Your name: Solution

OCtber 4th, 2018

1. Suppose $\{z_n\}_{n\geq 1}$ is a sequence of real numbers. Without using the ratio or root test decide whether the series $\sum_{n=1}^{\infty} z_n$ converges when

$$z_n = \frac{\sqrt{n}}{2n^3 - 1}$$

Solution: For $n \in \mathbb{N}$ observe that

$$0 \leq z_n = \frac{\sqrt{n}}{2n^3 - 1} = \frac{\sqrt{n}}{n^3} \frac{1}{2 - \frac{1}{n^3}} = \frac{1}{n^{2.5}} \frac{1}{2 - \frac{1}{n^3}}$$

For all $n \ge 1$, note that $2 - \frac{1}{n^3} \ge 2 - \frac{1}{1^3} = 1$. So,

$$\frac{1}{2 - \frac{1}{n^3}} \le 1$$

Therefore $0 \leq z_n \leq \frac{1}{n^{2.5}}$, for all $n \in \mathbb{N}$. This implies that

$$|z_n| \le \frac{1}{n^{2.5}}$$
, for all $n \in \mathbb{N}$.

As $\sum_{n=1}^{\infty} \frac{1}{n^{2.5}}$ converges¹, by the comparison test², we have that

$$\sum_{n=1}^{\infty} z_n \text{ also converges.}$$

²Let $\{z_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$ be sequences of two real numbers. Let $N \geq 1$. Suppose $|z_n| \leq y_n$ for all $n \geq N$ and $\sum_{n=1}^{\infty} y_n$ converges then $\sum_{n=1}^{\infty} z_n$ converges.

 $[\]sum_{n=1}^{1} \frac{1}{n^p}$ converges for all p > 1.

Your name: Solution

OCtber 4th, 2018

1. Suppose $\{z_n\}_{n\geq 1}$ is a sequence of real numbers. Without using the ratio or root test decide whether the series $\sum_{n=1}^{\infty} z_n$ converges when

$$z_n = \frac{n^2 - n + 1}{n^3 + 1}$$

Solution: For $n \in \mathbb{N}$,

$$z_n = \frac{n^2 - n + 1}{n^3 + 1} = \frac{1}{n} \frac{n^3 - n^2 + n}{n^3 + 1} \ge \frac{1}{n} \frac{n^3 - n^2 + 1}{n^3 + 1} = \frac{1}{n} (1 - \frac{n^2}{n^3 + 1}) = \frac{1}{n} (1 - \frac{1}{n + \frac{1}{n^2}})$$

Now for all $n \geq 2$,

$$n + \frac{1}{n^2} \ge 2$$

So for all $n \geq 2$,

$$1 - \frac{1}{n + \frac{1}{n^2}} \ge 1 - \frac{1}{2} = \frac{1}{2}.$$

Therefore,

$$z_n \geq \frac{1}{n} \cdot \frac{1}{2} \geq 0$$

As $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges³. By the comparison test⁴, $\sum_{n=1}^{\infty} \frac{1}{2n}$ also diverges, and hence again by the comparison test $\sum_{n=1}^{\infty} z_n \text{ diverges to } \infty.$

 $[\]begin{array}{c} 3\sum\limits_{n=1}^{\infty}\frac{1}{n^{p}} \text{ diverges to } \infty \text{ for all } p \leq 1. \\ {}^{4}\text{Let } \{z_{n}\}_{n\geq 1} \text{ and } \{y_{n}\}_{n\geq 1} \text{ be sequences of two real numbers. Let } N \geq 1. \text{ Suppose } 0 \leq y_{n} \leq z_{n} \text{ for all } n \geq N \text{ and } \sum\limits_{n=1}^{\infty} y_{n} \text{ diverges to } \infty \text{ then } \sum\limits_{n=1}^{\infty} z_{n} \text{ diverges to } \infty. \end{array}$