DWT: Qualitative Description I

Like ODFT, Discrete Wavelet Transforn(DWT)
IS orthonormal transform

e analysis of variance: wavelet variance
(discrete wavelet power spectrum)

e additive decomposition: multiresolution
analysis



DWT: Different from ODFT? I

e Real-valued (complex-valued DW b® exist!)

e Basis vectors associated with scale & location
(time)

e RequiresN = 27 for some positive integef
(a restrictive assumption)



DWT:W:WX.I

W is N x 1 vector of DWT coefficients
(7th component denoted &%)

W is N x N transform matrix WTw = Ix.

N—1
Ex = X = &w = [W]* = Y W7
j=0

Key: sz IS ‘scale/location’ contribution to £x
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The Haar DWT: Row 0 to % I

Rowj = 0:] \}2,\}2,0,...,0] = WJ,

N —2 zeros
1 1 — T
T3 \/2,0,...,0} = Wi,

N —4 zeros

Rowj = 1: |0, 0,

Transpose ofth row as
Wj. :TZJWO., j :O,ooo%_ ]_

First% rows form orthonormal set G@f vectors

yields - wavelet coefficients of ‘scale 1, location
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The Haar DWT: Row = to 2 |

Rowjy = 3
1 111 — T
|~ 3 73030300 0] = Wi
N —4 zeros

Transpose of royj = < + k as

Wiy e = T*Wnx,, k=0,...57 —1

First 2% rows form orthonormal set o¥ vectors

yield % wavelet coefficients of ‘scale 2, location
47
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The Haar DWT: Row to &Y

-  3N.
Rowjy = =~
1 1 1 - T
° ° O O p— W
|: \/8, ) \/8, \/8, ) \/8,\ /i| _3i\f.
4 of these 4 of these N —8 zeros

Transpose of royy = 2Y 4 k as

W%—I—ko :TSkW%., k :O,% —1

X rows starting witly = Y yield 3 wavelet
coefficients of ‘scale 4, locatioBk
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The Haar DWT: Row...to N — 2 I

Rowjy = N — 2:

1 1 1
[—\/—N,..., \/N’\/N,...,\/N] W
—_—

% of these % of these

associated with wavelet coefficient of sc%[e

Rowj =N —1: [ 5,.... x| = Wi

N——— —
N of these

associated with coefficient of scalé

We have created a set ofV orthonormal vectors
N all



Interpretation of Haar DWT I

e Deflne
A—1

XA = % > Xy

[=0
‘'scale\’ average
Note:
X (1) = X; = scale 1 ‘average’
X n_1(N) = X = sample average
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Interpretation of Haar DWT . W = WX I

Wo = (X1— Xo)/v/2= (Xl(l) —Xo(l))/\/z
Wi = (Xs— X2)/v2 = (Xs(1) — Xa(1))/v/2
Wy _; = (Xn-1—Xn-—2)/v2=(Xn-1(1) — Xn-2(1))/v/2

First 5 rows yieldW;'s o< changeson scale 1



Interpretation of Haar DWT . W = WX I

=
2
||

(X3 —|— X2 — Xl — Xo)/z — 73(2) — 71(2)

s
2
I
[y
|

(Xn—1+ Xn—2— Xn_3— Xn_4)/2
= Xn-1(2) — Xn_3(2)

Next & rows yieldW;'s o< changesn scale 2
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Interpretation of Haar DWT . W = WX I

Wen = (X7+--+ Xy —Xg—-+-— Xo)/v/8
= V2(X~(4) — X3(4))
Wain _4 = (Xno1+ o+ Xnoa—Xnos — - — Xnv_s)/+/8

= V2(Xn-1(4) — Xn_5(4))

Next & rows yieldW;'s o< change®n scale 4
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Interpretation of Haar DWT . W = WX I

Wn_o = (XN—1+“‘+X%—X%_1—“‘—XO
= VN(Xn-1(5) - Xx_1(3))/2
Wn-o1 = (Xn-1+4 -4+ Xo0)/v/N=VNX

Next to last row yieldd¥; o« changeon scale%

Last row yieldsW; o averageon scaleN = 27
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Structure of DWT Matrix W I

® structure of rows iy
— first % rows yieldW;’s « change®n scale 1
— next% rows yieldW;’s o« change®n scale 2
— next% rows yieldW;’s o« change®n scale 4
— nextto last row yield3¥,; « changeon scale%

— last row yieldsW; o averageon scaleN = 2”7

-~ wavelet coeffs for scale; = 2791,
J

j=1,...,J

(75 Is standardized scale; At Is physical scale)
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Structure of DWT Matrix YV I

e EachW, localized in time: as scalg,
localization|

e Rows of W for given scaler;:
— circularly shifted with respect to each other

— shift between adjacent rows2s; = 27

e Differences of averages common theme for
DWTs
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DWT-Based Analysis of Variance'

Ew = [W]I* = [IX]|* = &

N-1
0% = v 2 (X=X’
t=1

X2 -X =L|W|2-X

2

1
~|
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DWT-Based Analysis of Variance'

Partition W Into subvectors associated with scale:
W
Wa

N _ ) —1
W hasz; elements (scale; = 277" changes)
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DWT-Based Analysis of Variance'

V ; has 1 element, namely; N X (scalelN average)
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DWT-Based Analysis of Variance'

Define discrete wavelet power spectrum:

PW(Tj) - %”anza T; = 1,2,4,. --»%9

J ~
SO Y i, Pw(Tj) = G5

Pyy(7;) notinvariant asX circularly shifts

18



DWT-Based Additive Decomposition'

SynthesisX = WTW
Partitiony¥ commensurate with partition aV:
o
Wa
W= | w;
W
L Vo
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DWT-Based Additive Decomposition'

o
W2

W: Wj

W
. Vi

Wj is 2¥ X N matrix (scaler; = 27~! changes)
Two properties: (aWVW; = W,;X &
(b) Wij — Iﬂj
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DWT-Based Additive Decomposition'

o
W2

W: Wj

W
- VJ —

Vjis1l x N row vector (each element i%)
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DWT-Multi Resolution Analysis I

J J
Xl::EEZVVf\N}-+'Vf\CI==§E:I%r+w5J

j=1 J=1
whereD; = Wi W; (synthesis-scale;)
Sy = V?VJ = X1

J
X = ) D; + S, (Multiresolution analysis)
j=1
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Analysis of Variance'

1D;11° = W] W||* = W WW! W; = WW; = [|[W,]|?

Analysis of variance using detalls:

ID;1°

J
=1

J J
6% =D Pw(m) =% 2 Wil = %
J=1 j=1

J

Note: <||D;||? is sample variance of detail series
(Argue that sample mean @; is 0)

23



Wavelet Smooths'

Definejth level wavelet smooth for
0<y3<J-—-1:

J
Sj — Z Dk + SJ
k=j+1
‘'smooth’ since smalt; variations removed from
X

J
Si=X-—> Dy
k=1
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Wavelet Roughs I

Definejth level wavelet rough:

0, .] = 05
R ; '

J
YDy, 1< <,
k=1

Three Interpretations of detalls, roughs and
smooths:S; + R; = X,

D;i=8;_1— S8,

Di=R;,—R;1
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Defining the DWT I

e can formulate DWT via ‘pyramid algorithm’

— definesyV for non-Haar wavelets

— |leads to same definition for Haay

— computesW = WX usingO(N)
multiplications

+ ‘brute force’ method use® (N ?)
+ faster than the fast Fourier transform!
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