement to this effect.
Theorem 2.3.3. Let N , m, and r be positive integers for which m < r < N and let k be a positive
integer between 0 and m. Define

p =
r

N
, p1 =

r− k
N − k

, and p2 =
r− k
N −m

.

Letting H denote the probability that a hypergeometric distribution with parameters N , r, and m

takes on the value k, the following inequalities give bounds on this probability:(
m

k

)
pk1(1− p2)

m−k < H ≤
(
m

k

)
pk(1− p1)

m−k.

Proof- The inequalities may be verified by comparing p, p1, and p2 to the fractions from Theorem
2.3.2. Specifically note that the k fractions

r

N
, r− 1
N − 1 , . . . , r− (k− 1)

N − (k− 1)
are all less than or equal to p. Likewise the m− k fractions

N − r
N − k

, N − r− 1
N − k− 1 , . . . , N − r− (m− 1− k)

N − (m− 1)

are all less than or equal to N−r
N−k which itself equals 1− p1. Combining these facts proves the right

hand inequality. The left hand inequality may be similarly shown by noting that the fractions
r

N
, r− 1
N − 1 , . . . , r− (k− 1)

N − (k− 1)
are all greater than p1 while the fractions

N − r
N − k

, N − r− 1
N − k− 1 , . . . , N − r− (m− 1− k)

N − (m− 1)

all exceed N−r−(m−k)
N−m which equals 1− p2. �

When m is small relative to r and N , both fractions p1 and p2 are approximately equal to p.
So this theorem justifies the earlier statement that sampling with and without replacement yield
similar results when samples are small relative to the populations from which they were derived.
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exercises

Ex. 2.3.1. Suppose there are thirty balls in an urn, ten of which are black and the remaining
twenty of which are red. Suppose three balls are selected from the urn (without replacement).

(a) What is the probability that the sequence of draws is red-red-black?

(b) What is the probability that the three draws result in exactly two red balls?

Ex. 2.3.2. This exercise explores how to use R to investigate the binomial approximation to the
hypergeometric distribution.

(a) A jar contains forty marbles – thirty white and ten black. Ten marbles are drawn at random
from the jar. Use R to calculate the probability that exactly five of the marbles drawn are
black. Do two separate computations, one under the assumption that the draws are with
replacement and the other under the assumption that the draws are without replacement.

(b) Repeat part (a) except now assume the jar contains 400 marbles – 300 wihite and 100 black.

(c) Repeat part (a) excpet now assume the jar contains 4000 marbles – 3000 white and 1000
black.

(d) Explain what you are observing with your results of parts (a), (b), and (c).

Ex. 2.3.3. Consider a room of one hundred people – forty men and sixty women.

(a) If ten people are selected from the room, find the probability that exactly six are women.
Calculate this probability with and without replacement and compare the decimal approxi-
mations of your two results.

(b) If ten people are selected from the room, find the probability that exactly seven are women.
Calculate this probability with and without replacement and compare the decimal approxi-
mations of your two results.

(c) If 100 people are selected from the room, find the probability that exactly sixty are women.
Calculate this probability with and without replacement and compare the two answers.

(d) If 100 people are selected from the room, find the probability that exactly sixty-one are women.
Calculate this probability with and without replacement and compare the two answers.

Ex. 2.3.4. Use the steps below to prove Theorem 2.3.2

(a) Prove that r!(N−k)!
N !(r−k)! equals

r

N
· r− 1
N − 1 . . .

r− (k− 1)
N − (k− 1) .

(b) Prove that (N−r)!(N−m)!
(N−k)!((N−r−(m−k))! equals

N − r
N − k

· N − r− 1
N − k− 1 . . .

N − r− (m− 1− k)
N − (m− 1) .

(c) Use (a) and (b) to prove Theorem 2.3.2.
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Ex. 2.3.5. A box contains W white balls and B black balls. A sample of n balls is drawn at
random for some n ≤ min(W ,B). For j = 1, 2, · · · ,n, let Aj denote the event that the ball drawn
on the jth draw is white. Let Bk denote the event that the sample of n balls contains exactly k

white balls.

(a) Find P (Aj |Bk) if the sample is drawn with replacement.

(b) Find P (Aj |Bk) if the sample is drawn without replacement.

Ex. 2.3.6. For the problems below, assume a HyperGeo(N , r,m) distribution.

(a) Calculate the ratio P ({k+1})
P ({k}) .

(Assume that max{0,m− (N − r)} ≤ k ≤ min{r,m} to avoid zero in the denominator).

(b) Use (a) to calculate the mode of a HyperGeo(N , r,m).

Ex. 2.3.7. Biologists use a technique called “capture-recapture” to estimate the size of the pop-
ulation of a species that cannot be directly counted. The following exercise illustrates the role a
hypergeometric distribution plays in such an estimate.

Suppose there is a species of unknown population size N . Suppose fifty members of the species
are selected and given an identifying mark. Sometime later a sample of size twenty is taken from
the population and it is found that four of the twenty were previously marked. The basic idea
behind mark-recapture is that since the sample showed 4

20 = 20% marked members, that should
also be a good estimate for the fraction of marked members of the species as a whole. However,
for the whole species that fraction is 50

N which provides a population estimate of N ≈ 250.
Looking more deeply at the problem, if the second sample is assumed to be done at random

without replacement and with each member of the population equally likely to be selected, the
resulting number of marked members should follow a HyperGeo(N , 50, 20) distribution.

Under these assumptions use the formula for the mode calculated in the previous exercise to
determine which values of N would cause a result of four marked members to be the most likely
of the possible outcomes.
Ex. 2.3.8. The geometric distribution was first developed to determine the number of independent
Bernoulli trials needed to observe the first success. When viewing the hypergeometric distribution
as a series of dependent trials, the same question may be asked. Suppose we have a population
of N people for which r have a certain characteristic and the remaining N − r do not have that
characteristic. Suppose an experiment consists of sampling (without replacement) repeatedly and
recording the number of the sample that first corresponds to selecting someone with the specified
characteristic. Answer the questions below.

(a) What is S, the list of possible outcomes of this experiment?

(b) For each k ∈ S, what is P ({k})?

(c) Define p = r
N and p1 = r−(k−1)

N−(k−1) . Using the result from (b) prove the following bounds on
the probability distribution:

p(1− p1)
k−1 ≤ P ({k}) ≤ p1(1− p)k−1

(As a consequence, when k is much smaller than r and N , the values of p1 and p are approximately
equal and the probabilities from (b) are closely approximated by a geometric distribution).
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