Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers.

- 1. Provide examples of sequences $\{a_n\}$ that satisfy each of the statements below.
 - (a) For all $\epsilon > 0$, for all but finitely many $n \in \mathbb{N}$

$$a_n < 5 + \epsilon$$
 and $a_n > -11 - \epsilon$

Solution:

Example 1:
$$a_n = 4$$
 for all $n \ge 1$

Example 2: $a_n = -11 + \frac{(-1)^n}{n}$ for all $n \ge 1$

Example 3: $a_n = 5 + \frac{1}{n}$ for all $n \ge 1$

Example 4: Any sequence a_n which has no limit points in $(-\infty, -11) \cup (5, \infty)$ will satisfy the above hypothesis.

Exercise: Prove that a_n satisfies (a) if and only if $-11 < \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n < 5$. (b) For all $\epsilon > 0$, there are infinitely many $n \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon$$

for L = -1, 0, 3 and $a_n \notin \{-1, 0, 3\}$ for all $n \ge 1$ Solution: Example:

$$a_n = \begin{cases} -1 + \frac{1}{n} & \text{if } n = 3k \text{ for some } k \ge 1\\ \frac{1}{n} & \text{if } n = 3k + 1 \text{ for some } k \ge 1\\ 3 + \frac{1}{n} & \text{if } n = 3k + 2 \text{ for some } k \ge 1 \end{cases}$$

Exercise: Let S be the set of limit points of the sequence a_n . Prove that a_n satisfies (b) if and only if $S \supset \{-1, 0, 3\}$.

(c) For a > 0 there are infinitely many $n \in \mathbb{N}$ such that

 $a_n > a$ and

there are infinitely many $n \in \mathbb{N}$ such that

 $a_n < -a$.

Solution:

Example: Let $\alpha > 0$ and $a_n = (-1)^n n^{\alpha}$ for all $n \ge 1$ **Exercise**: Prove that a_n satisfies (c) if and only if $-\infty = \liminf_{n \to \infty} a_n < \limsup_{n \to \infty} a_n = \infty$. \Box

- 2. Write the below statements using logical notation:
 - (a) For every ε > 0 there are infinitely many n such that distance of a_n to 0 is less than ε
 Solution:
 In Logical Notation: ∀ε > 0, ∀N ≥ 1 there exists m₀ > N such that | a_{m0} | < ε

Note: m_0 depends on ϵ and N

(b) For every $\epsilon > 0$, all but finitely many elements of the sequence a_n are below $11 + \epsilon$ and inifinitely many above $11 - \epsilon$

Solution:

In Logical Notation: $\forall \epsilon > 0, \exists N \ge 1$ such that for all n > N such that $a_n < 11 + \epsilon, \forall \epsilon > 0$ and $\forall N \ge 1$ there exists $m_0 > N$ such that $a_{m_0} > 11 - \epsilon$

- 3. Consider the following statements:
 - (a) For every $\epsilon > 0$ there exists N > 0 such that $|a_n L| < \epsilon$ for all n > N.
 - (b) There is a C > 0 such that for every $\epsilon > 0$ there exists N > 0 such that $|a_n L| \leq C\epsilon$ for all $n \geq N$.
 - (c) For every N > 0 there exists $\epsilon > 0$ such that for all n > N implies $|a_n L| < \epsilon$.
 - (d) There exists N > 0 such that for all $\epsilon > 0$ and n > N implies $|a_n L| < \epsilon$.
 - (e) For every $\epsilon > 0$ and for all $n \ge 1$, there exists N > 0 such that m > N implies $|a_m L| < \epsilon$.
 - (f) For every $\epsilon > 0$ and for all $n \ge 1$, there exists N > 0 such that N > n and $|a_N L| < \epsilon$.

Decide which of the above versions are equivalent to the definition of

$$\lim_{x \to \infty} a_n = l$$

and which are not. For those that are not equivalent to $\lim_{n\to\infty} a_n = L$ determine, in as simple a language as possible, what they really define. Find examples (if they exist) of sequences that satisfy the definition and of sequences that don't satisfy it.

ANSWER: (a) \iff (b) \iff (e) $\iff \lim_{x\to\infty} a_n = L$, (d) $\implies \lim_{m\to\infty} a_n = L \Longrightarrow$ (c), (f).

Exercise: Show that if a sequence satisfies (d) if and only if $\exists N > 0$ such that $a_n = L$ for all n > N. Show that if a sequence satisfies (c) or (f) then L is a limit point of a_n but need not be its limit.