- 2. Let $X, Y \in \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ be given. Let $\{x_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$ be two sequences of real numbers and $z_n = x_n + y_n$ for all $n \geq 1$. Consider the following statements:
 - (a) $X = \liminf_{n \to \infty} x_n$ and $Y = \liminf_{n \to \infty} y_n$
 - (b) $\liminf_{n\to\infty} z_n \geq X + Y$, except when X + Y is of the form $\infty \infty$.

Choose an appropriate method of proof to decide if $(a) \iff (b)$?

Solutions: Let $X = \liminf_{n \to \infty} x_n, Y = \liminf_{n \to \infty} y_n, Z = \liminf_{n \to \infty} z_n$.

Case 1: Both X and Y are finite.

For any $\epsilon > 0$, only a finite number of terms of $\{x_n\}_{n=1}^{\infty}$ are less than $X - \epsilon/2$; and only a finite number of terms of $\{y_n\}_{n=1}^{\infty}$ are less than $Y - \epsilon/2$. Suppose for some $k \in \mathbb{N}, x_k \geq X - \epsilon/2$, and $y_k \geq Y - \epsilon/2$. Then $z_k = x_k + y_k \geq X + Y - \epsilon$. Hence if $z_p < X + Y - \epsilon$, then $x_p < X - \epsilon/2$ or $y_p < Y - \epsilon/2$. As the number of p for which the second condition is satisfied is finite, the number of p for which $z_p < X + Y - \epsilon$ is also finite.

We will show by contradiction that $Z \ge X + Y$. Suppose Z < X + Y. Let $\epsilon = (X + Y - Z)/2$. As Z is a limit point of $\{z_n\}_{n=1}^{\infty}$, there exist infinitely many p for which $|z_p - Z| < \epsilon$. But $|z_p - Z| < \epsilon$ implies $z_p < X + Y - \epsilon$, and we know that there are only finitely many p for which $z_p < X + Y - \epsilon$. This is a contradiction, and hence $Z \ge X + Y$.

Case 2: At least one of X and Y is not finite

Assume without loss of generality that X is non-finite. It is given that $\{X,Y\} \neq \{\infty, -\infty\}$. If $X = -\infty$, then $X + Y = -\infty$. In this case, clearly $Z \geq X + Y$. Now consider the case when $X = \infty$. As $Y \neq -\infty$, the sequence $\{y_n\}_{n=1}^{\infty}$ is bounded below by, say, M. For, if it did not have a lower bound, it would have a subsequence converging to $-\infty$, which contradicts the fact that $Y \neq -\infty$.

As $\limsup_{n\to\infty}x_n\geq X$, $\limsup_{n\to\infty}x_n=\infty=X$. Hence $\{x_n\}_{n=1}^\infty$ converges to ∞ . For all $P\in\mathbb{R}$, there exists a $N_0\in\mathbb{N}$ such that $x_n>P-M$ for all $n\geq n_0$. $x_n>P-M$ implies $x_n+M>P$, which implies $x_n+y_n>P$. Hence for all $P\in\mathbb{R}$, there exists a $N_0\in\mathbb{N}$ such that $z_n>P$ for all $n\geq n_0$. This shows that $\{z_n\}_{n=1}^\infty$ converges to ∞ and so $Z=\infty$. Hence $Z\geq\infty=X+Y$.