Daubechies Wavelet/Scaling Filterj

Daubechieq h; }'s defined via squared gain
functions:

I

HP)(f) = 2 sin® (nf) Z (‘ o l) cos?!( f)

can obtair{ h,; } or, equivalently{g; }
via spectral factorization (Daubechies, 1992)
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Daubechies Wavelet/Scaling Filterf

e Transfer function for differen{g; } given by

G(f) = /o) (£
— GP)(.) fixed for a givenL

— phase functio®()(.) yields particular

{gi}’s

— spectral factorization chooses different
Q(G) (-)’S




Extremal Phase{gl}l

e One of two factorizations in Daubechies (1992)
e Note: extremal phase same as minimum phase

e Denote these filters b\ }.



Extremal Phase{gl(ep )}

o If {gi} & {g\™”} have samg D) (.),

m m 2
>ooi <3 |a| form=0...L—1
[=0 [=0

e |left-hand side defines partial energy sequence

e partial energy builds up fastest f@gl(ep )}
(‘front loaded’)

e Lth order filter called DL) scaling filter
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Zero Phase Filterg

e consider filte{w;} «—— U(-) and let
{up} — U, be{w} periodized to length
N,

o let { X;} be time series of lengtlV with DFT
{ X%}
o let{Y;} be {X;} circularly filtered with{w; }:
N—-1

Y= ) Xt imoan, t=0,...,N—1
[=0



Zero Phase FiItersI

o Writt U (f) = |U(f)|e®f) & suppose
o(f) = 0;
i.e.,{u;} has zero phase
o sinceU(f) = |U(f)|, haveU; = |U;|, so
1 N-—-1 |
Y, — ~ Z |U2|Xkez2wkt/N
k=0
o thus|U; | X}, has same phase a$;, but
amplitude can be different
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Zero Phase Filterg

e practical implications

— sinuoidal components dfY; } align with
similar components i4 X; }

— ‘events’ in{Y;} are aligned with events in

{ Xt}



Zero Phase Filterg

Example with zero phase:

1/2, 1 = 0;
wig={ 1/4, 1= 41,-1; > cos’(nf),
0, otherw:ise;

Example without zero phase:

1/2, | =0.,1; .
Uy = /2 7 s e s cos(mf),

0, otherwzise;



Linear Phase Filters: II

Consider circularly shiftind Y; } by v units:
Y, = Yiivmoan, t=0,...,N —1

Exampler = 2 & N = 11 yields
Ye? = Y2 mod 11 = Yio
{Y;(”)} advanced version o Y; } if v > 0

{Y;(”)} delayed version of{Y;} if v < O
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Zero Phase Filterg

Note:

(v)
lft — lft—l—u mod NN U?Xt-l-l/—l mod N

N—-1—v
O
= E U; , Xt—1 mod N
l=—v
N-1
. 0
= D Uy mod NXt—Imod N

thus can advance filter output by advancing filter
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Linear Phase FiItersI

¢ UM(f) = 1T ()

o If {u,;} has zero phase, i.&/(f) = |U(f)|,
implies {u"'} has6® (f) = 2x fv,
{u!"'} said to have linear phase

e Conclusion: can convert linear phase filter to
zero phase filter by appropriate advancing
(assumew IS an integer)
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Linear Phase FiItersI

e Example:
1/2, 1 =1;
uzg =4 1/4, 1 =0,1 =2; «— COS2(ﬂ.Jc)e—i27rf
0, otherwsise;

—03(f) = —2«f, i.e., linear phase with
v =—1

— advancing{us;} by 1 unit yields zero phase
filter
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Daubechies Least Asymmetric FiIterI

Definition of LA(L) scaling filter: factorization of
G(D)(-) with 8@ () such that

0 (f) — 2rfir
ey |0O(f) — 2w o

IS as small as

nossible

o let {gl(la)} C

enote resulting LAL) scaling filter

e let v be ther that minimizes the above: I.e.,
0C)(f) =~ 2nfv
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Daubechies Least Asymmetric FiIte:I

_et {hl(l“)} denote corresponding wavelet filter

H(f) — e—’iZﬂ'f(L—].)—l—iﬂ'G(% . f), SO

0Un(f) =

e

—2nf(L —1)
—2nf(L —1)
—2wf(L — 14
—27wf(L — 14

bt 09— )
+ 7+ v — 2w fr
-v) +7w(v+1)
—I/)

if v is odd. Thuss odd=—> {h{"*}
approximately linear phase
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Daubechies Least Asymmetric FiIte:I

—or tabulated LA coefficients, have

—2 41, ifL = 8,12,16,20(i.e., £ is even);
V=4 —Z, if L = 100r18;

—2 42, ifL = 14,
Sov is indeed odd for all 7 LA scaling filters

Conclusion: LA wavelet filters alse linear phase

Appropriate shift to get zero phase is
—(L —1+v)
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Shifts for Higher Level Filters I

195y —— G;(f) = HG(Zlf)

thjiy —— H;(f) = H(2” G- (f)
phase functions fo{g,;} & {h;:} given by

j—1

6;7(f) = > 6D (2'f) &

=0

j—2
05" (f) = 0 (21 1) + D 0D (2 ),
=0
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Shifts for Higher Level Filters I

So{g;:} & {h;,;} arex linear phase also
9§-G)(f) ~ 27TfV](~G) with I/(~G) = (27 —1)v
0\ (f) ~ 2nfui™ with 1/( ) = —(29YL — 1] +

Can achieve approximate zero phase by advancing
filters |1/J(.G)| or |1/J(.H)| units
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Summary of Daubechies Filterj

e Daubechies class of scaling filtefg; } satisfy

GP)(f) = 2cost(mf) 3 (27 [T ) sinf(m)

whereG(P)(.) is the squared gain function for
{g:}

e for given width L, several filters with same
GP)(.) (these differ only in their phase
functions)
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Extremal (or minimum) phase FiItersI

e yields D(L) scaling filters, denoted E{eyl(ep)}

e maximizes increase of partial energy sequence

Least asymmetric FiItersI

e yields LA(L) scaling filters, denoted a{sgl(l“)}

e approximately zero phase with shuft

o {h!"}'s = zero phase (shift is
—(L — 1 +v))
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Coiflet Filters C’(L)I

e second class of filters yielding DWT describable
as generalized differences of weighted averages
(due to Daubechies, but suggested by
R. Coifman)

e defined for widthsL, = 6,12, 18, 24 and 30

e involve L /3 embedded differencing operations
(as opposed td. /2 for Daubechies filters)
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Colflet Filters I

e can express sqguared gain function as

HO(f) = D3 (f)

L

(62 (57 Y eostinn) + cos'éw)F(.f)) |

[=0

where F'(-) chosen so that
HE) +HEO(f +3) =2
(F'(-) cannot be expressed in closed form)
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Example using ECG Data: II

e N = 2048 samples collected at rate of

180 samples/second; I.&At = ﬁ second
e 11.38 seconds of data in all

e setty = 0.31 seconds for plotting purposes
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Example using ECG Data: III

To quantify how well DWTs summarizK, form
normalized partial energy sequence (NPES):
Given{U,; :t =0,..., N — 1}, square and
order such that

U2 >U?2 > ...>U? > U?

(0) = ~(1) = = Y (N-=-2) = ¥ (N-1)
NPES defined as
n_ U2
C, = 2eu=0 Uluy n=0,1,...,N —1

N-—1 )
Zu:O U(Zu)

23



24



Choice of Wavelet FiIterI

e ANOVA : can use Haar or D(4) or pick via a
simple procedure
e MRA: pick {h,} like ‘characteristic features’

— Haar and D(4) usually a poor match,;
LA filters typically better in practice

— can use NPESs to quantify match between
{h;} and characteristics dfX;}

e use LA filters if alignment oW, , important
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Other Practical Considerations'

e handlingN # 2/
— partial DWT just requiresN = M 270
— can pad withX etc.

— can truncate down to multiple @/

x truncate at beginning of series & do analysis
x truncate at end of series & do analysis
x combine two analyses together
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Other Practical Considerations'

e can use specialized pyramid algorithm
(at most one special term at each stage)
e choice of levelJ, of partial DWT
— application dependent (recall ECG example)

— default: pickJy such that circularity
Influences
< 50% OfWJO OrDJO

— note interplay withiv # 27
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