Homework 9

Problem Due: 2,

- Due Date: 25th, October 2018.
- 1. (2-dimension Linear Least Squares)Suppose we believe that a variable z is dependent on two variables x, y via a linear relationship z = ax + by + c, and we are given n data points : $\left\{ \left(\begin{bmatrix} x_i \\ y_i \end{bmatrix}, z_i \right) : 1 \le i \le n \right\}$. How would you proceed to find a, b, c so as to minimize:

$$\sum_{i=1}^{n} (z_i - ax_i - by_i - c)^2?$$

2. Let $\mathbb{X} = \left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ equipped with Binary addition structure. Consider the XOR (exclusive OR function) on \mathbb{X} , i.e

$$\operatorname{XOR}\left(\left[\begin{array}{c}0\\0\end{array}\right]\right) = 0, \quad \operatorname{XOR}\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = 1, \quad \operatorname{XOR}\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = 1, \quad \operatorname{XOR} = \left(\left[\begin{array}{c}1\\1\end{array}\right]\right) = 0.$$

The above is the true relationship but you are not told that. You are given the following data set of $\begin{pmatrix} x \\ y \end{pmatrix}$, z,

$$\left\{ \left(\left[\begin{array}{c} 0\\0 \end{array} \right], 0 \right), \left(\left[\begin{array}{c} 0\\1 \end{array} \right], 1 \right), \left(\left[\begin{array}{c} 1\\0 \end{array} \right], 1 \right), \left(\left[\begin{array}{c} 1\\1 \end{array} \right], 0 \right) \right\} \right\}$$

(a) Assume z is a linear function of elements in X. Find best least square linear function.(b) Let

$$W = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, c = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, b = 0$$

+b

and

$$h\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = w^T \left(\max\left\{\left[\begin{array}{c}0\\0\end{array}\right], W^T \left[\begin{array}{c}x\\y\end{array}\right] + c\right\}\right)$$

i. Evaluate $h\left(\left[\begin{array}{c}x\\y\end{array}\right]\right)$ for $\left[\begin{array}{c}x\\y\end{array}\right] \in \mathbb{X}$
ii. Evaluate $\sum_{i=1}^4 \left(z_i - h\left(\left[\begin{array}{c}x_i\\y_i\end{array}\right]\right)\right)^2$

(c) In the previous question : can you device a procedure by which you can find W, w, c, b?

- 3. Let $f(x, y) = \frac{x^2}{2} + 2y^2$
 - (a) Can you guess a minima for f ?
 - (b) Draw the level curves of f at levels 1, 10, 100.
 - (c) Let $z^{(0)} = (4, 1)$. Find a suitable t_k for $k \ge 1$. Calculate $z^{(k)}$ using Gradient Descent algorithm.
 - (d) Does $z^{(k)}$ converge and if so where ?

¹Office hours: I will be in my office from 8:15-9am on Tue,Wed, Thu and from 2-3pm on Wed to answer any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.

Random Connections

- 1. (Exponential function: e^x) Consider the function $E: \mathbb{R} \to \mathbb{R}$ given by $E(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$.
 - (a) Show that E is well-defined and E(x+y) = E(x)E(y), for all $x, y \in \mathbb{R}$.
 - (b) Show that E is a continuous and monotonically increasing (strictly) function on \mathbb{R} .
 - (c) Let e = E(1). Show that $E(x) = e^x$ for all $x \in \mathbb{R}$.
 - (d) Show that $\lim_{x\to\infty} x^n e^{-x} = 0$ for all $n \in \mathbb{N}$.
- 2. (Logarithm function: $\ln(x)$) Let E be the function as defined in the previous question. Let L: $(0,\infty) \to \mathbb{R}$ such that

$$L(E(y)) = y, \forall y \in \mathbb{R}$$

- (a) Show that L is well-defined and L(uv) = L(u) + L(v), for all $u, v \in (0, \infty)$. (L(x)) is denoted by $\ln(x)$ for all x > 0)
- (b) Show that L is a continuous monotonically increasing (strictly) function.
- (c) Show that for any $\alpha \in \mathbb{R}$, $x \in [0, \infty)$, $x^{\alpha} = E(\alpha(\ln(x))) = e^{\alpha \ln(x)}$.
- 3. (Exercise towards Verifying Convergence in Gradient Descent) Let $\{a_n\}_{n>1}$ be a sequence of numbers such $0 \le a_n < 1$.
 - (a) Using induction, show that $\prod_{i=1}^{n} (1-a_i) \ge 1 \sum_{k=1}^{n} a_k$.
 - (b) Show that $1 a \leq e^{-a}$ for any $a \in [0, 1)$.
 - (c) For any $n \ge 1$, let $b_n = \prod_{i=1}^n (1 a_i)$.

 - i. Show that b_n converges to 0 if $\sum_{k=1}^{\infty} a_k = \infty$. ii. Show that b_n converges to $b \in (0, 1)$ if $\sum_{k=1}^{\infty} a_k < \infty$.
- 4. Let $\{a_n\}_{n\geq 1}$ be a bounded sequence. Then show that it has a subsequence convergent in \mathbb{R} .
- 5. (Finding Roots of a number) Let a > 0 and choose $s_1 > \sqrt{a}$. Define

$$s_{n+1} := \frac{1}{2}(s_n + \frac{a}{s_n})$$

for $n \in \mathbb{N}$.

- (a) Show that s_n is monotonically decreasing and $\lim_{n\to\infty} s_n = \sqrt{a}$.
- (b) If $z_n = s_n \sqrt{a}$ then show that $z_{n+1} < \frac{z_n^2}{2\sqrt{a}}$.
- (c) Let $f(x) = x^2 a$. Show that $s_n = s_{n-1} \frac{f(s_{n-1})}{f'(s_{n-1})}$.
- (d) Draw graph of f with a = 4 and plot the sequence s_n for a few steps when $s_0 = 5$.
- 6. Prove that if G is an *abelian* group of order pq, where p and q are distinct primes, then G is cyclic.
- 7. Classify all groups of order 325 and 26.

²Office hours: I will be in my office from 8:15-9am on Tue, Wed, Thu and from 2-3pm on Wed to answer any questions that you may have. Please feel free to drop by during these times to clarify any doubts that you may have.