Your name: Solution

1. Classify all groups of order 325 and 26.

Solution:

Case 1: $335 = 5^2 \times 13$

Let n be the number of Sylow 5 subgroups. Then

 $n \equiv 1 \mod 5$ and n divides 13.

This implies n = 1. So there is one subgroup H of order 25 in G.

Let m be the number of Sylow 13 subgroups. Then

 $m \equiv 1 \mod 13$ and m divides 25.

This implies m = 1. So there is one subgroup K of order 13 in G.

Since the orders of H and K are relatively prime, we have that $H \cap K = \{e\}$. They are both Normal subgroups of G. As order of G is 25×13 , G = HK. Hence G is a semidirect product of H and K.

Now as order of K is 13, K is cyclic and isomorphic to \mathbb{Z}_{13} . Similarly H can be isomorphic to either $\mathbb{Z}_5 \times \mathbb{Z}_5$ or \mathbb{Z}_{25} . Hence up to isomorphism the groups of order 325 are

$$\mathbb{Z}_{13} \times \mathbb{Z}_5 \times \mathbb{Z}_5$$
 or $\mathbb{Z}_{13} \times \mathbb{Z}_{25}$.

Case 2: $26 = 2 \times 13$.

If G is abelian then the only group up to isomorphism is C_{26} . Suppose G is not abelian. Let H be a 13-Sylow subgroup. As order of H is 13 a prime, it is cyclic with generator a (say). H is normal in G (why ?).

Let $K = \{1, b\}$ be a 2-Sylow subgroup. Note that $ba \in G$, is not an element of H since $b \notin H$ and in particular $ba \neq e$, where e is the identity. Further, ba cannot have order 13 since H is the only subgroup of order 13. It also cannot have order 26 since G is not abelian (in particular not cylic as well). Thus $(ba)^2 = 1$ (why ?). As

 $a^{13} = b^2 = (ab)^2 = e,$

we can conclude that G is isomorphic to the dihedral group with presentation

$$\langle r, s | r^{13} = s^2 = (sr)^2 = e \rangle$$

by allowing the isomorphism ϕ to be defined from

$$\phi(a) = r, \phi(b) = s$$

It also easy to show that G is a semidirect product of \mathbb{Z}_2 and \mathbb{Z}_{13} directly (as we have shown above) or from the fact that dihedral group is isomorphic to it.

November 1st, 2018