1. Let $\{a_n\}_{n\geq 1}$ be a bounded sequence of real numbers. Consider the following statements :

- (a) $L = \sup(A)$ where $A = \{x \in \mathbb{R} : x \text{ is a limit point of } a_n\}.$
- (b) For every $\epsilon > 0$:
 - there exists $N \ge 1$ such that $a_n < L + \epsilon$ whenever $n \ge N$ and
 - for all $M \ge 1$ there exists n > M such that $a_n > l \epsilon$.

Choose an appropriate method of proof and show that $(a) \iff (b)$.

- 2. Let H be a proper subgroup of the additive group $\mathbb Z.$ Consider the following statements
 - (a) $\{18, 30, 40\} \subset H$.
 - (b) $H = 2\mathbb{Z} := \{2k : k \in \mathbb{Z}\}$

Choose an appropriate method of proof to show $(a) \Longleftrightarrow (b)$