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Homework 9
Problem Due: 2,

Due Date: 25th, October 2018.

1. (2-dimension Linear Least Squares )Suppose we believe that a variable z is dependent on
two variables x, y via a linear relationship z = ax + by + c, and we are given n data points :���

xi

yi

�
, zi

�
: 1 ≤ i ≤ n

�
. How would you proceed to find a, b, c so as to minimize:

n�

i=1

(zi − axi − byi − c)
2
?

2. Let X =
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1
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��
equipped with Binary addition structure. Consider the

XOR (exclusive OR function ) on X, i.e
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The above is the true relationship but you are not told that. You are given the following data set
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(a) Assume z is a linear function of elements in X. Find best least square linear function.

(b) Let

W =

�
1 1
1 1

�
, w =

�
1
−2

�
, c =

�
0
−1

�
, b = 0

and

h
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= wT

�
max{
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y

�
+ c}

�
+ b

i. Evaluate h

��
x
y

��
for

�
x
y

�
∈ X

ii. Evaluate
�4

i=1

�
zi − h

��
xi

yi

���2

(c) In the previous question : can you device a procedure by which you can find W , w, c, b ?

3. Let f(x, y) = x2

2 + 2y2

(a) Can you guess a minima for f ?

(b) Draw the level curves of f at levels 1, 10, 100.

(c) Let z(0) = (4, 1). Find a suitable tk for k ≥ 1. Calculate z(k) using Gradient Descent algorithm.

(d) Does z(k) converge and if so where ?

1Office hours: I will be in my office from 8:15-9am on Tue,Wed, Thu and from 2-3pm on Wed to answer any
questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may
have.
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Random Connections

1. (Exponential function: ex) Consider the function E : R → R given by E(x) = 1 +
�∞

n=1
xn

n! .

(a) Show that E is well-defined and E(x+ y) = E(x)E(y), for all x, y ∈ R.
(b) Show that E is a continuous and monotonically increasing (strictly) function on R.
(c) Let e = E(1). Show that E(x) = ex for all x ∈ R.
(d) Show that limx→∞ xne−x = 0 for all n ∈ N.

2. (Logarithm function:- ln(x)) Let E be the function as defined in the previous question. Let L :
(0,∞) → R such that

L(E(y)) = y, ∀y ∈ R

(a) Show that L is well-defined and L(uv) = L(u) + L(v), for all u, v ∈ (0,∞). (L(x) is denoted
by ln(x) for all x > 0)

(b) Show that L is a continuous monotonically increasing (strictly) function.

(c) Show that for any α ∈ R, x ∈ [0,∞), xα = E(α(ln(x))) = eα ln(x).

3. (Exercise towards Verifying Convergence in Gradient Descent) Let {an}n≥1 be a sequence of num-
bers such 0 ≤ an < 1.

(a) Using induction, show that
�n

i=1(1− ai) ≥ 1−�n
k=1 ak.

(b) Show that 1− a ≤ e−a for any a ∈ [0, 1).

(c) For any n ≥ 1, let bn =
�n

i=1(1− ai).

i. Show that bn converges to 0 if
�∞

k=1 ak = ∞.

ii. Show that bn converges to b ∈ (0, 1) if
�∞

k=1 ak < ∞.

4. Let {an}n≥1 be a bounded sequence. Then show that it has a subsequence convergent in R.

5. (Finding Roots of a number) Let a > 0 and choose s1 >
√
a. Define

sn+1 :=
1

2
(sn +

a

sn
)

for n ∈ N.

(a) Show that sn is monotonically decreasing and limn→ sn =
√
a.

(b) If zn = sn −√
a then show that zn+1 <

z2
n

2
√
a
.

(c) Let f(x) = x2 − a. Show that sn = sn−1 − f(sn−1)
f �(sn−1)

.

(d) Draw graph of f with a = 4 and plot the sequence sn for a few steps when s0 = 5.

6. Prove that if G is an abelian group of order pq, where p and q are distinct primes, then G is cyclic.

7. Classify all groups of order 325 and 26.

2Office hours: I will be in my office from 8:15-9am on Tue,Wed, Thu and from 2-3pm on Wed to answer any
questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may
have.


