1. Write the following statements using logical notation and negate them.

(a) Every classroom has a chair that is not broken.

(b) $f: \mathbb{R} \to \mathbb{R}$ is unbounded if for every real number M, some real number x satisfies |f(x)| > M.

2. Define what is meant by "a sequence $\{a_n\}_{n\geq 1}$ ".

3. We say $\lim_{n\to\infty} a_n = L$ if

For every $\epsilon > 0$ there exists N > 0 such that $|a_n - L| < \epsilon$ whenever $n \ge N$.

(a) Write a logical statement that says $\lim_{n\to\infty} a_n \neq L$

(b) Write a logical statement that says $\lim_{n\to\infty} a_n \neq a$ for any $a \in \mathbb{R}$.

4. If $f : \mathbb{R} \to \mathbb{R}$ is unbounded then construct a sequence $\{a_n\}$ such that $\lim_{n \to \infty} |f(a_n)| = \infty$