$http://www.isibang.ac.in/\!\!\sim\!athreya/Teaching/wom18$

- 1. Let $a \in \mathbb{R}$ and $\{a_n\}_{n \geq 1}$ be a bounded sequence of real numbers. Consider the following statements :
 - (a) There are infinitely many elements of the sequence $\{a_n\}_{n\geq 1}$ inside any interval containing a.
 - (b) Inside any interval, I, containing a all but finitely many elements of the sequence $\{a_n\}_{n\geq 1}$ are in I.
 - (c) There is a subsequence of $\{a_n\}_{n\geq 1}$ which converges to a.
- (i) Rewrite, (a), (b), and (c) in logical notation.
- (ii) Decide if they are equivalent statements.

- 2. Let $\{a_n\}_{n\geq 1}$ be a bounded sequence of real numbers. Consider the following statements :
 - (a) $\{a_n\}_{n\geq 1}$ converges.
 - (b) $\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n$

Choose an appropriate method of proof to show $(a) \Longleftrightarrow (b)$.