- 1. Write the following statements using logical notation and negate them.
 - (a) Every classroom has a chair that is not broken.

Solution:

In Logical Notation: Let R denote the set of all classrooms, for all $r \in R$ let C(r) denote the chairs in the room r and B denote the set of all broken chairs.

$$\forall r \in R, \exists c \in C(r) \text{ such that } c \in B.$$

Negation: $\exists r \in R, \forall c \in C(r)$ we have $c \notin B$.

(b) $f : \mathbb{R} \to \mathbb{R}$ is unbounded if for every real number M, some real number x satisfies |f(x)| > M. Solution:

In Logical Notation: $f : \mathbb{R} \to \mathbb{R}$ is unbounded if $\forall M \in R \exists x \in R$ such that |f(x)| > M. Negation: $\exists M \in R$ such that $\forall x \in R$ we have $|f(x)| \le M$. Such an f is bounded.

- 2. Define what is meant by "a sequence $\{a_n\}_{n\geq 1}$ ". Solution: A sequence is a $f : \mathbb{N} \to \mathbb{R}$. We denote $f(n) := a_n$ for aeach $n \geq 1$ and call the function a "a sequence $\{a_n\}$.
- 3. We say $\lim_{n\to\infty} a_n = L$ if

For every $\epsilon > 0$ there exists N > 0 such that $|a_n - L| < \epsilon$ whenever $n \ge N$.

(a) Write a logical statement that says $\lim_{n\to\infty} a_n \neq L$

Solution: $\exists \epsilon_0 > 0$ such that for all $N > 0 \exists n_0 > N$ such that $|a_{n_0} - L| \ge \epsilon$

(b) Write a logical statement that says $\lim_{n\to\infty} a_n \neq a$ for any $a \in \mathbb{R}$.

Solution: $\forall a \in \mathbb{R} \exists \epsilon_0 > 0$ such that for all $N > 0 \exists n_0 > N$ such that $|a_{n_0} - R| \ge \epsilon$

4. If $f:\mathbb{R}\to\mathbb{R}$ is unbounded then construct a sequence $\{a_n\}$ such that $\lim_{n\to\infty} |f(a_n)|=\infty$

Solution: Fix an $n \ge 1$. As f is unbounded $\exists x \in \mathbb{R}$ such that |f(x)| > n. Since $n \ge 1$ was arbitrary denoting x obtained for each n by a_n we have a sequence $f(a_n)$ with $|f(a_n)| > n$ for all $n \ge 1$. Therefore,

for any M > 0 and for all $n \ge M + 1$ we have $|f(a_n)| > M$.

Therefore $\lim_{n\to\infty} |f(a_n)| = \infty$.