DWT - Pyramid Algorithm

- can describe pyramid algorithm using either
 - linear filtering operations
 - matrix manipulations
- two approaches complementary, so will do both
- filtering approach begins with notion of wavelet filter

The Wavelet Filter

Let $\{h_l : l = 0, ..., L - 1\}$ be a real-valued filter 3 properties: (Assume $h_l = 0$ for $l < 0 \& l \ge L$)

$$\sum_{l=0}^{L-1} h_l = 0 \quad \text{(summation to zero)}$$

$$\sum_{l=0}^{L-1} h_l^2 = 1 \quad (\text{ unit energy })$$

The Wavelet Filter

$$\sum_{l=0}^{L-1} h_l = 0 \quad (\text{ summation to zero })$$

$$\sum_{l=0}^{L-1} h_l^2 = 1$$
 (unit energy)

$$\sum_{l=0}^{L-1} h_l h_{l+2n} = \sum_{l=-\infty}^{\infty} h_l h_{l+2n} = 0$$
 (orthogonality to even shifts)

The Wavelet Filter

• Transfer & squared gain functions for $\{h_l\}$:

$$H(f) \equiv \sum_{l=0}^{L-1} h_l e^{-i2\pi fl}$$

and

$$\mathcal{H}(f) \equiv |H(f)|^2$$

• Orthonormality property equivalent to

$$\mathcal{H}(f) + \mathcal{H}(f + \frac{1}{2}) = 2$$
 for all f

The Rescaled Wavelet Filter

$$\tilde{h}_l \equiv h_l / \sqrt{2}$$

satisfies

$$\sum_{l=0}^{L-1} \tilde{h}_l = 0, \quad \sum_{l=0}^{L-1} \tilde{h}_l^2 = \frac{1}{2}$$

and

$$\sum_{l=-\infty}^{\infty} \tilde{h}_l \tilde{h}_{l+2n} = 0$$

The Rescaled Wavelet Filter

Transfer & squared gain functions for $\{\tilde{h}_l\}$:

$$\widetilde{H}(f) \equiv \sum_{l=0}^{L-1} \widetilde{h}_l e^{-i2\pi fl} = \frac{1}{\sqrt{2}} H(f)$$

and

$$\widetilde{\mathcal{H}}(f) \equiv |\widetilde{H}(f)|^2 = \frac{1}{2}\mathcal{H}(f)$$

Frequency domain orthonormality property:

$$\widetilde{\mathcal{H}}(f) + \widetilde{\mathcal{H}}(f + \frac{1}{2}) = 1$$
 for all f

Unit Scale Wavelet Coefficients

Filter X using $\tilde{h}_l \equiv h_l / \sqrt{2}$:

$$\widetilde{W}_{1,t} \equiv \sum_{l=0}^{L-1} \widetilde{h}_l X_{t-l \mod N}, \quad t = 0, \dots, N-1$$

For
$$t = 0, ..., N/2 - 1$$
, define

$$W_{1,t} \equiv 2^{1/2} \widetilde{W}_{1,2t+1} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N},$$

 $\{W_{1,t}\}$ forms first N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$ (first N/2 elements of \mathbf{W} form subvector \mathbf{W}_1)

Unit scale matrix: $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$

$$W_{1,t} \equiv 2^{1/2} \widetilde{W}_{1,2t+1} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}$$
$$= \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \mod N}$$
$$= \sum_{l=0}^{N-1} h_{2t+1-l \mod N}^{\circ} X_l$$

 $\{h_l^\circ\}$ is $\{h_l\}$ periodized to length N

Unit scale matrix: $\mathbf{W}_1 = \mathcal{W}_1 \mathbf{X}$

So we must have

$$\mathcal{W}_{0\bullet}^{T} = \begin{bmatrix} h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{2}^{\circ} \end{bmatrix}$$
form last $\frac{N}{2} - 1$ rows of \mathcal{W}_{1} by circular shifting:
$$\mathcal{W}_{t\bullet}^{T} = \begin{bmatrix} \mathcal{T}^{2t} \mathcal{W}_{0\bullet} \end{bmatrix}^{T}, \quad t = 1, \dots, \frac{N}{2} - 1,$$

example:

$$\mathcal{W}_{1\bullet}^{T} = \left[h_{3}^{\circ}, h_{2}^{\circ}, h_{1}^{\circ}, h_{0}^{\circ}, h_{N-1}^{\circ}, h_{N-2}^{\circ}, \dots, h_{4}^{\circ}\right].$$

The other half of the matrix... \mathcal{W}

The Scaling Filter

Scaling filter: $g_l \equiv (-1)^{l+1} h_{L-1-l}$

reverse {h_l} & flip sign of every other coefficient

• e.g.:
$$h_0 = \frac{1}{\sqrt{2}} \& h_1 = -\frac{1}{\sqrt{2}} \Rightarrow g_0 = g_1 = \frac{1}{\sqrt{2}}$$

- $\{g_l\}$ is 'quadrature mirror' filter for $\{h_l\}$
- inverse relationship: $h_l = (-1)^l g_{L-1-l}$

The Scaling Filter

$$\sum_{l=0}^{L-1} g_l = \sqrt{2} \text{ (summation to } \sqrt{2}\text{)}$$
$$\sum_{l=0}^{L-1} g_l^2 = 1 \text{ (unit energy)}$$

 $\sum_{l=0}^{L-1} g_l g_{l+2n} = \sum_{l=-\infty}^{\infty} g_l g_{l+2n} = 0 \text{ (orthogonality to even shifts)}$

Scaling Coefficients: Rescaled scaling filters

Define $\tilde{g}_l \equiv g_l / \sqrt{2}$:

$$\sum_{l=0}^{L-1} \tilde{g}_l = 1, \quad \sum_{l=0}^{L-1} \tilde{g}_l^2 = \frac{1}{2} \& \sum_{l=-\infty}^{\infty} \tilde{g}_l \tilde{g}_{l+2n} = 0$$

Circularly filter $\{X_t\}$ with $\{\tilde{g}_l\}$ to get

$$\widetilde{V}_{1,t} \equiv \sum_{l=0}^{L-1} \widetilde{g}_l X_{t-l \mod N}, \quad t = 0, \dots, N-1$$

Define for $t = 0, ..., \frac{N}{2} - 1$:

$$V_{1,t} \equiv 2^{1/2} \widetilde{V}_{1,2t+1} = \sum_{l=0}^{L-1} g_l X_{2t+1-l \mod N}$$

$$=\sum_{l=0}^{N-1} g_l^{\circ} X_{2t+1-l \mod N},$$

 $\{g_l^\circ\}$ is $\{g_l\}$ periodized to N. $\{V_{1,t}\}$ forms last N/2 elements of $\mathbf{W} = \mathcal{W}\mathbf{X}$

• Let \mathcal{V}_1 be the $\frac{N}{2} \times N$ matrix whose first row is $\left[g_1^\circ, g_0^\circ, g_{N-1}^\circ, g_{N-2}^\circ, \dots, g_2^\circ\right] \equiv \mathcal{V}_{0\bullet}^T;$

other rows are given by

$$[\mathcal{T}^{2t}\mathcal{V}_{0\bullet}]^T, \quad t=1,\ldots,\frac{N}{2}-1$$

• have $\mathbf{V}_1 = \mathcal{V}_1 \mathbf{X} \& \frac{N}{2}$ rows of \mathcal{V}_1 are orthonormal.

Orthonormality of \mathcal{V}_1 **&** \mathcal{W}_1

So

$$\mathcal{P}_1 \equiv \left[egin{array}{c} \mathcal{W}_1 \ \mathcal{V}_1 \end{array}
ight]$$

is an $N \times N$ orthonormal matrix since

- $\mathcal{P}_1 \neq \mathcal{W}$ except when N = 2
- \mathcal{V}_1 spans same subspace as lower half of \mathcal{W}

End of 1st Stage of Pyramid Algorithm

• synthesis of X from \mathcal{P}_1 :

$$\mathbf{X} = \mathcal{P}_1^T \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} \mathcal{W}_1^T & \mathcal{V}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_1 \\ \mathbf{V}_1 \end{bmatrix} = \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{V}_1^T$$

- by definition, $\mathcal{D}_1 = \mathcal{W}_1^T \mathbf{W}_1$
- since $\mathbf{X} = \mathcal{S}_1 + \mathcal{D}_1$, must have $\mathcal{S}_1 = \mathcal{V}_1^T \mathbf{V}_1$
- also have $\mathcal{R}_1 = \mathcal{D}_1$

Summary of 1st Stage of Pyramid Algorithm

Transforms $\{X_t : t = 0, \dots, N-1\}$ into wavelet

& scaling coefficients

- $\frac{N}{2}$ wavelet coefficients $\{W_{1,t}, t = 0, \dots, \frac{N}{2} 1\}$:
- - \mathbf{W}_1 , an $\frac{N}{2} \times 1$ vector
- changes on scale $\tau_1 = 1$
- first level detail \mathcal{D}_1

- $W_1 = \mathcal{B}_1$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}

- with \mathcal{B}_1 containing periodized $\{h_l\}$

Summary of 1st Stage of Pyramid Algorithm

Transforms $\{X_t : t = 0, ..., N - 1\}$ into wavelet & scaling coefficients

- $\frac{N}{2}$ scaling coefficients $\{V_{1,t}, t = 0, \dots, \frac{N}{2} 1\}$:
- \mathbf{V}_1 , an $\frac{N}{2} \times 1$ vector
- averages on scale $\lambda_1 = 2$
- first level smooth \mathcal{S}_1

 $-\mathcal{V}_1 = \mathcal{A}_1$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last $\frac{N}{2}$ rows of \mathcal{W}

- with \mathcal{A}_1 containing periodized $\{g_l\}$

• Treat 'scale 2' process $\{V_{1,t} : t = 0, ..., \frac{N}{2} - 1\}$ like 'scale 1' process $\{X_t : t = 0, ..., N - 1\}$:

$$W_{2,t} \equiv \sum_{l=0}^{L-1} h_l V_{1,2t+1-l \mod N/2}, \quad t = 0, \dots, \frac{N}{4} - 1$$

and

$$V_{2,t} \equiv \sum_{l=0}^{L-1} g_l V_{1,2t+1-l \mod N/2, t=0,\dots,\frac{N}{4}-1}$$

Place
$$W_{2,t}$$
's in $\frac{N}{4} \times 1$ vector \mathbf{W}_2

• elements
$$\frac{N}{2}, \ldots, \frac{3N}{4} - 1$$
 of W

• wavelet coefficients for scale $\tau_2 = 2^{2-1} = 2$

Place $V_{2,t}$'s in $\frac{N}{4} \times 1$ vector \mathbf{V}_2

• scaling coefficients for scale $\lambda_2 = 2^2 = 4$

$$\begin{bmatrix} \mathbf{W}_2 \\ \mathbf{V}_2 \end{bmatrix} = \mathcal{P}_2 \mathbf{V}_1 \equiv \begin{bmatrix} \mathcal{B}_2 \\ \mathcal{A}_2 \end{bmatrix} \mathbf{V}_1$$

 \mathcal{B}_2 & \mathcal{A}_2 constructed like \mathcal{B}_1 & \mathcal{A}_1 :

rows of \$\mathcal{B}_2\$ have \$\{h_l\}\$ periodized to length \$\frac{N}{2}\$ (each row circularly shifted with respect to other rows by multiples of 2)

• rows of
$$\mathcal{A}_2$$
 have $\{g_l\}$ periodized to length $\frac{N}{2}$
since $\mathbf{W}_2 = \mathcal{B}_2 \mathbf{V}_1 = \mathcal{B}_2 \mathcal{A}_1 \mathbf{X}$, have $\mathcal{W}_2 = \mathcal{B}_2 \mathcal{A}_1$

Synthesis of V_1 from W_2 & V_2 :

$$\mathbf{V}_1 = \mathcal{P}_2^T \begin{bmatrix} \mathbf{W}_2 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} \mathcal{B}_2^T & \mathcal{A}_2^T \end{bmatrix} \begin{bmatrix} \mathbf{W}_2 \\ \mathbf{V}_2 \end{bmatrix} = \mathcal{B}_2^T \mathbf{W}_2 + \mathcal{A}_2^T \mathbf{V}_2$$

Since $\mathbf{X} = \mathcal{B}_1^T \mathbf{W}_1 + \mathcal{A}_1^T \mathbf{V}_1$, obtain

$$\mathbf{X} = \mathcal{B}_1^T \mathbf{W}_1 + \mathcal{A}_1^T \mathcal{B}_2^T \mathbf{W}_2 + \mathcal{A}_1^T \mathcal{A}_2^T \mathbf{V}_2$$
$$= \mathcal{W}_1^T \mathbf{W}_1 + \mathcal{W}_2^T \mathbf{W}_2 + \mathcal{A}_1^T \mathcal{A}_2^T \mathbf{V}_2$$

- know from 1st stage that $\mathcal{W}_1^T \mathbf{W}_1 = \mathcal{D}_1$
- have $\mathcal{W}_2^T \mathbf{W}_2 = \mathcal{D}_2$ because it involves \mathbf{W}_2

• have
$$\mathcal{A}_1^T \mathcal{A}_2^T \mathbf{V}_2 = \mathcal{S}_2$$
 because

$$\mathbf{X} - \mathcal{D}_1 - \mathcal{D}_2 = \mathcal{S}_2$$

• define $\mathcal{V}_2 = \mathcal{A}_2 \mathcal{A}_1$ so that $\mathcal{V}_2^T \mathbf{V}_2 = \mathcal{S}_2$

orthnormality of \mathcal{P}_2 implies

$$\|\mathbf{V}_1\|^2 = \|\mathbf{W}_2\|^2 + \|\mathbf{V}_2\|^2,$$

while from stage 1 we have

$$\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{V}_1\|^2,$$

thus yielding

$$\|\mathbf{X}\|^2 = \|\mathbf{W}_1\|^2 + \|\mathbf{W}_2\|^2 + \|\mathbf{V}_2\|^2$$

Summary of 2nd Stage of Pyramid Algorithm

Transforms $\{V_{1,t}: t = 0, \ldots, \frac{N}{2} - 1\}$ into wavelet

& scaling coefficients

- $\frac{N}{4}$ wavelet coefficients $\{W_{2,t}, t = 0, \dots, \frac{N}{4} 1\}$:
- \mathbf{W}_2 , an $\frac{N}{4} \times 1$ vector
- changes on scale $\tau_2 = 2$
- second level detail \mathcal{D}_2

-
$$\mathcal{W}_2 = \mathcal{B}_2 \mathcal{A}_1$$
, an $\frac{N}{4} \times N$ matrix

consisting of rows $\frac{N}{2}$ to $\frac{3N}{4} - 1$ of \mathcal{W}

Summary of 2nd Stage of Pyramid Algorithm

Transforms $\{V_{1,t}: t = 0, \ldots, \frac{N}{2} - 1\}$ into wavelet

& scaling coefficients

- $\frac{N}{4}$ scaling coefficients $\{V_{2,t}, t = 0, \dots, \frac{N}{4} 1\}$:
- \mathbf{V}_2 , an $\frac{N}{4} \times 1$ vector
- averages on scale $\lambda_2 = 4$
- second level smooth \mathcal{S}_2

-
$$\mathcal{V}_2 = \mathcal{A}_2 \mathcal{A}_1$$
, an $\frac{N}{4} \times N$ matrix

spanning same subspace as last $\frac{N}{4}$ rows of \mathcal{W}

jth Stage: Pyramid Algorithm

Transforms scale $\lambda_{j-1} = 2^{j-1}$ averages $\{V_{j-1,t} : t = 0, \dots, \frac{N}{2^{j-1}} - 1\}$ into

- differences on scale τ_j = 2^{j−1}, namely, wavelet coefficients {W_{j,t} : t = 0, ..., N/2^j − 1}
- averages on scale $\lambda_j = 2^j$, namely, scaling coefficients $\{V_{j,t} : t = 0, \dots, \frac{N}{2^j} - 1\}$

jth Stage: Pyramid Algorithm

In terms of filters (letting $N_j \equiv \frac{N}{2^j}$), for $t = 0, \dots, N_j - 1$ we have

$$W_{j,t} \equiv \sum_{l=0}^{L-1} h_l V_{j-1,2t+1-l \mod N_{j-1}},$$
$$V_{j,t} \equiv \sum_{l=0}^{L-1} g_l V_{j-1,2t+1-l \mod N_{j-1}},$$

•
$$\mathcal{W}_j = \mathcal{B}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1$$
,

where
$$\mathcal{W}_j$$
 & \mathcal{B}_j are $\frac{N}{2^j} \times N$ & $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$

•
$$\mathbf{W}_j = \mathcal{W}_j \mathbf{X}$$
 and $\mathbf{W}_j = \mathcal{B}_j \mathbf{V}_{j-1}$

•
$$\mathcal{D}_j = \mathcal{W}_j^T \mathbf{W}_j$$

•
$$\mathcal{V}_j = \mathcal{A}_j \mathcal{A}_{j-1} \cdots \mathcal{A}_1$$
,

where
$$\mathcal{V}_j$$
 & \mathcal{A}_j are $\frac{N}{2^j} \times N$ & $\frac{N}{2^j} \times \frac{N}{2^{j-1}}$

•
$$\mathbf{V}_j = \mathcal{V}_j \mathbf{X}$$
 and $\mathbf{V}_j = \mathcal{A}_j \mathbf{V}_{j-1}$

•
$$\mathcal{S}_j = \mathcal{V}_j^T \mathbf{V}_j$$

• analysis of variance at end of stage *j*:

$$\|\mathbf{X}\|^2 = \sum_{k=1}^{j} \|\mathbf{W}_k\|^2 + \|\mathbf{V}_j\|^2 = \sum_{k=1}^{j} \|\mathcal{D}_k\|^2 + \|\mathcal{S}_j\|^2$$

• multiresolution analysis at end of stage *j*:

$$\mathbf{X} = \sum_{k=1}^{j} \mathcal{D}_k + \mathcal{S}_j$$

• since $N = 2^J$, algorithm terminates at stage J:

•
$$\mathbf{W}_J = [W_{J,0}] = [W_{N-2}]$$

•
$$\mathbf{V}_J = [V_{J,0}] = [W_{N-1}]$$

•
$$W_{N-1} = \overline{X} \sqrt{N}$$
 always,

Discrete Wavelet Transform

$$\mathcal{W} = \begin{bmatrix} \mathcal{W}_{1} \\ \mathcal{W}_{2} \\ \vdots \\ \mathcal{W}_{j} \\ \vdots \\ \mathcal{W}_{j} \\ \vdots \\ \mathcal{W}_{J} \\ \mathcal{V}_{J} \end{bmatrix} = \begin{bmatrix} \mathcal{B}_{1} \\ \mathcal{B}_{2}\mathcal{A}_{1} \\ \vdots \\ \mathcal{B}_{j}\mathcal{A}_{j-1}\cdots\mathcal{A}_{1} \\ \vdots \\ \mathcal{B}_{J}\mathcal{A}_{J-1}\cdots\mathcal{A}_{1} \\ \mathcal{A}_{J}\mathcal{A}_{J-1}\cdots\mathcal{A}_{1} \end{bmatrix}$$

Can choose to stop at $J_0 < J$ repetitions, yielding a partial DWT of level J_0 :

- yields $\frac{N}{2^{J_0}}$ scaling coefficients for scale $\lambda_{J_0} = 2^{J_0}$;
 - 'complete' DWT yields 1 scaling coefficient
- only requires N to be integer multiple of 2^{J0};
 complete DWT requires N to be power of 2
- partial DWT more commonly used: scaling coefficients capture 'large scale' components
- setting J_0 is application dependent

• analysis of variance for partial DWT:

$$\hat{\sigma}_{X}^{2} = \frac{1}{N} \sum_{j=1}^{J_{0}} \|\mathbf{W}_{j}\|^{2} + \frac{1}{N} \|\mathbf{V}_{J_{0}}\|^{2} - \overline{X}^{2}$$
$$= \frac{1}{N} \sum_{j=1}^{J_{0}} \|\mathcal{D}_{j}\|^{2} + \frac{1}{N} \|\mathcal{S}_{J_{0}}\|^{2} - \overline{X}^{2}$$

last 2 terms are the sample variance of S_{J_0}

• multiresolution analysis for partial DWT:

$$\mathbf{X} = \sum_{j=1}^{J_0} \mathcal{D}_j + \mathcal{S}_{J_0}$$

 S_{J_0} represents averages on scale $\lambda_{J_0} = 2^{J_0}$ (includes \overline{X})

Unit scale matrix: \mathbf{W}_1

$$W_{1,t} \equiv 2^{1/2} \widetilde{W}_{1,2t+1} = \sum_{l=0}^{L-1} h_l X_{2t+1-l \mod N}$$
$$= \sum_{l=0}^{N-1} h_l^{\circ} X_{2t+1-l \mod N}$$

 $\{h_l^\circ\}$ is $\{h_l\}$ periodized to length N

Scaling Coefficients : V_1

Define first level scaling coefficients:

$$V_{1,t} \equiv 2^{1/2} \widetilde{V}_{1,2t+1} = \sum_{l=0}^{L-1} g_l X_{2t+1-l \mod N}$$

$$=\sum_{l=0}^{N-1} g_l^{\circ} X_{2t+1-l \mod N},$$

 $\{g_l^\circ\}$ is $\{g_l\}$ periodized to N

Effect of
$$\{h_l\}, \{g_l\}$$

•
$$\{h_l\}$$
 is high-pass filter

• $\{g_l\}$ is low-pass because $\{h_l\}$ is high-pass

• same true for all Daubechies wavelet filters

What Kind of Process is $\{V_{1,t}\}$?

$$\{X_t\} \longleftrightarrow \{\mathcal{X}_k\},$$
$$X_t = \frac{1}{N} \sum_{k=0}^{N-1} \mathcal{X}_k e^{i2\pi tk/N} = \frac{1}{N} \sum_{k=-\frac{N}{2}+1}^{\frac{N}{2}} \mathcal{X}_k e^{i2\pi tk/N}$$

because $\{X_k\}$ & $\{e^{i2\pi tk/N}\}$ periodic with period N

What Kind of Process is $\{V_{1,t}\}$?

As $\tilde{g}_l \approx$ low pass with passband $\left[-\frac{1}{4}, \frac{1}{4}\right]$, have

$$\widetilde{V}_{1,t} = \sum_{l=0}^{L-1} \widetilde{g}_l X_{t-l} \approx \frac{1}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_k e^{i2\pi t k/N}$$

$$V_{1,t} = \sqrt{2}\widetilde{V}_{1,2t+1} \approx \frac{\sqrt{2}}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \mathcal{X}_{k} e^{i2\pi(2t+1)k/N},$$

$$= \frac{2}{N} \sum_{k=-\frac{N}{4}+1}^{\frac{N}{4}} \frac{\mathcal{X}_{k} e^{i2\pi k/N}}{\sqrt{2}} e^{i2\pi tk/(N/2)}$$

$$\equiv \frac{1}{N'} \sum_{k=-\frac{N'}{4}+1}^{\frac{N'}{2}} \mathcal{X}_{k}' e^{i2\pi tk/N'},$$

$$k = -\frac{N}{2} + 1$$

$$\frac{N}{2} = N' \text{ and } 0 \le t \le N' - 1$$

What Kind of Process is $\{V_{1,t}\}$?

$$V_{1,t} \approx \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_k e^{i2\pi tk/N'}$$

- \mathcal{X}'_k associated with $f'_k \equiv \frac{k}{N'}, -\frac{1}{2} < f'_k \leq \frac{1}{2}$
- $f'_k = \frac{2k}{N} = 2f_k$ so $f_k \in \left[-\frac{1}{4}, \frac{1}{4}\right] \Rightarrow f'_k \in \left[-\frac{1}{2}, \frac{1}{2}\right]$
- thus $\{V_{1,t}\}$ is low-pass but $\{V_{1,t}\}$ is 'full-band'

What Kind of Process is
$$\{W_{1,t}\}$$
?
As $\tilde{h}_l \approx$ high-pass filter, have
 $\widetilde{W}_{1,t} = \sum_{l=0}^{L-1} \tilde{h}_l X_{t-l}$
 $\approx \frac{1}{N} \left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}} + \sum_{k=\frac{N}{4}+1}^{\frac{N}{2}} \right) \mathcal{X}_k e^{i2\pi t k/N}$

What Kind of Process is $\{W_{1,t}\}$?

$$W_{1,t} = 2^{1/2} \widetilde{W}_{1,2t+1}$$

$$\approx \frac{\sqrt{2}}{N} \left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}} + \sum_{k=\frac{N}{4}+1}^{\frac{N}{2}} \right) \mathcal{X}_{k} e^{i2\pi(2t+1)k/N}$$

$$= \frac{2}{N} \left(\sum_{k=-\frac{N}{2}+1}^{-\frac{N}{4}} + \sum_{k=\frac{N}{4}+1}^{\frac{N}{2}} \right) \frac{\mathcal{X}_{k} e^{i2\pi k/N}}{\sqrt{2}} e^{i2\pi tk/(N/2)}$$

If
$$\mathcal{X}'_k \equiv \frac{\mathcal{X}_{k+\frac{N}{2}}e^{i2\pi(k+\frac{N}{2})/N}}{\sqrt{2}} = -\frac{\mathcal{X}_{k+\frac{N}{2}}e^{i2\pi k/N}}{\sqrt{2}}$$

What Kind of Process is $\{W_{1,t}\}$?

$$W_{1,t} \approx \frac{1}{N'} \sum_{k=-\frac{N'}{2}+1}^{\frac{N'}{2}} \mathcal{X}'_{k} e^{i2\pi tk/N'}$$

- \mathcal{X}'_k associated with $f'_k \equiv \frac{k}{N'}, -\frac{1}{2} < f'_k \leq \frac{1}{2}$
- $f'_k = \frac{2k}{N} = 2(\frac{1}{2} f_k)$ so $f_k \in [\frac{1}{4}, \frac{1}{2}] \Rightarrow f'_k \in [0, \frac{1}{2}]$ in reverse order
- $\{W_{1,t}\}$ is high-pass, but $\{W_{1,t}\}$ is 'full-band'

• Treat 'scale 2' process $\{V_{1,t} : t = 0, \dots, \frac{N}{2} - 1\}$ like 'scale 1' process $\{X_t : t = 0, \dots, N - 1\}$:

$$W_{2,t} \equiv \sum_{l=0}^{L-1} h_l V_{1,2t+1-l \mod N/2}, \quad t = 0, \dots, \frac{N}{4} - 1$$

and

$$V_{2,t} \equiv \sum_{l=0}^{L-1} g_l V_{1,2t+1-l \mod N/2, t=0,\dots,\frac{N}{4}-1}$$

Flow diagram for cascade with 3 filters:

$$\{b_t\} \longrightarrow \boxed{A_1(\cdot)} \xrightarrow{1.} \boxed{A_2(\cdot)} \xrightarrow{2.} \boxed{A_3(\cdot)} \xrightarrow{3.} \{c_t\}$$

if $\{b_t\} \longleftrightarrow B(\cdot) \& \{c_t\} \longleftrightarrow C(\cdot)$, then

- output from $A_1(\cdot)$ has DFT $A_1(f)B(f)$
- output from $A_2(\cdot)$ has DFT $A_2(f)A_1(f)B(f)$ So $\{b_t\} \longrightarrow \boxed{A(\cdot)} \longrightarrow \{c_t\}$ with $A(f) = A_3(f)A_2(f)A_1(f)B(f)$

Path from X to \mathbf{W}_2 almost a filter cascade

- Q: can we obtain W₂ from X using a single filter?
- A: yes, as the following argument shows

• define $\{h_l^{\uparrow}\} = \{h_0, 0, h_1, 0, \dots, h_{L-2}, 0, h_{L-1}\};$ note that this filter has width of 2L - 1

• define
$$\tilde{h}_l^{\uparrow} = h_l^{\uparrow}/\sqrt{2}$$
 & define

$$\widetilde{W}_{2,t} \equiv \sum_{l=0}^{2L-2} \widetilde{h}_l^{\dagger} \widetilde{V}_{1,t-l \bmod N}, \quad t = 0, \dots, N-1;$$

$$\begin{split} \widetilde{W}_{2,4t+3} &= \sum_{l=0}^{2L-2} \widetilde{h}_l^{\uparrow} \widetilde{V}_{1,4t+3-l \mod N} \\ &= \sum_{l=0}^{L-1} \widetilde{h}_l \widetilde{V}_{1,4t+3-2l \mod N} \\ &= \sum_{l=0}^{L-1} \widetilde{h}_l \widetilde{V}_{1,2(2t+1-l)+1 \mod N} \\ &= \frac{1}{2} \sum_{l=0}^{L-1} h_l V_{1,2t+1-l \mod N/2} = \frac{W_{2,t}}{2}; \end{split}$$

Flow diagram, indicating downsampling:

$$\mathbf{X} \longrightarrow \left[\{ g_l \} \right] \longrightarrow \left[\{ h_l^{\uparrow} \} \right] \longrightarrow 2 \widetilde{\mathbf{W}}_2 \xrightarrow{\downarrow 4} \mathbf{W}_2$$

Transfer function $H_2(\cdot)$ for equivalent filter is

- transfer function for $\{g_l\}$, i.e., $G(\cdot)$, times
- transfer function for $\{h_l^{\uparrow}\}$, say, $H^{\uparrow}(\cdot)$

•
$$H^{\uparrow}(f) = H(2f)$$
, so $H_2(f) = H(2f)G(f)$

Denote impulse response sequence for $H_2(\cdot)$ as

$$\{h_{2,l}: l = 0, \dots, L_2 - 1 = 3L - 3\}$$

Flow diagram with equivalent filter:

$$\mathbf{X} \longrightarrow \boxed{\{h_{2,l}\}}_{\downarrow 4} \longrightarrow \mathbf{W}_2$$

Can write

$$W_{2,t} = \sum_{l=0}^{L_2-1} h_{2,l} X_{4(t+1)-1-l \mod N}, \quad t = 0, \dots, \frac{N}{4} - 1$$
$$= \sum_{l=0}^{N-1} h_{2,l}^{\circ} X_{4(t+1)-1-l \mod N}, \quad t = 0, \dots, \frac{N}{4} - 1$$

where $\{h_{2,l}^{\circ}\}$ is $\{h_{2,l}\}$ periodized to length N

Another flow diagram with equivalent filter:

$$\mathbf{X} \longrightarrow \left[\left\{ H_2(\frac{k}{N}) \right\} \right] \xrightarrow{\downarrow 4} \mathbf{W}_2$$

similarly:

$$\mathbf{X} \longrightarrow \left[\{g_l\} \right] \longrightarrow \left[\{g_l^{\uparrow}\} \right] \xrightarrow{\downarrow 4} \mathbf{V}_2$$
$$\mathbf{X} \longrightarrow \left[\{G_2(\frac{k}{N})\} \right] \xrightarrow{\downarrow 4} \mathbf{V}_2$$

In terms of filters (letting $N_j \equiv \frac{N}{2^j}$), have

$$W_{j,t} \equiv \sum_{l=0}^{L-1} h_l V_{j-1,2t+1-l \mod N_{j-1}}, \quad t = 0, \dots, N_j - 1$$
$$= \sum_{l=0}^{L_j-1} h_{j,l} X_{2^j(t+1)-1-l \mod N},$$

where $\{h_{j,l}\}$ is the *j*th level equivalent wavelet filter and $L_j = (2^j - 1)(L - 1) + 1$

 $\{h_{j,l}\}$ formed by convolution of j filters: filter 1: $g_0, g_1, \ldots, g_{L-2}, g_{L-1};$ filter 2: $q_0, 0, q_1, 0, \ldots, q_{L-2}, 0, q_{L-1};$ filter 3: $q_0, 0, 0, 0, q_1, 0, 0, 0, \dots, q_{L-2}, 0, 0, 0, q_{L-1};$ • filter j-1: $q_0, 0, \ldots, 0, q_1, 0, \ldots, 0, \ldots, q_{L-2}, 0, \ldots, 0, q_{L-1}$; filter *j*: $h_0, 0, \ldots, 0, h_1, 0, \ldots, 0, \ldots, h_{L-2}, 0, \ldots, 0, h_{L-1}$

Properties of $\{h_{j,l}\}$:

$$\{h_{j,l} : l = 0, \dots, L_j - 1\}$$
$$\longleftrightarrow H(2^{j-1}f) \prod_{l=0}^{j-2} G(2^l f) \equiv H_j(f)$$

Nominal passband given by $\frac{1}{2^{j+1}} \leq |f| \leq \frac{1}{2^j}$ Periodized filter for forming rows of W_j :

$$\{h_{j,l}^{\circ}: l = 0, \dots, N-1\} \longleftrightarrow \{H(2^{j-1}\frac{k}{N}) \prod_{l=0}^{j-2} G(2^{l}\frac{k}{N}): k = 0, \dots, N-1\}$$

For the scaling coefficients, have

$$V_{j,t} \equiv \sum_{l=0}^{L-1} g_l V_{j-1,2t+1-l \mod N_{j-1}}, \quad t = 0, \dots, N_j - 1$$
$$= \sum_{l=0}^{L_j-1} g_{j,l} X_{2^j(t+1)-1-l \mod N},$$

where $\{g_{j,l}\}$ is the *j*th level equivalent scaling filter

Equivalent Filters for *j***th Stages** $\{g_{j,l}\}$

formed by convolution of j filters

- filters 1 to j 1 same as used to form $\{h_{j,l}\}$
- filter j: $g_0, 0, \dots, 0, g_1, 0, \dots, 0, g_{L-2}, 0, \dots, 0, g_{L-1}$ $\{g_{j,l} : l = 0, \dots, L_j - 1\} \longleftrightarrow \prod_{l=0}^{j-1} G(2^l f) \equiv G_j(f)$
- Nominal passband given by $0 \le |f| \le \frac{1}{2^{j+1}}$

•Periodized filter for forming rows of \mathcal{V}_j :

$$\{g_{j,l}^{\circ}: l=0,\ldots,N-1\}$$

$$\longleftrightarrow$$

$$\{\prod_{l=0}^{j-1} G(2^l \frac{k}{N}) : k = 0, \dots, N-1\}$$