
Daubechies Wavelet/Scaling Filters

Daubechies{hl}’s defined via squared gain

functions:

H(D)(f) ≡ 2 sinL(πf)
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G(D)(f) = 2 cosL(πf)
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can obtain{hl} or, equivalently,{gl}
via spectral factorization (Daubechies, 1992)
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Daubechies Wavelet/Scaling Filters

• Transfer function for different{gl} given by

G(f) =
√

G(D)(f)eiθ(G)(f)

– G(D)(·) fixed for a givenL

– phase functionθ(G)(·) yields particular

{gl}’s

– spectral factorization chooses different

θ(G)(·)’s
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Extremal Phase{gl}

• One of two factorizations in Daubechies (1992)

• Note: extremal phase same as minimum phase

• Denote these filters by{g(ep)
l }.

3



Extremal Phase{g(ep)
l }

• If {gl} & {g(ep)
l } have sameG(D)(·),

m
∑

l=0

g2
l ≤

m
∑

l=0

[

g
(ep)
l

]2

for m = 0, . . . ,L− 1

• left-hand side defines partial energy sequence

• partial energy builds up fastest for{g(ep)
l }

(‘front loaded’)

• Lth order filter called D(L) scaling filter
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Zero Phase Filters

• consider filter{ul} ←→ U(·) and let

{u◦l } ←→ U◦(·) be{ul} periodized to length

N ,

• let {Xt} be time series of lengthN with DFT

{Xk}

• let {Yt} be{Xt} circularly filtered with{u◦l }:

Yt ≡

N−1
∑

l=0

u◦l Xt−l mod N , t = 0, . . . , N−1
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Zero Phase Filters

• write U(f) = |U(f)|eiθ(f) & suppose

θ(f) = 0;

i.e.,{ul} has zero phase

• sinceU(f) = |U(f)|, haveU◦k = |U◦k |, so

Yt =
1

N

N−1
∑

k=0

|U◦k |Xke
i2πkt/N

• thus|U◦k |Xk has same phase asXk, but

amplitude can be different
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Zero Phase Filters

• practical implications

– sinuoidal components of{Yt} align with

similar components in{Xt}

– ‘events’ in{Yt} are aligned with events in

{Xt}
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Zero Phase Filters

Example with zero phase:

u1,l =



















1/2, l = 0;

1/4, l = +1,−1;

0, otherwise;

←→ cos2(πf),

Example without zero phase:

u2,l =







1/2, l = 0, 1;

0, otherwise;
←→ e−iπf cos(πf),
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Linear Phase Filters: I

Consider circularly shifting{Yt} by ν units:

Y
(ν)

t ≡ Yt+ν mod N , t = 0, . . . , N − 1

Exampleν = 2 & N = 11 yields

Y
(2)
8 = Y8+2 mod 11 = Y10

{Y
(ν)

t } advanced version of{Yt} if ν > 0

{Y
(ν)

t } delayed version of{Yt} if ν < 0
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Zero Phase Filters

Note:

Y
(ν)

t = Yt+ν mod N =

N−1
∑

l=0

u◦l Xt+ν−l mod N

=

N−1−ν
∑

l=−ν

u◦l+νXt−l mod N

=

N−1
∑

l=0

u◦l+ν mod NXt−l mod N

thus can advance filter output by advancing filter
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Linear Phase Filters

• U (ν)(f) = ei2πfνU(f)

• If {ul} has zero phase, i.e.U(f) = |U(f)|,

implies{u(ν)
l } hasθ(ν)(f) = 2πfν,

{u
(ν)
l } said to have linear phase

• Conclusion: can convert linear phase filter to

zero phase filter by appropriate advancing

(assumesν is an integer)
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Linear Phase Filters

• Example:

u3,l =



















1/2, l = 1;

1/4, l = 0, l = 2;

0, otherwise;

←→ cos2(πf)e−i2πf

– θ3(f) = −2πf , i.e., linear phase with

ν = −1

– advancing{u3,l} by 1 unit yields zero phase

filter
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Daubechies Least Asymmetric Filter

Definition of LA(L) scaling filter: factorization of

G(D)(·) with θ(G)(·) such that

max
−1/2≤f≤1/2; ν̃=0,±1,...

∣

∣

∣θ(G)(f)− 2πfν̃
∣

∣

∣

is as small as possible

• let {g(la)
l } denote resulting LA(L) scaling filter

• let ν be theν̃ that minimizes the above; i.e.,

θ(G)(f) ≈ 2πfν
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Daubechies Least Asymmetric Filter

Let {h(la)
l } denote corresponding wavelet filter

H(f) = e−i2πf(L−1)+iπG(1
2
− f), so

θ(H)(f) = −2πf(L− 1) + π + θ(G)(1
2
− f)

≈ −2πf(L− 1) + π + πν − 2πfν

= −2πf(L− 1 + ν) + π(ν + 1)

= −2πf(L− 1 + ν)

if ν is odd. Thusν odd=⇒{h
(la)
l }

approximately linear phase
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Daubechies Least Asymmetric Filter

For tabulated LA coefficients, have

ν =



















−L
2

+ 1, ifL = 8, 12, 16, 20(i.e., L
2

is even);

−L
2
, ifL = 10or18;

−L
2

+ 2, ifL = 14,

Soν is indeed odd for all 7 LA scaling filters

Conclusion: LA wavelet filters also≈ linear phase
Appropriate shift to get zero phase is
−(L− 1 + ν)
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Shifts for Higher Level Filters

{gj,l} ←→ Gj(f) =

j−1
∏

l=0

G(2lf)

{hj,l} ←→ Hj(f) = H(2j−1f)Gj−1(f)

phase functions for{gj,l} & {hj,l} given by

θ
(G)
j (f) =

j−1
∑

l=0

θ(G)(2lf) &

θ
(H)
j (f) = θ(H)(2j−1f) +

j−2
∑

l=0

θ(G)(2lf),
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Shifts for Higher Level Filters

So{gj,l} & {hj,l} are≈ linear phase also

θ
(G)
j (f) ≈ 2πfν

(G)
j with ν

(G)
j ≡ (2j − 1)ν

θ
(H)
j (f) ≈ 2πfν

(H)
j with ν

(H)
j ≡ −(2j−1[L− 1] + ν

Can achieve approximate zero phase by advancing
filters |ν(G)

j | or |ν(H)
j | units
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Summary of Daubechies Filters

• Daubechies class of scaling filters{gl} satisfy

G(D)(f) = 2 cosL(πf)

L

2
−1

∑

l=0

(L
2
− 1 + l

l

)

sin2l(πf)

whereG(D)(·) is the squared gain function for

{gl}

• for given widthL, several filters with same

G(D)(·) (these differ only in their phase
functions)
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Extremal (or minimum) phase Filters

• yields D(L) scaling filters, denoted as{g(ep)
l }

• maximizes increase of partial energy sequence

Least asymmetric Filters

• yields LA(L) scaling filters, denoted as{g(la)
l }

• approximately zero phase with shiftν

• {h
(la)
l }’s≈ zero phase (shift is

−(L− 1 + ν))
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Coiflet Filters C(L)

• second class of filters yielding DWT describable

as generalized differences of weighted averages

(due to Daubechies, but suggested by

R. Coifman)

• defined for widthsL = 6, 12, 18, 24 and 30

• involveL/3 embedded differencing operations

(as opposed toL/2 for Daubechies filters)
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Coiflet Filters

• can express squared gain function as

H(c)(f) = D
L

3 (f)




L

6
−1

∑

l=0

(L
6
− 1 + l

l

)

cos2l(πf) + cos
L

3 (πf)F (f)





2

whereF (·) chosen so that

H(c)(f) +H(c)(f + 1
2
) = 2

(F (·) cannot be expressed in closed form)
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Example using ECG Data: I

• N = 2048 samples collected at rate of

180 samples/second; i.e.,∆t = 1
180

second

• 11.38 seconds of data in all

• sett0 = 0.31 seconds for plotting purposes
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Example using ECG Data: II

To quantify how well DWTs summarizeX, form

normalized partial energy sequence (NPES):

Given{Ut : t = 0, . . . , N − 1}, square and

order such that

U2
(0) ≥ U2

(1) ≥ · · · ≥ U2
(N−2) ≥ U2

(N−1)

NPES defined as

Cn ≡

∑n
u=0 U2

(u)
∑N−1

u=0 U2
(u)

, n = 0, 1, . . . , N − 1
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Choice of Wavelet Filter

• ANOVA : can use Haar or D(4) or pickL via a

simple procedure

• MRA: pick {hl} like ‘characteristic features’

– Haar and D(4) usually a poor match;

LA filters typically better in practice

– can use NPESs to quantify match between

{hl} and characteristics of{Xt}

• use LA filters if alignment ofWj,t important
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Other Practical Considerations

• handlingN 6= 2J

– partial DWT just requiresN = M2J0

– can pad withX̄ etc.

– can truncate down to multiple of2J0

∗ truncate at beginning of series & do analysis

∗ truncate at end of series & do analysis

∗ combine two analyses together
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Other Practical Considerations

• can use specialized pyramid algorithm

(at most one special term at each stage)

• choice of levelJ0 of partial DWT

– application dependent (recall ECG example)

– default: pickJ0 such that circularity

influences

< 50% of WJ0
orDJ0

– note interplay withN 6= 2J
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