DWT - Pyramid Algorithm

- can describe pyramid algorithm using either
- linear filtering operations
- matrix manipulations
- two approaches complementary, so will do both
- filtering approach begins with notion of wavelet filter

The Wavelet Filter

Let $\left\{h_{l}: l=0, \ldots, L-1\right\}$ be a real-valued filter 3 properties: (Assume $h_{l}=0$ for $l<0 \& l \geq L$)

$$
\begin{gathered}
\sum_{l=0}^{L-1} h_{l}=0 \quad(\text { summation to zero }) \\
\sum_{l=0}^{L-1} h_{l}^{2}=1 \quad(\text { unit energy })
\end{gathered}
$$

The Wavelet Filter

$$
\begin{gathered}
\sum_{l=0}^{L-1} h_{l}=0 \quad(\text { summation to zero }) \\
\sum_{l=0}^{L-1} h_{l}^{2}=1 \quad(\text { unit energy })
\end{gathered}
$$

$$
\sum_{l=0}^{L-1} h_{l} h_{l+2 n}=\sum_{l=-\infty}^{\infty} h_{l} h_{l+2 n}=0(\text { orthogonality to even shifts })
$$

The Wavelet Filter

- Transfer \& squared gain functions for $\left\{h_{l}\right\}$:

$$
H(f) \equiv \sum_{l=0}^{L-1} h_{l} e^{-i 2 \pi f l}
$$

and

$$
\mathcal{H}(f) \equiv|H(f)|^{2}
$$

- Orthonormality property equivalent to

$$
\mathcal{H}(f)+\mathcal{H}\left(f+\frac{1}{2}\right)=2 \quad \text { for all } f
$$

The Rescaled Wavelet Filter

$$
\tilde{h}_{l} \equiv h_{l} / \sqrt{ } 2
$$

satisfies

$$
\sum_{l=0}^{L-1} \tilde{h}_{l}=0, \quad \sum_{l=0}^{L-1} \tilde{h}_{l}^{2}=\frac{1}{2}
$$

and

$$
\sum_{l=-\infty}^{\infty} \tilde{h}_{l} \tilde{h}_{l+2 n}=0
$$

The Rescaled Wavelet Filter

Transfer \& squared gain functions for $\left\{\tilde{h}_{l}\right\}$:

$$
\widetilde{H}(f) \equiv \sum_{l=0}^{L-1} \tilde{h}_{l} e^{-i 2 \pi f l}=\frac{1}{\sqrt{ } 2} H(f)
$$

and

$$
\widetilde{\mathcal{H}}(f) \equiv|\widetilde{H}(f)|^{2}=\frac{1}{2} \mathcal{H}(f)
$$

Frequency domain orthonormality property:

$$
\widetilde{\mathcal{H}}(f)+\widetilde{\mathcal{H}}\left(f+\frac{1}{2}\right)=1 \text { for all } f
$$

Unit Scale Wavelet Coefficients

Filter \mathbf{X} using $\tilde{h}_{l} \equiv h_{l} / \sqrt{ } 2$:

$$
\widetilde{W}_{1, t} \equiv \sum_{l=0}^{L-1} \tilde{h}_{l} X_{t-l \bmod N}, \quad t=0, \ldots, N-1
$$

For $t=0, \ldots, N / 2-1$, define

$$
W_{1, t} \equiv 2^{1 / 2} \widetilde{W}_{1,2 t+1}=\sum_{l=0}^{L-1} h_{l} X_{2 t+1-l \bmod N}
$$

$\left\{W_{1, t}\right\}$ forms first $N / 2$ elements of $\mathbf{W}=\mathcal{W} \mathbf{X}$ (first $N / 2$ elements of \mathbf{W} form subvector \mathbf{W}_{1})

Unit scale matrix: $\mathbf{W}_{1}=\mathcal{W}_{1} \mathbf{X}$

$$
\begin{aligned}
W_{1, t} \equiv 2^{1 / 2} \widetilde{W}_{1,2 t+1} & =\sum_{l=0}^{L-1} h_{l} X_{2 t+1-l \bmod N} \\
& =\sum_{l=0}^{N-1} h_{l}^{\circ} X_{2 t+1-l \bmod N} \\
& =\sum_{l=0}^{N-1} h_{2 t+1-l \bmod N} X_{l}
\end{aligned}
$$

$\left\{h_{l}^{\circ}\right\}$ is $\left\{h_{l}\right\}$ periodized to length N

Unit scale matrix: $\mathbf{W}_{1}=\mathcal{W}_{1} \mathbf{X}$

So we must have

$$
\mathcal{W}_{0 \bullet \bullet}^{T}=\left[h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{2}^{\circ}\right]
$$

form last $\frac{N}{2}-1$ rows of \mathcal{W}_{1} by circular shifting:

$$
\mathcal{W}_{t_{\bullet}}^{T}=\left[\mathcal{T}^{2 t} \mathcal{W}_{0 \bullet}\right]^{T}, \quad t=1, \ldots, \frac{N}{2}-1,
$$

example:

$$
\mathcal{W}_{1 \bullet}^{T}=\left[h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \ldots, h_{4}^{\circ}\right] .
$$

The other half of the matrix... \mathcal{W}

The Scaling Filter

Scaling filter: $g_{l} \equiv(-1)^{l+1} h_{L-1-l}$

- reverse $\left\{h_{l}\right\}$ \& flip sign of every other coefficient
- e.g.: $h_{0}=\frac{1}{\sqrt{ } 2} \& h_{1}=-\frac{1}{\sqrt{ } 2} \Rightarrow g_{0}=g_{1}=\frac{1}{\sqrt{ } 2}$
- $\left\{g_{l}\right\}$ is 'quadrature mirror' filter for $\left\{h_{l}\right\}$
- inverse relationship: $h_{l}=(-1)^{l} g_{L-1-l}$

The Scaling Filter

$$
\begin{gathered}
\sum_{l=0}^{L-1} g_{l}=\sqrt{ } 2(\text { summation to } \sqrt{ } 2) \\
\sum_{l=0}^{L-1} g_{l}^{2}=1 \text { (unit energy) } \\
\sum_{l=0}^{L-1} g_{l} g_{l+2 n}=\sum_{l=-\infty}^{\infty} g_{l} g_{l+2 n}=0 \text { (orthogonality to even shifts) }
\end{gathered}
$$

Scaling Coefficients: Rescaled scaling filters

Define $\tilde{g}_{l} \equiv g_{l} / \sqrt{ } 2$:

$$
\sum_{l=0}^{L-1} \tilde{g}_{l}=1, \quad \sum_{l=0}^{L-1} \tilde{g}_{l}^{2}=\frac{1}{2} \& \sum_{l=-\infty}^{\infty} \tilde{g}_{l} \tilde{g}_{l+2 n}=0
$$

Circularly filter $\left\{X_{t}\right\}$ with $\left\{\tilde{g}_{l}\right\}$ to get

$$
\widetilde{V}_{1, t} \equiv \sum_{l=0}^{L-1} \tilde{g}_{l} X_{t-l \bmod N}, \quad t=0, \ldots, N-1
$$

Scaling Coefficients

Define for $t=0, \ldots, \frac{N}{2}-1$:

$$
\begin{gathered}
V_{1, t} \equiv 2^{1 / 2} \widetilde{V}_{1,2 t+1}=\sum_{l=0}^{L-1} g_{l} X_{2 t+1-l \bmod N} \\
=\sum_{l=0}^{N-1} g_{l}^{\circ} X_{2 t+1-l \bmod N},
\end{gathered}
$$

$\left\{g_{l}^{\circ}\right\}$ is $\left\{g_{l}\right\}$ periodized to N.
$\left\{V_{1, t}\right\}$ forms last $N / 2$ elements of $\mathbf{W}=\mathcal{W} \mathbf{X}$

\mathcal{V}_{1}

- Let \mathcal{V}_{1} be the $\frac{N}{2} \times N$ matrix whose first row is

$$
\left[g_{1}^{\circ}, g_{0}^{\circ}, g_{N-1}^{\circ}, g_{N-2}^{\circ}, \ldots, g_{2}^{\circ}\right] \equiv \mathcal{V}_{0}^{T}
$$

other rows are given by

$$
\left[\mathcal{T}^{2 t} \mathcal{V}_{0 \bullet}\right]^{T}, \quad t=1, \ldots, \frac{N}{2}-1
$$

- have $\mathbf{V}_{1}=\mathcal{V}_{1} \mathbf{X} \& \frac{N}{2}$ rows of \mathcal{V}_{1} are orthonormal.

Orthonormality of $\mathcal{V}_{1} \& \mathcal{W}_{1}$

So

$$
\mathcal{P}_{1} \equiv\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{V}_{1}
\end{array}\right]
$$

is an $N \times N$ orthonormal matrix since

- $\mathcal{P}_{1} \neq \mathcal{W}$ except when $N=2$
- \mathcal{V}_{1} spans same subspace as lower half of \mathcal{W}

End of 1st Stage of Pyramid Algorithm

- synthesis of \mathbf{X} from \mathcal{P}_{1} :

$$
\mathbf{X}=\mathcal{P}_{1}^{T}\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathcal{W}_{1}^{T} & \mathcal{V}_{1}^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{V}_{1}
\end{array}\right]=\mathcal{W}_{1}^{T} \mathbf{W}_{1}+\mathcal{V}_{1}^{T}
$$

- by definition, $\mathcal{D}_{1}=\mathcal{W}_{1}^{T} \mathbf{W}_{1}$
- since $\mathbf{X}=\mathcal{S}_{1}+\mathcal{D}_{1}$, must have $\mathcal{S}_{1}=\mathcal{V}_{1}^{T} \mathbf{V}_{1}$
- also have $\mathcal{R}_{1}=\mathcal{D}_{1}$

Summary of 1st Stage of Pyramid Algorithm

Transforms $\left\{X_{t}: t=0, \ldots, N-1\right\}$ into wavelet \& scaling coefficients

- $\frac{N}{2}$ wavelet coefficients $\left\{W_{1, t}, t=0, \ldots, \frac{N}{2}-1\right\}$:
- \mathbf{W}_{1}, an $\frac{N}{2} \times 1$ vector
- changes on scale $\tau_{1}=1$
- first level detail \mathcal{D}_{1}
- $\mathcal{W}_{1}=\mathcal{B}_{1}$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- with \mathcal{B}_{1} containing periodized $\left\{h_{l}\right\}$

Summary of 1st Stage of Pyramid Algorithm

Transforms $\left\{X_{t}: t=0, \ldots, N-1\right\}$ into wavelet \& scaling coefficients

- $\frac{N}{2}$ scaling coefficients $\left\{V_{1, t}, t=0, \ldots, \frac{N}{2}-1\right\}$:
- V_{1}, an $\frac{N}{2} \times 1$ vector
- averages on scale $\lambda_{1}=2$
- first level smooth \mathcal{S}_{1}
$-\mathcal{V}_{1}=\mathcal{A}_{1}$, an $\frac{N}{2} \times N$ matrix spanning same
subspace as last $\frac{N}{2}$ rows of \mathcal{W}
- with \mathcal{A}_{1} containing periodized $\left\{g_{l}\right\}$

2nd Stage of Pyramid Algorithm: I

- Treat 'scale 2' process $\left\{V_{1, t}: t=0, \ldots, \frac{N}{2}-1\right\}$ like 'scale 1' process $\left\{X_{t}: t=0, \ldots, N-1\right\}$:

$$
W_{2, t} \equiv \sum_{l=0}^{L-1} h_{l} V_{1,2 t+1-l \bmod N / 2}, \quad t=0, \ldots, \frac{N}{4}-1
$$

and

$$
V_{2, t} \equiv \sum_{l=0}^{L-1} g_{l} V_{1,2 t+1-l \bmod N / 2, t=0, \ldots, \frac{N}{4}-1}
$$

2nd Stage of Pyramid Algorithm: I

Place $W_{2, t}$'s in $\frac{N}{4} \times 1$ vector \mathbf{W}_{2}

- elements $\frac{N}{2}, \ldots, \frac{3 N}{4}-1$ of \mathbf{W}
- wavelet coefficients for scale $\tau_{2}=2^{2-1}=2$

Place $V_{2, t}$'s in $\frac{N}{4} \times 1$ vector \mathbf{V}_{2}

- scaling coefficients for scale $\lambda_{2}=2^{2}=4$

2nd Stage of Pyramid Algorithm

$$
\left[\begin{array}{l}
\mathbf{W}_{2} \\
\mathbf{V}_{2}
\end{array}\right]=\mathcal{P}_{2} \mathbf{V}_{1} \equiv\left[\begin{array}{l}
\mathcal{B}_{2} \\
\mathcal{A}_{2}
\end{array}\right] \mathbf{V}_{1}
$$

$\mathcal{B}_{2} \& \mathcal{A}_{2}$ constructed like $\mathcal{B}_{1} \& \mathcal{A}_{1}$:

- rows of \mathcal{B}_{2} have $\left\{h_{l}\right\}$ periodized to length $\frac{N}{2}$ (each row circularly shifted with respect to other rows by multiples of 2)
- rows of \mathcal{A}_{2} have $\left\{g_{l}\right\}$ periodized to length $\frac{N}{2}$ since $\mathbf{W}_{2}=\mathcal{B}_{2} \mathbf{V}_{1}=\mathcal{B}_{2} \mathcal{A}_{1} \mathbf{X}$, have $\mathcal{W}_{2}=\mathcal{B}_{2} \mathcal{A}_{1}$

2nd Stage of Pyramid Algorithm

Synthesis of V_{1} from $\mathbf{W}_{2} \& \mathrm{~V}_{2}$:
$\mathbf{V}_{1}=\mathcal{P}_{2}^{T}\left[\begin{array}{l}\mathbf{W}_{2} \\ \mathbf{V}_{2}\end{array}\right]=\left[\begin{array}{ll}\mathcal{B}_{2}^{T} & \mathcal{A}_{2}^{T}\end{array}\right]\left[\begin{array}{l}\mathbf{W}_{2} \\ \mathbf{V}_{2}\end{array}\right]=\mathcal{B}_{2}^{T} \mathbf{W}_{2}+\mathcal{A}_{2}^{T} \mathbf{V}_{2}$
Since $\mathbf{X}=\mathcal{B}_{1}^{T} \mathbf{W}_{1}+\mathcal{A}_{1}^{T} \mathbf{V}_{1}$, obtain

$$
\begin{aligned}
\mathbf{X} & =\mathcal{B}_{1}^{T} \mathbf{W}_{1}+\mathcal{A}_{1}^{T} \mathcal{B}_{2}^{T} \mathbf{W}_{2}+\mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{V}_{2} \\
& =\mathcal{W}_{1}^{T} \mathbf{W}_{1}+\mathcal{W}_{2}^{T} \mathbf{W}_{2}+\mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{V}_{2}
\end{aligned}
$$

2nd Stage of Pyramid Algorithm

- know from 1st stage that $\mathcal{W}_{1}^{T} \mathbf{W}_{1}=\mathcal{D}_{1}$
- have $\mathcal{W}_{2}^{T} \mathbf{W}_{2}=\mathcal{D}_{2}$ because it involves \mathbf{W}_{2}
- have $\mathcal{A}_{1}^{T} \mathcal{A}_{2}^{T} \mathbf{V}_{2}=\mathcal{S}_{2}$ because

$$
\mathbf{X}-\mathcal{D}_{1}-\mathcal{D}_{2}=\mathcal{S}_{2}
$$

- define $\mathcal{V}_{2}=\mathcal{A}_{2} \mathcal{A}_{1}$ so that $\mathcal{V}_{2}^{T} \mathbf{V}_{2}=\mathcal{S}_{2}$

2nd Stage of Pyramid Algorithm

orthnormality of \mathcal{P}_{2} implies

$$
\left\|\mathbf{V}_{1}\right\|^{2}=\left\|\mathbf{W}_{2}\right\|^{2}+\left\|\mathbf{V}_{2}\right\|^{2}
$$

while from stage 1 we have

$$
\|\mathbf{X}\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{V}_{1}\right\|^{2}
$$

thus yielding

$$
\|\mathbf{X}\|^{2}=\left\|\mathbf{W}_{1}\right\|^{2}+\left\|\mathbf{W}_{2}\right\|^{2}+\left\|\mathbf{V}_{2}\right\|^{2}
$$

Summary of 2nd Stage of Pyramid Algorithm

Transforms $\left\{V_{1, t}: t=0, \ldots, \frac{N}{2}-1\right\}$ into wavelet \& scaling coefficients

- $\frac{N}{4}$ wavelet coefficients $\left\{W_{2, t}, t=0, \ldots, \frac{N}{4}-1\right\}$:
- \mathbf{W}_{2}, an $\frac{N}{4} \times 1$ vector
- changes on scale $\tau_{2}=2$
- second level detail \mathcal{D}_{2}
- $\mathcal{W}_{2}=\mathcal{B}_{2} \mathcal{A}_{1}$, an $\frac{N}{4} \times N$ matrix
consisting of rows $\frac{N}{2}$ to $\frac{3 N}{4}-1$ of \mathcal{W}

Summary of 2nd Stage of Pyramid Algorithm

Transforms $\left\{V_{1, t}: t=0, \ldots, \frac{N}{2}-1\right\}$ into wavelet \& scaling coefficients

- $\frac{N}{4}$ scaling coefficients $\left\{V_{2, t}, t=0, \ldots, \frac{N}{4}-1\right\}$:
- V_{2}, an $\frac{N}{4} \times 1$ vector
- averages on scale $\lambda_{2}=4$
- second level smooth \mathcal{S}_{2}
- $\mathcal{V}_{2}=\mathcal{A}_{2} \mathcal{A}_{1}$, an $\frac{N}{4} \times N$ matrix
spanning same subspace as last $\frac{N}{4}$ rows of \mathcal{W}

j th Stage: Pyramid Algorithm

Transforms scale $\lambda_{j-1}=2^{j-1}$ averages
$\left\{V_{j-1, t}: t=0, \ldots, \frac{N}{2^{j-1}}-1\right\}$ into

- differences on scale $\tau_{j}=2^{j-1}$, namely, wavelet coefficients $\left\{W_{j, t}: t=0, \ldots, \frac{N}{2^{j}}-1\right\}$
- averages on scale $\lambda_{j}=2^{j}$, namely, scaling coefficients $\left\{V_{j, t}: t=0, \ldots, \frac{N}{2^{j}}-1\right\}$

j th Stage: Pyramid Algorithm

In terms of filters (letting $N_{j} \equiv \frac{N}{2^{j}}$), for $t=0, \ldots, N_{j}-1$ we have

$$
\begin{aligned}
W_{j, t} & \equiv \sum_{l=0}^{L-1} h_{l} V_{j-1,2 t+1-l \bmod N_{j-1}} \\
V_{j, t} & \equiv \sum_{l=0}^{L-1} g_{l} V_{j-1,2 t+1-l \bmod N_{j-1}}
\end{aligned}
$$

j th Stage of Pyramid Algorithm

- $\mathcal{W}_{j}=\mathcal{B}_{j} \mathcal{A}_{j-1} \cdots \mathcal{A}_{1}$,
where $\mathcal{W}_{j} \& \mathcal{B}_{j}$ are $\frac{\mathcal{N}}{2^{j}} \times N \& \frac{N}{2 j} \times \frac{N}{2^{j-1}}$
- $\mathbf{W}_{j}=\mathcal{W}_{j} \mathbf{X}$ and $\mathbf{W}_{j}=\mathcal{B}_{j} \mathbf{V}_{j-1}$
- $\mathcal{D}_{j}=\mathcal{W}_{j}^{T} \mathrm{~W}_{j}$

j th Stage of Pyramid Algorithm

- $\mathcal{V}_{j}=\mathcal{A}_{j} \mathcal{A}_{j-1} \cdots \mathcal{A}_{1}$,
where $\mathcal{V}_{j} \& \mathcal{A}_{j}$ are $\frac{N}{2^{j}} \times N \& \frac{N}{2^{j}} \times \frac{N}{2^{j-1}}$
- $\mathbf{V}_{j}=\mathcal{V}_{j} \mathbf{X}$ and $\mathbf{V}_{j}=\mathcal{A}_{j} \mathbf{V}_{j-1}$
- $\mathcal{S}_{j}=\mathcal{V}_{j}^{T} \mathbf{V}_{j}$

j th Stage of Pyramid Algorithm

- analysis of variance at end of stage j :

$$
\|\mathbf{X}\|^{2}=\sum_{k=1}^{j}\left\|\mathbf{W}_{k}\right\|^{2}+\left\|\mathbf{V}_{j}\right\|^{2}=\sum_{k=1}^{j}\left\|\mathcal{D}_{k}\right\|^{2}+\left\|\mathcal{S}_{j}\right\|^{2}
$$

- multiresolution analysis at end of stage j :

$$
\mathbf{X}=\sum_{k=1}^{j} \mathcal{D}_{k}+\mathcal{S}_{j}
$$

Jth Stage of Pyramid Algorithm

- since $N=2^{J}$, algorithm terminates at stage J :
- $\mathbf{W}_{J}=\left[W_{J, 0}\right]=\left[W_{N-2}\right]$
- $\mathbf{V}_{J}=\left[V_{J, 0}\right]=\left[W_{N-1}\right]$
- $W_{N-1}=\bar{X} \sqrt{ } N$ always,

Discrete Wavelet Transform

$$
\mathcal{W}=\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]=\left[\begin{array}{l}
\mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{j} \mathcal{A}_{j-1} \cdots \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{J} \mathcal{A}_{J-1} \cdots \mathcal{A}_{1} \\
\mathcal{A}_{J} \mathcal{A}_{J-1} \cdots \mathcal{A}_{1}
\end{array}\right]
$$

Partial DWT

Can choose to stop at $J_{0}<J$ repetitions, yielding a partial DWT of level J_{0} :

$$
\left[\begin{array}{l}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J_{0}} \\
\mathcal{V}_{J_{0}}
\end{array}\right] \mathbf{X}=\left[\begin{array}{l}
\mathcal{B}_{1} \\
\mathcal{B}_{2} \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{j} \mathcal{A}_{j-1} \cdots \mathcal{A}_{1} \\
\vdots \\
\mathcal{B}_{J_{0}} \mathcal{A}_{J_{0}-1} \cdots \mathcal{A}_{1} \\
\mathcal{A}_{J_{0}} \mathcal{A}_{J_{0}-1} \cdots \mathcal{A}_{1}
\end{array}\right] \mathbf{X}=\left[\begin{array}{l}
\mathbf{W}_{1} \\
\mathbf{W}_{2} \\
\vdots \\
\mathbf{W}_{j} \\
\vdots \\
\mathbf{W}_{J_{0}} \\
\mathbf{V}_{J_{0}}
\end{array}\right]
$$

$\mathcal{W}_{J_{0}} \& \mathcal{V}_{J_{0}}$ are $\frac{N}{2^{J_{0}}} \times N$

Partial DWT

- yields $\frac{N}{2^{J_{0}}}$ scaling coefficients for scale $\lambda_{J_{0}}=2^{J_{0}}$;
'complete' DWT yields 1 scaling coefficient
- only requires N to be integer multiple of $2^{J_{0}}$; complete DWT requires N to be power of 2
- partial DWT more commonly used: scaling coefficients capture 'large scale' components
- setting J_{0} is application dependent

Partial DWT

- analysis of variance for partial DWT:

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} & =\frac{1}{N} \sum_{j=1}^{J_{0}}\left\|\mathbf{W}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathbf{V}_{J_{0}}\right\|^{2}-\bar{X}^{2} \\
& =\frac{1}{N} \sum_{j=1}^{J_{0}}\left\|\mathcal{D}_{j}\right\|^{2}+\frac{1}{N}\left\|\mathcal{S}_{J_{0}}\right\|^{2}-\bar{X}^{2}
\end{aligned}
$$

last 2 terms are the sample variance of $\mathcal{S}_{J_{0}}$

Partial DWT

- multiresolution analysis for partial DWT:

$$
\mathbf{X}=\sum_{j=1}^{J_{0}} \mathcal{D}_{j}+\mathcal{S}_{J_{0}}
$$

$\mathcal{S}_{J_{0}}$ represents averages on scale $\lambda_{J_{0}}=2^{J_{0}}$ (includes \bar{X})

Unit scale matrix: \mathbf{W}_{1}

$$
\begin{aligned}
W_{1, t} \equiv 2^{1 / 2} \widetilde{W}_{1,2 t+1} & =\sum_{l=0}^{L-1} h_{l} X_{2 t+1-l \bmod N} \\
& =\sum_{l=0}^{N-1} h_{l}^{\circ} X_{2 t+1-l \bmod N}
\end{aligned}
$$

$\left\{h_{l}^{\circ}\right\}$ is $\left\{h_{l}\right\}$ periodized to length N

Scaling Coefficients: \mathbf{V}_{1}

Define first level scaling coefficients:

$$
\begin{gathered}
V_{1, t} \equiv 2^{1 / 2} \widetilde{V}_{1,2 t+1}=\sum_{l=0}^{L-1} g_{l} X_{2 t+1-l \bmod N} \\
=\sum_{l=0}^{N-1} g_{l}^{\circ} X_{2 t+1-l \bmod N}, \\
\left\{g_{l}^{\circ}\right\} \text { is }\left\{g_{l}\right\} \text { periodized to } N
\end{gathered}
$$

Effect of $\left\{h_{l}\right\},\left\{g_{l}\right\}$

- $\left\{h_{l}\right\}$ is high-pass filter
- $\left\{g_{l}\right\}$ is low-pass because $\left\{h_{l}\right\}$ is high-pass
- same true for all Daubechies wavelet filters

What Kind of Process is $\left\{V_{1, t}\right\}$?

$\left\{X_{t}\right\} \longleftrightarrow\left\{\mathcal{X}_{k}\right\}$,

$$
X_{t}=\frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}_{k} e^{i 2 \pi t k / N}=\frac{1}{N} \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} \mathcal{X}_{k} e^{i 2 \pi t k / N}
$$

because $\left\{\mathcal{X}_{k}\right\} \&\left\{e^{i 2 \pi t k / N}\right\}$ periodic with period N

What Kind of Process is $\left\{V_{1, t}\right\}$?

As $\tilde{g}_{l} \approx$ low pass with passband $\left[-\frac{1}{4}, \frac{1}{4}\right]$, have

$$
\widetilde{V}_{1, t}=\sum_{l=0}^{L-1} \tilde{g}_{l} X_{t-l} \approx \frac{1}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_{k} e^{i 2 \pi t k / N}
$$

$$
\begin{aligned}
& V_{1, t}=\sqrt{2} \widetilde{V}_{1,2 t+1} \approx \frac{\sqrt{ } 2}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_{k} e^{i 2 \pi(2 t+1) k / N}, \\
& =\frac{2}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \frac{\mathcal{X}_{k} e^{i 2 \pi k / N}}{\sqrt{ } 2} e^{i 2 \pi t k /(N / 2)} \\
& \equiv \frac{1}{N^{\prime}} \sum_{k=-\frac{N^{\prime}}{2}+1}^{\frac{N^{\prime}}{2}} \mathcal{X}_{k}^{\prime} e^{i 2 \pi t k / N^{\prime}}, \\
& \frac{N}{2}=N^{\prime} \text { and } 0 \leq t \leq N^{\prime}-1
\end{aligned}
$$

What Kind of Process is $\left\{V_{1, t}\right\}$?

$$
V_{1, t} \approx \frac{1}{N^{\prime}} \sum_{k=-\frac{N^{\prime}}{2}+1}^{\frac{N^{\prime}}{2}} \mathcal{X}_{k}^{\prime} e^{i 2 \pi t k / N^{\prime}}
$$

- \mathcal{X}_{k}^{\prime} associated with $f_{k}^{\prime} \equiv \frac{k}{N^{\prime}},-\frac{1}{2}<f_{k}^{\prime} \leq \frac{1}{2}$
- $f_{k}^{\prime}=\frac{2 k}{N}=2 f_{k}$ so $f_{k} \in\left[-\frac{1}{4}, \frac{1}{4}\right] \Rightarrow f_{k}^{\prime} \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
- thus $\left\{\widetilde{V}_{1, t}\right\}$ is low-pass but $\left\{V_{1, t}\right\}$ is 'full-band'

What Kind of Process is $\left\{W_{1, t}\right\}$?

As $\tilde{h}_{l} \approx$ high-pass filter, have

$$
\begin{aligned}
\widetilde{W}_{1, t} & =\sum_{l=0}^{L-1} \tilde{h}_{l} X_{t-l} \\
& \approx \frac{1}{N}\left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}}+\sum_{k=\frac{N}{4}+1}^{\frac{N}{2}}\right) \mathcal{X}_{k} e^{i 2 \pi t k / N}
\end{aligned}
$$

What Kind of Process is $\left\{W_{1, t}\right\}$?

$$
W_{1, t}=2^{1 / 2} \widetilde{W}_{1,2 t+1}
$$

$$
\approx \frac{\sqrt{ } 2}{N}\left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}}+\sum_{k=\frac{N}{4}+1}^{\frac{N}{2}}\right) \mathcal{X}_{k} e^{i 2 \pi(2 t+1) k / N}
$$

$$
=\frac{2}{N}\left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}}+\sum_{k=\frac{N}{4}+1}^{\frac{N}{2}}\right) \frac{\mathcal{X}_{k} e^{i 2 \pi k / N}}{\sqrt{ } 2} e^{i 2 \pi t k /(N / 2)}
$$

If $\mathcal{X}_{k}^{\prime} \equiv \frac{\mathcal{X}_{k+\frac{N}{2}}{ }^{i 2 \pi\left(k+\frac{N}{2}\right) / N}}{\sqrt{ } 2}=-\frac{\mathcal{X}_{k+\frac{N}{2}} e^{i 2 \pi k / N}}{\sqrt{ } 2}$

What Kind of Process is $\left\{W_{1, t}\right\}$?

$$
W_{1, t} \approx \frac{1}{N^{\prime}} \sum_{k=-\frac{N^{\prime}}{2}+1}^{\frac{N^{\prime}}{2}} \mathcal{X}_{k}^{\prime} e^{i 2 \pi t k / N^{\prime}}
$$

- \mathcal{X}_{k}^{\prime} associated with $f_{k}^{\prime} \equiv \frac{k}{N^{\prime}},-\frac{1}{2}<f_{k}^{\prime} \leq \frac{1}{2}$
- $f_{k}^{\prime}=\frac{2 k}{N}=2\left(\frac{1}{2}-f_{k}\right)$
so $f_{k} \in\left[\frac{1}{4}, \frac{1}{2}\right] \Rightarrow f_{k}^{\prime} \in\left[0, \frac{1}{2}\right]$ in reverse order
- $\left\{\widetilde{W}_{1, t}\right\}$ is high-pass, but $\left\{W_{1, t}\right\}$ is 'full-band'

2nd Stage of Pyramid Algorithm: I

- Treat 'scale 2' process $\left\{V_{1, t}: t=0, \ldots, \frac{N}{2}-1\right\}$ like 'scale 1 ' process $\left\{X_{t}: t=0, \ldots, N-1\right\}$:

$$
W_{2, t} \equiv \sum_{l=0}^{L-1} h_{l} V_{1,2 t+1-l \bmod N / 2}, \quad t=0, \ldots, \frac{N}{4}-1
$$

and

$$
V_{2, t} \equiv \sum_{l=0}^{L-1} g_{l} V_{1,2 t+1-l \bmod N / 2, t=0, \ldots, \frac{N}{4}-1}
$$

Cascade of Filters

Flow diagram for cascade with 3 filters:

$$
\left\{b_{t}\right\} \longrightarrow A_{1}(\cdot) \xrightarrow{1 .} A_{2}(\cdot) \xrightarrow{2 .} A_{3}(\cdot) \xrightarrow{3 .}\left\{c_{t}\right\}
$$

if $\left\{b_{t}\right\} \longleftrightarrow B(\cdot) \&\left\{c_{t}\right\} \longleftrightarrow C(\cdot)$, then

- output from $A_{1}(\cdot)$ has DFT $A_{1}(f) B(f)$
- output from $A_{2}(\cdot)$ has DFT $A_{2}(f) A_{1}(f) B(f)$

$$
\text { So } \quad\left\{b_{t}\right\} \longrightarrow A(\cdot) \longrightarrow\left\{c_{t}\right\}
$$

with $A(f)=A_{3}(f) A_{2}(f) A_{1}(f) B(f)$

Equivalent Filter for 2nd Stage

Path from \mathbf{X} to \mathbf{W}_{2} almost a filter cascade

- Q: can we obtain \mathbf{W}_{2} from \mathbf{X} using a single filter?
- A: yes, as the following argument shows

Equivalent Filter for 2nd Stage

- define $\left\{h_{l}^{\uparrow}\right\}=\left\{h_{0}, 0, h_{1}, 0, \ldots, h_{L-2}, 0, h_{L-1}\right\}$; note that this filter has width of $2 L-1$
- define $\tilde{h}_{l}^{\uparrow}=h_{l}^{\uparrow} / \sqrt{ } 2$ \& define

$$
\widetilde{W}_{2, t} \equiv \sum_{l=0}^{2 L-2} \tilde{h}_{l}^{\dagger} \widetilde{V}_{1, t-l \bmod N}, \quad t=0, \ldots, N-1 ;
$$

$$
\begin{aligned}
& \widetilde{W}_{2,4 t+3}=\sum_{l=0}^{2 L-2} \tilde{h}_{l}^{\uparrow} \widetilde{V}_{1,4 t+3-l \bmod N} \\
& =\sum_{l=0}^{L-1} \tilde{h}_{l} \widetilde{V}_{1,4 t+3-2 l \bmod N} \\
& =\sum_{l=0}^{L-1} \tilde{h}_{l} \widetilde{V}_{1,2(2 t+1-l)+1 \bmod N} N \\
& =\frac{1}{2} \sum_{l=0}^{L-1} h_{l} V_{1,2 t+1-l \bmod N / 2}=\frac{W_{2, t}}{2}
\end{aligned}
$$

Equivalent Filter for 2nd Stage

Flow diagram, indicating downsampling:

$$
\mathbf{X} \longrightarrow\left\{g_{l}\right\} \longrightarrow\left\{h_{l}^{\uparrow}\right\} \longrightarrow 2 \widetilde{\mathbf{W}}_{2} \underset{\downarrow 4}{\longrightarrow} \mathbf{W}_{2}
$$

Transfer function $H_{2}(\cdot)$ for equivalent filter is

- transfer function for $\left\{g_{l}\right\}$, i.e., $G(\cdot)$, times
- transfer function for $\left\{h_{l}^{\uparrow}\right\}$, say, $H^{\uparrow}(\cdot)$
- $H^{\uparrow}(f)=H(2 f)$, so $H_{2}(f)=H(2 f) G(f)$

Equivalent Filter for 2nd Stage

Denote impulse response sequence for $H_{2}(\cdot)$ as

$$
\left\{h_{2, l}: l=0, \ldots, L_{2}-1=3 L-3\right\}
$$

Flow diagram with equivalent filter:

$$
\mathbf{X} \longrightarrow\left\{h_{2, l}\right\} \underset{\downarrow 4}{\longrightarrow} \mathbf{W}_{2}
$$

Equivalent Filter for 2nd Stage

Can write

$$
\begin{aligned}
W_{2, t} & =\sum_{l=0}^{L_{2}-1} h_{2, l} X_{4(t+1)-1-l \bmod N}, \quad t=0, \ldots, \frac{N}{4}-1 \\
& =\sum_{l=0}^{N-1} h_{2, l}^{\circ} X_{4(t+1)-1-l \bmod N}, \quad t=0, \ldots, \frac{N}{4}-1
\end{aligned}
$$

where $\left\{h_{2, l}^{\circ}\right\}$ is $\left\{h_{2, l}\right\}$ periodized to length N

Equivalent Filters for 2nd Stage: V

Another flow diagram with equivalent filter:

$$
\mathbf{X} \longrightarrow\left\{H_{2}\left(\frac{k}{N}\right)\right\} \underset{\downarrow 4}{\longrightarrow} \mathbf{W}_{2}
$$

similarly:

$$
\begin{gathered}
\mathbf{X} \longrightarrow\left\{g_{l}\right\} \longrightarrow\left\{g_{l}^{\uparrow}\right\} \underset{\downarrow 4}{\longrightarrow} \mathbf{V}_{2} \\
\mathbf{X} \longrightarrow\left\{G_{2}\left(\frac{k}{N}\right)\right\} \\
\longrightarrow
\end{gathered} \mathbf{V}_{2}
$$

j th Stage: Pyramid

In terms of filters (letting $N_{j} \equiv \frac{N}{2^{j}}$), have

$$
\begin{aligned}
W_{j, t} & \equiv \sum_{l=0}^{L-1} h_{l} V_{j-1,2 t+1-l \bmod N_{j-1}}, \quad t=0, \ldots, N_{j}-1 \\
& =\sum_{l=0}^{L_{j}-1} h_{j, l} X_{2^{j}(t+1)-1-l \bmod N},
\end{aligned}
$$

where $\left\{h_{j, l}\right\}$ is the j th level equivalent wavelet filter and $L_{j}=\left(2^{j}-1\right)(L-1)+1$

Equivalent Filter for j th Stage

$\left\{h_{j, l}\right\}$ formed by convolution of j filters:
filter 1: $\quad g_{0}, g_{1}, \ldots, g_{L-2}, g_{L-1}$;
filter 2: $\quad g_{0}, 0, g_{1}, 0, \ldots, g_{L-2}, 0, g_{L-1}$;
filter 3: $\quad g_{0}, 0,0,0, g_{1}, 0,0,0, \ldots, g_{L-2}, 0,0,0, g_{L-1}$;
filter $j-1: \quad g_{0}, 0, \ldots, 0, g_{1}, 0, \ldots, 0, \ldots, g_{L-2}, 0, \ldots, 0, g_{L-1}$;
filter $j: \quad h_{0}, 0, \ldots, 0, h_{1}, 0, \ldots, 0, \ldots, h_{L-2}, 0, \ldots, 0, h_{L-1}$

Equivalent Filter for j th Stage

Properties of $\left\{h_{j, l}\right\}$:

$$
\begin{gathered}
\left\{h_{j, l}: l=0, \ldots, L_{j}-1\right\} \\
\longleftrightarrow H\left(2^{j-1} f\right) \prod_{l=0}^{j-2} G\left(2^{l} f\right) \equiv H_{j}(f)
\end{gathered}
$$

Nominal passband given by $\frac{1}{2^{j+1}} \leq|f| \leq \frac{1}{2^{j}}$
Periodized filter for forming rows of \mathcal{W}_{j} :
$\left\{h_{j, l}^{\circ}: l=0, \ldots, N-1\right\} \longleftrightarrow\left\{H\left(2^{j-1} \frac{k}{N}\right) \prod_{l=0}^{j-2} G\left(2^{l} \frac{k}{N}\right): k=0, \ldots, N-1\right\}$

Equivalent Filter for j th Stage

For the scaling coefficients, have

$$
\begin{aligned}
V_{j, t} & \equiv \sum_{l=0}^{L-1} g_{l} V_{j-1,2 t+1-l \bmod N_{j-1}}, \quad t=0, \ldots, N_{j}-1 \\
& =\sum_{l=0}^{L_{j}-1} g_{j, l} X_{2^{j}(t+1)-1-l \bmod N},
\end{aligned}
$$

where $\left\{g_{j, l}\right\}$ is the j th level equivalent scaling filter

Equivalent Filters for j th Stages

$\left\{g_{j, l}\right\}$

formed by convolution of j filters

- filters 1 to $j-1$ same as used to form $\left\{h_{j, l}\right\}$
- filter j :
$g_{0}, 0, \ldots, 0, g_{1}, 0, \ldots, 0, g_{L-2}, 0, \ldots, 0, g_{L-1}$

$$
\left\{g_{j, l}: l=0, \ldots, L_{j}-1\right\} \longleftrightarrow \prod_{l=0}^{j-1} G\left(2^{l} f\right) \equiv G_{j}(f)
$$

- Nominal passband given by $0 \leq|f| \leq \frac{1}{2^{j+1}}$

Equivalent Filter for j th Stage

-Periodized filter for forming rows of \mathcal{V}_{j} :

$$
\begin{gathered}
\left\{g_{j, l}^{\circ}: l=0, \ldots, N-1\right\} \\
\longleftrightarrow \\
\left\{\prod_{l=0}^{j-1} G\left(2^{l} \frac{k}{N}\right): k=0, \ldots, N-1\right\}
\end{gathered}
$$

