1. Let \mathbb{R} be set of real numbers. Let $f : \mathbb{R} \to \mathbb{R}$. Decide which of the following statements are true or false.

- (a) If f is increasing¹ then f is injective.
- (b) If f is increasing then f has an inverse.
- (c) If f is surjective then f is unbounded.
- (d) If f is unbounded then f is surjective.

2. $f:(0,1) \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{2x-1}{2x} & \text{if } x \le \frac{1}{2}.\\\\ \frac{2x-1}{2-2x} & \text{if } x \ge \frac{1}{2}. \end{cases}$$

Decide if f is a bijection.

- 3. Let $\mathbb N$ be the set of natural numbers.
 - (a) Show that $n < 2^n$.
 - (b) There is an $a \in \mathbb{N}$ and $b \in \mathbb{N}$ such that $n = 2^{a-1}(2b-1)$
 - (c) Show that $Card(\mathbb{N}) = Card(\mathbb{N} \times \mathbb{N})$

4. Decide if Card (A) < Card (B), Card (A) > Card (B), or Card (A) = Card (B) when

- (a) A = (0, 1) and B = [0, 1]
- (b) $A = \mathbb{N}$ and $B = \mathbb{R}$.

¹i.e. f(x) < f(y) whenever $x, y \in R$ and x < y