Daubechies Wavelet/Scaling Filters

Daubechies $\{h_l\}$'s defined via squared gain functions:

$$egin{split} \mathcal{H}^{(D)}(f) &\equiv 2 \sin^{\mathrm{L}}(\pi f) \sum_{l=0}^{rac{L}{2}-1} inom{rac{L}{2}-1+l}{l} \cos^{2l}(\pi f) \ \mathcal{G}^{(D)}(f) &= 2 \cos^{\mathrm{L}}(\pi f) \sum_{l=0}^{rac{L}{2}-1} inom{rac{L}{2}-1+l}{l} \sin^{2l}(\pi f) \end{split}$$

can obtain $\{h_l\}$ or, equivalently, $\{g_l\}$ via spectral factorization (Daubechies, 1992)

Daubechies Wavelet/Scaling Filters

• Transfer function for different $\{g_l\}$ given by

$$G(f)=\sqrt{\mathcal{G}^{(D)}(f)}e^{i heta^{(G)}(f)}$$

- $\mathcal{G}^{(D)}(\cdot)$ fixed for a given L
- phase function $\theta^{(G)}(\cdot)$ yields particular $\{g_l\}$'s
- spectral factorization chooses different $\theta^{(G)}(\cdot)$'s

• One of two factorizations in Daubechies (1992)

• Note: extremal phase same as minimum phase

• Denote these filters by $\{g_l^{(ep)}\}$.

Extremal Phase
$$\{g_l^{(ep)}\}$$

• If
$$\{g_l\}$$
 & $\{g_l^{(ep)}\}$ have same $\mathcal{G}^{(D)}(\cdot)$,

$$\sum_{l=0}^{m} g_l^2 \le \sum_{l=0}^{m} \left[g_l^{(ep)}\right]^2 \quad \text{for } m = 0, \dots, L-1$$

- left-hand side defines partial energy sequence
- partial energy builds up fastest for $\{g_l^{(ep)}\}$ ('front loaded')
- Lth order filter called D(L) scaling filter

Zero Phase Filters

- consider filter $\{u_l\} \longleftrightarrow U(\cdot)$ and let $\{u_l^\circ\} \longleftrightarrow U_{(\cdot)}^\circ$ be $\{u_l\}$ periodized to length N,
- let $\{X_t\}$ be time series of length N with DFT $\{\mathcal{X}_k\}$
- let $\{Y_t\}$ be $\{X_t\}$ circularly filtered with $\{u_l^\circ\}$: $Y_t \equiv \sum_{l=0}^{N-1} u_l^\circ X_{t-l \bmod N}, \quad t = 0, \dots, N-1$

Zero Phase Filters

- write $U(f) = |U(f)|e^{i\theta(f)}$ & suppose $\theta(f) = 0;$ i.e., $\{u_l\}$ has zero phase
- since U(f)=|U(f)|, have $U_k^\circ=|U_k^\circ|$, so $Y_t=rac{1}{N}\sum_{k=0}^{N-1}|U_k^\circ|\mathcal{X}_k e^{i2\pi kt/N}$
- thus $|U_k^{\circ}| \mathcal{X}_k$ has same phase as \mathcal{X}_k , but amplitude can be different

• practical implications

- sinuoidal components of $\{Y_t\}$ align with similar components in $\{X_t\}$
- 'events' in $\{Y_t\}$ are aligned with events in $\{X_t\}$

Zero Phase Filters

Example with zero phase:

$$u_{1,l} = \left\{egin{array}{ll} 1/2, \ l = 0; \ 1/4, \ l = +1, -1; \ igodots \cos^2(\pi f), \ 0, \ otherwise; \end{array}
ight.$$

Example without zero phase:

$$u_{2,l} = \left\{egin{array}{ccc} 1/2, \ l=0,1; \ 0, \ otherwise; \end{array}
ight. igodots e^{-i\pi f}\cos(\pi f),$$

Linear Phase Filters: I

Consider circularly shifting $\{Y_t\}$ by ν units:

$$Y_t^{(
u)}\equiv Y_{t+
u ext{ mod }N}, \quad t=0,\ldots,N-1$$

Example $u = 2 \ \& \ N = 11$ yields

$$Y_8^{(2)} = Y_{8+2 \bmod 11} = Y_{10}$$

 $\{Y_t^{(\nu)}\}$ advanced version of $\{Y_t\}$ if $\nu > 0$ $\{Y_t^{(\nu)}\}$ delayed version of $\{Y_t\}$ if $\nu < 0$

Zero Phase Filters

Note:

$$egin{aligned} Y_t^{(
u)} &= Y_{t+
u ext{ mod } N} &= \sum_{l=0}^{N-1} u_l^\circ X_{t+
u-l ext{ mod } N} \ &= \sum_{l=-
u}^{N-1-
u} u_{l+
u ext{ mod } N}^\circ X_{t-l ext{ mod } N} \ &= \sum_{l=0}^{N-1} u_{l+
u ext{ mod } N}^\circ X_{t-l ext{ mod } N} \end{aligned}$$

thus can advance filter output by advancing filter

Linear Phase Filters

$$ullet \, U^{(
u)}(f) = e^{i2\pi f
u} U(f)$$

- If $\{u_l\}$ has zero phase, i.e. U(f) = |U(f)|, implies $\{u_l^{(\nu)}\}$ has $\theta^{(\nu)}(f) = 2\pi f \nu$, $\{u_l^{(\nu)}\}$ said to have linear phase
- Conclusion: can convert linear phase filter to zero phase filter by appropriate advancing (assumes ν is an integer)

Linear Phase Filters

• Example:

$$u_{3,l} = egin{cases} 1/2, \ l = 1; \ 1/4, \ l = 0, l = 2; \ igodots \cos^2(\pi f) e^{-i2\pi f} \ 0, \ otherwise; \ - heta_3(f) = -2\pi f, ext{ i.e., linear phase with} \end{cases}$$

$$\nu = -1$$

- advancing $\{u_{3,l}\}$ by 1 unit yields zero phase filter

Daubechies Least Asymmetric Filter

Definition of LA(L) scaling filter: factorization of $\mathcal{G}^{(D)}(\cdot)$ with $\theta^{(G)}(\cdot)$ such that

$$\max_{-1/2\leq f\leq 1/2;\; ilde{
u}=0,\pm 1,...}\left| heta^{(G)}(f)-2\pi f ilde{
u}
ight|$$

is as small as possible

- let $\{g_l^{(la)}\}$ denote resulting LA(L) scaling filter
- let u be the $\tilde{
 u}$ that minimizes the above; i.e., $\theta^{(G)}(f) \approx 2\pi f
 u$

Daubechies Least Asymmetric Filter

Let $\{h_{l}^{(la)}\}$ denote corresponding wavelet filter $H(f) = e^{-i2\pi f(L-1) + i\pi}G(\frac{1}{2} - f)$, so $heta^{(H)}(f) \;=\; -2\pi f(L-1) + \pi + heta^{(G)}(rac{1}{2} - f)$ $pprox -2\pi f(L-1) + \pi + \pi
u - 2\pi f
u$ $= -2\pi f(L-1+
u) + \pi(
u+1)$ $= -2\pi f(L-1+\nu)$

if ν is odd. Thus ν odd $\Longrightarrow \{h_l^{(la)}\}$ approximately linear phase **Daubechies Least Asymmetric Filter**

For tabulated LA coefficients, have

$$u = \begin{cases}
-\frac{L}{2} + 1, & \text{if } L = 8, 12, 16, 20 \text{(i.e., } \frac{L}{2} \text{ is even} \text{)}; \\
-\frac{L}{2}, & \text{if } L = 10 \text{ or } 18; \\
-\frac{L}{2} + 2, & \text{if } L = 14,
\end{cases}$$

So ν is indeed odd for all 7 LA scaling filters

Conclusion: LA wavelet filters also \approx linear phase Appropriate shift to get zero phase is $-(L-1+\nu)$ **Shifts for Higher Level Filters**

$$egin{aligned} \{g_{j,l}\} & \longleftrightarrow & G_j(f) = \prod_{l=0}^{j-1} G(2^l f) \ \ \{h_{j,l}\} & \longleftrightarrow & H_j(f) = H(2^{j-1}f)G_{j-1}(f) \end{aligned}$$

phase functions for $\{g_{j,l}\}$ & $\{h_{j,l}\}$ given by

$$heta_{j}^{(G)}(f) = \sum_{l=0}^{j-1} heta^{(G)}(2^{l}f) \ \&$$

$$\theta_{j}^{(H)}(f) = \theta^{(H)}(2^{j-1}f) + \sum_{l=0}^{j-2} \theta^{(G)}(2^{l}f),$$

Shifts for Higher Level Filters

So
$$\{g_{j,l}\}$$
 & $\{h_{j,l}\}$ are \approx linear phase also
 $\theta_j^{(G)}(f) \approx 2\pi f \nu_j^{(G)}$ with $\nu_j^{(G)} \equiv (2^j - 1)\nu$
 $\theta_j^{(H)}(f) \approx 2\pi f \nu_j^{(H)}$ with $\nu_j^{(H)} \equiv -(2^{j-1}[L-1] + 1)$

Can achieve approximate zero phase by advancing filters $|\nu_j^{(G)}|$ or $|\nu_j^{(H)}|$ units

Summary of Daubechies Filters

• Daubechies class of scaling filters $\{g_l\}$ satisfy

$$\mathcal{G}^{(D)}(f) = 2\cos^L(\pi f)\sum_{l=0}^{rac{L}{2}-1}inom{rac{L}{2}-1+l}{l}\sin^{2l}(\pi f)$$

where $\mathcal{G}^{(D)}(\cdot)$ is the squared gain function for $\{g_l\}$

for given width L, several filters with same
 \$\mathcal{G}^{(D)}(\cdot)\$ (these differ only in their phase
 functions)

Extremal (or minimum) phase Filters

- yields D(L) scaling filters, denoted as $\{g_l^{(ep)}\}$
- maximizes increase of partial energy sequence

Least asymmetric Filters

- yields LA(L) scaling filters, denoted as $\{g_l^{(la)}\}$
- approximately zero phase with shift u
- $\{h_l^{(la)}\}$'s \approx zero phase (shift is $-(L-1+\nu))$

- second class of filters yielding DWT describable as generalized differences of weighted averages (due to Daubechies, but suggested by R. Coifman)
- defined for widths L = 6, 12, 18, 24 and 30
- involve L/3 embedded differencing operations (as opposed to L/2 for Daubechies filters)

Coiflet Filters

• can express squared gain function as

where $F(\cdot)$ chosen so that $\mathcal{H}^{(c)}(f) + \mathcal{H}^{(c)}(f + \frac{1}{2}) = 2$ $(F(\cdot)$ cannot be expressed in closed form)

Example using ECG Data: I

- N = 2048 samples collected at rate of 180 samples/second; i.e., $\Delta t = \frac{1}{180}$ second
- 11.38 seconds of data in all
- set $t_0 = 0.31$ seconds for plotting purposes

Example using ECG Data: II

To quantify how well DWTs summarize X, form normalized partial energy sequence (NPES): Given $\{U_t : t = 0, ..., N - 1\}$, square and order such that

$$U_{(0)}^2 \geq U_{(1)}^2 \geq \cdots \geq U_{(N-2)}^2 \geq U_{(N-1)}^2$$

NPES defined as

$$C_n \equiv rac{\sum_{u=0}^n U_{(u)}^2}{\sum_{u=0}^{N-1} U_{(u)}^2}, \quad n=0,1,\ldots,N-1$$

Choice of Wavelet Filter

- ANOVA : can use Haar or D(4) or pick *L* via a simple procedure
- MRA: pick $\{h_l\}$ like 'characteristic features'
 - Haar and D(4) usually a poor match;
 - LA filters typically better in practice
 - can use NPESs to quantify match between $\{h_l\}$ and characteristics of $\{X_t\}$
- use LA filters if alignment of $W_{j,t}$ important

Other Practical Considerations

- handling $N
 eq 2^J$
 - partial DWT just requires $N=M2^{J_0}$
 - can pad with $ar{X}$ etc.
 - can truncate down to multiple of 2^{J_0}
 - * truncate at beginning of series & do analysis
 - * truncate at end of series & do analysis
 - * combine two analyses together

Other Practical Considerations

- can use specialized pyramid algorithm (at most one special term at each stage)
- choice of level J_0 of partial DWT
 - application dependent (recall ECG example)
 - default: pick J_0 such that circularity influences
 - < 50% of W_{J_0} or \mathcal{D}_{J_0}
 - note interplay with $N
 eq 2^J$