- 1. Provide examples of sequences $\{a_n\}$ that satisfy each of the statements below.
 - (a) For all $\epsilon > 0$, for all but finitely many $n \in \mathbb{N}$

 $a_n < 5 + \epsilon$ and $a_n > -11 - \epsilon$

(b) For all $\epsilon > 0$, there are infinitely many $n \in \mathbb{N}$ such that

 $|a_n - L| < \epsilon$

for L = -1, 0, 3 and $a_n \notin \{-1, 0, 3\}$ for all $n \ge 1$

(c) For a > 0 there are infinitely many $n \in \mathbb{N}$ such that

 $a_n > a$ and

there are infinitely many $n \in \mathbb{N}$ such that

 $a_n < -a.$

- 2. Write the below statements using logical notation:
 - (a) For every $\epsilon > 0$ there are infinitely many n such that distance of a_n to 0 is less than ϵ
 - (b) For every $\epsilon > 0$, all but finitely many elements of the sequence a_n are above $11 + \epsilon$ and inifinitely many above 11ϵ

- 3. Consider the following statements:
 - (a) For every $\epsilon > 0$ there exists N > 0 such that $|a_n L| < \epsilon$ for all n > N.
 - (b) There is a C > 0 such that for every $\epsilon > 0$ there exists N > 0 such that $|a_n L| \leq C\epsilon$ for all $n \geq N$.
 - (c) For every N > 0 there exists $\epsilon > 0$ such that for all n > N implies $|a_n L| < \epsilon$.
 - (d) There exists N > 0 such that for all $\epsilon > 0$ and n > N implies $|a_n L| < \epsilon$.
 - (e) For every $\epsilon > 0$ and for all $n \ge 1$, there exists N > 0 such that m > N implies $|a_m L| < \epsilon$.
 - (f) For every $\epsilon > 0$ and for all $n \ge 1$, there exists N > 0 such that N > n and $|a_N L| < \epsilon$.

Decide which of the above versions are equivalent to the definition of

$$\lim_{n \to \infty} a_n = L$$

and which are not. For those that are not equivalent to $\lim_{n\to\infty} a_n = L$ determine, in as simple a language as possible, what they really define. Find examples (if they exist) of sequences that satisfy the definition and of sequences that don't satisfy it.