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1. (Exponential function : ex) Consider the function E : R→ R given by E(x) = 1 +
∑∞
n=1

xn

n! .

(a) Show that E is well-defined and E(x+ y) = E(x)E(y), for all x, y ∈ R.

(b) Show that E is a continuous and monotonically increasing (strictly) function on R.

(c) Let e = E(1). Show that E(x) = ex for all x ∈ R.

(d) Show that limx→∞ xne−x = 0 for all n ∈ N.

Solution:(a)
Proof of Well-definedness: Let x ∈ R. Applying the ratio test to the given series, with an = xn

n! we
have

lim sup
n→∞

∣∣∣∣ x
n+1

(n+1)!
xn

n!

∣∣∣∣ = lim sup
n→∞

∣∣∣∣xn
∣∣∣∣ = |x| lim

n→∞

1

n
= 0

Therefore the series
∑∞
n=1

xn

n! converges absolutely for all x ∈ R. The function E is well defined.

Proof of Product-sum Formula: For any given x, y ∈ R, define, for all n ∈ N ∪ {0},

an =
xn

n!
, bn =

yn

n!
, cn =

n∑
k=0

akbn−k

Observe that

cn =

n∑
k=0

akbn−k =

n∑
k=0

xkyn−k

k!(n− k)!
=

1

n!

n∑
k=0

(
n

k

)
xkyn−k =

(x+ y)n

n!

We know that

∞∑
n=0

an,
∞∑
n=0

bn and
∞∑
n=0

cn converge absolutely to E(x),E(y), and E(x+ y) respectively.

However, by the Cauchy product theorem,

∞∑
n=0

cn converges to E(x)E(y).

Therefore for x, y ∈ R we have

E(x)E(y) = E(x+ y) (1)

×
Solution: (b)
Proof of Strictly increasing: E(0) = 1. For x > 0, as

n∑
k=0

xk

k!
≥ 1 + x, ∀n ≥ 1 this implies E(x) ≥ 1 + x > 1.

If x < 0, then −x > 0 and by above E(−x) > 1. Further, 1 = E(0) = E(x+ (−x)) = E(x)E(−x).
So for x < 0,

E(x) =
1

E(−x)
∈ (0, 1)

. If a > b ∈ R, then a = b+ a− b with a− b > 0.

E(a) = E(b+ (a− b)) = E(b)E(a− b) > E(b) · 1.

So a > b =⇒ E(a) > E(b), and E is a strictly increasing function on R.
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Proof of Continuity: Let a ∈ R be given. Let M > 0 such that a ∈ (−M,M). For any b ∈ (−M,M)
and n ∈ N, we have

|an − bn| =

∣∣∣∣∣(a− b)
n−1∑
k=0

akbn−k−1

∣∣∣∣∣ ≤ |a− b|
n−1∑
k=0

|a|k|b|n−k−1 < |a− b|
(
nMn−1)

So, for k ≥ 1, using the above, we have∣∣∣∣∣
k∑

n=1

an − bn

n!

∣∣∣∣∣ ≤
k∑

n=1

|an − bn|
n!

≤ |a− b|
k∑

n=1

nMn−1

n!
≤ |a− b|

k∑
n=0

Mn

n!
(2)

Note that

|E(a)− E(b)| =

∣∣∣∣∣
∞∑
n=1

an − bn

n!

∣∣∣∣∣ and E(M) =

∞∑
n=0

Mn

n!

The first equality uses the fact that the sum (or difference) of two absolutely convergent series is
absolutely convergent and converges to the sum (or difference) of the limits. The second equality
follows from definition. Using the above with (2) we have for a, b ∈ (−M,M)

|E(a)− E(b)| ≤ | a− b | E(M) (3)

Let ε > 0 be given. Choose

δ =
1

2
min

{
| a−M |, | a+M |, ε

E(M) + 1)

}
.

Let c ∈ R such that |c− a| < δ. By choice of δ > 0 c ∈ (−M,M). From (3) we have

|E(a)− E(c)| ≤ |a− c|E
(
M
)
< δE

(
M
)
< ε

As ε > 0 was arbitrary. E is continuous at a. As a ∈ R was arbitrary, E is continuous.
×

Solution:(c)
E(0) = 1 = e0. If x ∈ N,

E(x) = E

( x∑
k=1

1

)
=

x∏
k=1

E(1) = ex

If x = 1/n, for n ∈ N, then

e = E(1) = E

( n∑
k=1

x

)
=

n∏
k=1

E(x) =
(
E(x)

)n
As E(x) > 0, E(x) = e

1
n = ex

If x ∈ Q, let x = p/q, where q ∈ N and p ∈ Z. If p = 0, then x = 0 and E(x) = ex. If p > 0,

E(x) = E

(
p

q

)
= E

( p∑
k=1

1

q

)
=

p∏
k=1

E(1/q) =
(
e1/q

)p
= ex

If p < 0, then −x = −p
q and

E(x) =
1

E(−x)
=

1

e−x
= ex

Thus,
for all x ∈ Q, E(x) = ex.
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Proof of formula for x ∈ R: We will now show the equality for all x ∈ R. Since e > 1, for1 x ∈ R,

ex := sup{er : r ∈ Q, r < x} = sup{E(r) : r ∈ Q, r < x}.

Let S = {E(r) : r ∈ Q, r < x}.
As E is monotonically increasing,

E(x) is an upper bound of S. (4)

Let ε > 0 be given. By continuity of E,

there exists δ > 0 such that |y − x| < δ =⇒ |E(x)− E(y)| < ε.

This implies
if a rational r ∈ (x− δ, x) then E(r) > E(x)− ε.

But E(r) ∈ S. Therefore,
E(x)− ε is not an upper bound of S. (5)

From (4) and (5) we have that E(x) = supS = ex for all x ∈ R.
×

Solution:(d)
Proof of decay rate: For x > 0 and n ∈ N,

M∑
k=0

xk

k!
≥ xn+1

(n+ 1)!

whenever M > n. Taking limits as M →∞ we have that for all x > 0, n ≥ 1,

ex

xn
≥ x

(n+ 1)!

This implies that, for x > 0 and n ∈ N

0 <
xn

ex
≤ (n+ 1)!

x
(6)

Fix n ≥ 1. Let ε > 0 be given. Then ∃M > 0 such that

(n+ 1)!

x
< ε whenever x > M.

Hence, using (6) and above we have for x > M

0 <
xn

ex
< ε.

As ε > 0 was arbitrary, we have shown that

lim
x→∞

xne−x = 0.

×

1See chapter 1 exercise 6 of Rudin, Principle of Mathematical Analysis
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2 (Logarithm function:- L(x)) Let E be the function as defined in the previous question. Let L :
(0,∞)→ R such that

L(E(y)) = y,∀y ∈ R

(a) Show that L is well-defined and L(uv) = L(u) + L(v), for all u, v ∈ (0,∞). (L(x) is denoted
by ln(x) for all x > 0)

(b) Show that L is a continuous monotonically increasing (strictly) function.

(c) Show that for any α ∈ R, x ∈ [0,∞), xα = E(α(L(x))) = eαL(x).

Solution: (a)
We need to show that E is a bijection from R onto (0,∞). This will imply that L, given by
L(E(y)) = y, is well-defined.

Proof of E is One to one: From Problem 1(b), we know that E is strictly increasing. So

if y1 < y2 then E(y1) < E(y2). (7)

Hence E is a 1− 1 function. From definition, we have

E(x) > 0 for all x > 0. (8)

Secondly, from Problem 1(d) we can conclude that

lim
x→−∞

E(x) = 0 (why ?). (9)

From (8), (9), and (7) we have that infx∈RE(x) ≥ 0 which implies Range(E) ⊆ (0,∞).

Proof of Range (E) = (0,∞): Let a ∈ (1,∞). Note that E(0) = 1 and E(a) =
∑∞
k=0

ak

k! > 1 + a.
From, Problem 1(b), we know that E is continuous. So, by the Intermediate value theorem,

if a > 1, there exists b ∈ (0, a) such that E(b) = a. (10)

Let 0 < a < 1, then 1
a > 1 by (10) there exists c ∈ (0, 1a ) such that E(c) = 1

a . Using Problem 1(c),
if d = −c then

E(d) = a. (11)

From (10) and (11) we have, (0,∞) ⊆ Range(E). So Range(E) = (0,∞).

Proof of property of L : Let u, v ∈ (0,∞) and let s = L(u) and t = L(v). So by definition, u = E(s)
and v = E(t). Then, by Problem 1(a),

uv = E(s)E(t) = E(s+ t).

Hence
L(uv) = L(E(s+ t)) = s+ t = L(u) + L(v).

×
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Solution: (b)
Proof of Strictly increasing: Let x, y ∈ (0,∞) such that x < y. Let u = L(x) and v = L(y). Then,
x = E(u) and y = E(v). As E is strictly increasing, if u ≥ v then x = E(u) ≥ E(y) = y, which is
not true as x < y. Therefore u < v, and hence L is strictly increasing.

Proof of Continuity: We will now show that L is continuous. Let a ∈ (0,∞) and b = L(a). Let
ε > 0 be given. Define

δ := min
{
E(b+ ε)− E(b), E(b)− E(b− ε)

}
.

As E is strictly increasing, δ > 0. Let c ∈ (0,∞) such that |c− a| < δ. Then

c ∈ (a− δ, a+ δ),

as E(b) = a, =⇒ c ∈ (E(b)− δ, E(b) + δ)

by definition of δ, =⇒ c ∈ (E(b− ε), E(b+ ε)).

As L is strictly increasing, the above implies that

L(c) ∈ (b− ε, b+ ε).

So we have shown that
if | c− a |< δ then |L(c)− L(a)| < ε.

As ε > 0 was arbitrary. L is continuous at a. As a ∈ (0,∞) was arbitrary, L is continuous2.
×

Solution:(c)
Proof of formula: Let x ∈ (0,∞). Note that

L(E(x)) = x = E(L(x)).

Then

E(αL(x)) = eαL(x) (By Problem 1(c))

=
(
eL(x)

)α
(why ?)

=
(
E(L(x))

)α
(By Definition)

= xα (By above).

×

2 Have we used anywhere that E is continuous in this proof ?.
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2. (Exercise towards Verifying Convergence in Gradient Descent) Let {an}n≥1 be a sequence of num-
bers such 0 ≤ an < 1.

(a) Using induction, show that
∏n
i=1(1− ai) ≥ 1−

∑n
k=1 ak.

(b) Show that 1− a ≤ e−a for any a ∈ [0, 1).

(c) For any n ≥ 1, let bn =
∏n
i=1(1− ai).

i. Show that bn converges to 0 if
∑∞
k=1 ak =∞.

ii. Show that bn converges to b ∈ (0, 1) if
∑∞
k=1 ak <∞.

Solution: See Quiz 7 Solution.
×

3. Let {an}n≥1 be a bounded sequence. Then show that it has a subsequence convergent in R.

Solution: See Theorem 3.4.8 Bartle and Sherbert, Introduction to Real Analysis.
×

4. (Finding Roots of a number) Let a > 0 and choose s1 >
√
a. Define

sn+1 :=
1

2
(sn +

a

sn
)

for n ∈ N.

(a) Show that sn is monotonically decreasing and limn→ sn =
√
a.

(b) If zn = sn −
√
a then show that zn+1 <

z2n
2
√
a
.

(c) Let f(x) = x2 − a. Show that sn = sn−1 − f(sn−1)
f ′(sn−1)

.

(d) Draw graph of f with a = 4 and plot the sequence sn for a few steps when s0 = 5.

5. Prove that if G is an abelian group of order pq, where p and q are distinct primes, then G is cyclic.
Solution: See Theorem 15.10 in Abstract Algebra Theory and Applications Thomas W. Judson and
Robert A. Beezer

×

6. Classify all groups of order 325 and 26.
Solution: See Quiz 8 Solution.

×
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