Your name:

October 29th, 2018

1. Let $f : \mathbb{R} \to \mathbb{R}$.

- (a) Define using Logical notation what is meant by saying "f is a bounded function.
- (b) Negate the above statement.
- (c) Let $h, g: \mathbb{R} \to \mathbb{R}$. Decide whether the following statement is true or false¹:

If h + g is a bounded function then h and g are also bounded functions.

Solution: (a) $f : \mathbb{R} \to \mathbb{R}$ is said to be bounded if $\exists M > 0$ such $|f(x)| \leq M$ for all $x \in \mathbb{R}$.

Solution:(b) for all M > 0, there exists an $x \in \mathbb{R}$ such that |f(x)| > M.

Solution: (c) The statement is false. let $h : \mathbb{R} \to \mathbb{R}$ be given by h(x) = x and $g : \mathbb{R} \to \mathbb{R}$ be given by g(x) = -x. Note that for any M > 0, for x = M + 1 | h(x) | = M + 1 > M and | g(x) | = M + 1 > M. So h, g are both not bounded functions. But h + g(x) = 0 for all $x \in \mathbb{R}$ and is trivally a bounded function.

2. Let $f : \mathbb{R} \to \mathbb{R}$. We say $\lim_{x \to 0} f(x) = 0$ if

For every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x)| < \epsilon$ whenever $|x| < \delta$. (1)

Consider the following statements:

- (a) For every $\epsilon > 0$ there exists $\delta > 0$ such that for all $x \in \mathbb{R}$, $|x| < \delta$ implies $|f(x)| < \epsilon$.
- (b) For every $\delta > 0$ there exists $\epsilon > 0$ such that for all $x \in \mathbb{R}$, $|x| < \delta$ implies $|f(x)| < \epsilon$.
- (c) There exists $\delta > 0$ such that for all $\epsilon > 0$ and for all $x \in \mathbb{R}$, $|x| < \delta$ implies $|f(x)| < \epsilon$.
- (d) For every $\epsilon > 0$ and for all $x \in \mathbb{R}$, there exists $\delta > 0$ such that $|x| < \delta$ implies $|f(x)| < \epsilon$.

For each of the above versions (a)-(d) that are NOT equivalent to (1) provide an example of f that satisfy them but not (1).

Solution: See Class board Photos.

¹If true then please provide a proof. If false then please provide a counter-example.