Due: 1pm August 8th, 2018 and Problems to be turned in : 1,2,3

Instructions: Write your name on this sheet. Write down answers on a sheet of paper and each question's answer should begin on a fresh sheet of paper. Staple all the sheets, including this sheet, and submit the same.

- 1. (How does the Quadratic Attain is Maximum or Minimum ?) Let $y = ax^2 + bx + c$. In each of the cases below, draw a *very rough* sketch of y:
 - (i) $b^2 4ac > 0$ and a > 0, (ii) $b^2 4ac > 0$ and a < 0,
 - (iii) $b^2 4ac = 0$ and a < 0, (iv) $b^2 4ac = 0$ and a > 0,

(v) $b^2 - 4ac < 0$ and a < 0, (vi) $b^2 - 4ac < 0$ and a < 0. Distinguish each w.r.t. to y attaining its global maximum or minimum.

- 2. State Rolle's Theorem.
- 3. (Why does the Second Derivative test work ?) Let $f : \mathbb{R} \to \mathbb{R}$. Suppose f is differentiable two times. Let $d \in \mathbb{R}$ be fixed and $x \in \mathbb{R}, x \neq d$. Let

$$P_1(x) = f(d) + (x - d)f'(d)$$
 and $K = \frac{f(x) - P_1(x)}{(x - d)^2}$

- (a) Define $F(y) = f(y) P_1(y) K(y-d)^2$. Find F(d), F'(d).
- (b) Use Rolle's Theorem to conclude that there is a ξ between d and x such that $F''(\xi) = 0$
- (c) Conclude that for any $d, x \in \mathbb{R}$ $x \neq a$,

$$f(x) = f(d) + (x - d)f'(d) + \frac{(x - d)^2}{2}f''(\xi),$$

where ξ is a point between d and x.

- (d) Second Derivative Test: Suppose f'(d) = 0, f''(d) < 0. In addition, suppose there is an interval¹ I with $d \in I$ and f''(z) < 0 for all $z \in I$.
 - i. Let $\xi \in I$. Provide a rough sketch of the graph of $y = f(d) + (x d)f'(d) + \frac{(x d)^2}{2}f''(\xi)$.
 - ii. Can you conclude if d is a local maximum for f from work done in question 1.
 - iii. Then show that f has a local maximum² at d.

¹this is true if the second derivative of f is continuous

²We say that f has a local maximum at d if there is an interval I with $d \in I$ and $f(x) \leq f(d)$ for all $x \in d$.