
Writing of Mathematics Quiz 1 Semester I 2018/19

Your name: Solution September 27th, 2018

1. Let n ≥ 1, xn = n3

(1+p)n
with p > 0. Decide if the sequence converges or not.

Solution: For any n ≥ 1, by the Binomial expansion4
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All terms in the above expansion are positive numbers. So for n ≥ 6 and it is easily seen from the above that
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We have used the fact that for all n ≥ 6, 1− 1
n
, 1− 2

n
, and 1− 3

n
are all greater than 1

2
. So, for all n ≥ 6,
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Therefore for all n ≥ 6,
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Let � > 0 be given. Let N > 192
p4�

. So for all n ≥ N , we have
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Let N1 = max{N, 6}. For all n ≥ N1 we have
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This in turn implies that for all n ≥ N1,
| xn |< �.

As � > 0 was arbitrary we have shown that
lim

n→∞
xn = 0.

In Homework you were asked ot consider xn = nα

(1+p)n
with α, p > 0. Can you amend this proof to finish that

case ?

4A proof of the formula can be done by the method of induction.


