DWT: Qualitative Description

Like ODFT, Discrete Wavelet Transform, (DWT) is orthonormal transform

- analysis of variance: wavelet variance (discrete wavelet power spectrum)
- additive decomposition: multiresolution analysis

DWT: Different from ODFT?

- Real-valued (complex-valued DWTs do exist!)
- Basis vectors associated with scale & location (time)
- Requires $N = 2^J$ for some positive integer J (a restrictive assumption)

$DWT: W = \mathcal{W}X.$

 \mathbf{W} is $N \times 1$ vector of DWT coefficients (jth component denoted as W_j)

 \mathcal{W} is $N \times N$ transform matrix: $\mathcal{W}^T \mathcal{W} = I_N$.

$$\mathcal{E}_{
m X} = \|
m X\|^2 = \mathcal{E}_{
m W} = \|
m W\|^2 = \sum_{j=0}^{N-1} W_j^2$$

Key: W_j^2 is 'scale/location' contribution to \mathcal{E}_{X}

The Haar DWT: Row 0 to $\frac{N}{2}$

Row
$$j = 0$$
: $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \underbrace{0, \dots, 0}_{N-2 \text{ zeros}} \right] \equiv \mathcal{W}_{0 \bullet}^T$

Row
$$j=1$$
: $\left[0,0,-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\underbrace{0,\ldots,0}_{N-4\text{ zeros}}\right]\equiv\mathcal{W}_{1ullet}^T$

Transpose of *j*th row as

$$\mathcal{W}_{jullet}=\mathcal{T}^{2j}\mathcal{W}_{0ullet},\;\;j=0,\ldotsrac{N}{2}-1$$

First $\frac{N}{2}$ rows form orthonormal set of $\frac{N}{2}$ vectors yields $\frac{N}{2}$ wavelet coefficients of 'scale 1,' location 2j

The Haar DWT: Row $\frac{N}{2}$ to $\frac{3N}{4}$

Row
$$j = \frac{N}{2}$$
:
$$\left[-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \underbrace{0, \dots, 0}_{N-4 \text{ zeros}} \right] \equiv \mathcal{W}_{\frac{N}{2} \bullet}^{T}$$

Transpose of row $j = \frac{N}{2} + k$ as

$$\mathcal{W}_{rac{N}{2}+kullet}=\mathcal{T}^{4k}\mathcal{W}_{rac{N}{2}ullet},\;\;k=0,\ldotsrac{N}{4}-1$$

First $\frac{3N}{4}$ rows form orthonormal set of $\frac{3N}{4}$ vectors yield $\frac{N}{4}$ wavelet coefficients of 'scale 2,' location 4j

The Haar DWT:Row $\frac{3N}{4}$ to $\frac{7N}{8}$

Row
$$j = \frac{3N}{4}$$
:

$$\left[\underbrace{-\frac{1}{\sqrt{8}}, \dots, -\frac{1}{\sqrt{8}}}_{\text{4 of these}}, \underbrace{\frac{1}{\sqrt{8}}, \dots, \frac{1}{\sqrt{8}}}_{\text{4 of these}}, \underbrace{0, \dots, 0}_{N-8 \text{ zeros}}\right] \equiv \mathcal{W}_{\frac{3N}{4}}^{T} \bullet$$

Transpose of row $j = \frac{3N}{4} + k$ as

$$\mathcal{W}_{rac{3N}{4}+kullet}=\mathcal{T}^{8k}\mathcal{W}_{rac{3N}{4}ullet},\;\;k=0,\ldotsrac{N}{8}-1$$

 $\frac{N}{8}$ rows starting with $j = \frac{3N}{4}$ yield $\frac{N}{8}$ wavelet coefficients of 'scale 4,' location 8k

The Haar DWT: Row . . . to N-2

Row
$$j=N-2$$
:
$$\left[\underbrace{-\frac{1}{\sqrt{N}},\ldots,-\frac{1}{\sqrt{N}}}_{N},\underbrace{\frac{1}{\sqrt{N}},\ldots,\frac{1}{\sqrt{N}}}_{N}\right]\equiv\mathcal{W}_{N-2\bullet}^{T}$$

associated with wavelet coefficient of scale $\frac{N}{2}$

Row
$$j = N - 1$$
: $\left[\underbrace{\frac{1}{\sqrt{N}}, \dots, \frac{1}{\sqrt{N}}}_{N \text{ of these}}\right] \equiv \mathcal{W}_{N-1 \bullet}^{T}$

associated with coefficient of scale N

We have created a set of N orthonormal vectors in all

Interpretation of Haar DWT

Define

$$\overline{X}_t(\lambda) \equiv rac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l}$$

'scale λ ' average

Note:

$$\overline{X}_t(1) = X_t = \text{scale 1 'average'}$$

$$\overline{X}_{N-1}(N) = \overline{X} = ext{sample average}$$

Interpretation of Haar DWT: W = WX

$$\begin{array}{rcl} W_0 & = & (X_1 - X_0)/\sqrt{2} = (\overline{X}_1(1) - \overline{X}_0(1))/\sqrt{2} \\ W_1 & = & (X_3 - X_2)/\sqrt{2} = (\overline{X}_3(1) - \overline{X}_2(1))/\sqrt{2} \\ & \vdots \\ W_{\frac{N}{2} - 1} & = & (X_{N - 1} - X_{N - 2})/\sqrt{2} = (\overline{X}_{N - 1}(1) - \overline{X}_{N - 2}(1))/\sqrt{2} \end{array}$$

First $\frac{N}{2}$ rows yield W_j 's \propto changes on scale 1

Interpretation of Haar DWT : W = WX

$$egin{array}{lcl} W_{rac{N}{2}} &=& (X_3 + X_2 - X_1 - X_0)/2 = \overline{X}_3(2) - \overline{X}_1(2) \\ & & dots \\ W_{rac{3N}{4}-1} &=& (X_{N-1} + X_{N-2} - X_{N-3} - X_{N-4})/2 \\ & &=& \overline{X}_{N-1}(2) - \overline{X}_{N-3}(2) \end{array}$$

Next $\frac{N}{4}$ rows yield W_j 's \propto changes on scale 2

Interpretation of Haar DWT : W = WX

$$W_{\frac{3N}{4}} = (X_7 + \dots + X_4 - X_3 - \dots - X_0)/\sqrt{8}$$

$$= \sqrt{2}(\overline{X}_7(4) - \overline{X}_3(4))$$

$$\vdots$$

$$W_{\frac{7N}{8} - 1} = (X_{N-1} + \dots + X_{N-4} - X_{N-5} - \dots - X_{N-8})/\sqrt{8}$$

$$= \sqrt{2}(\overline{X}_{N-1}(4) - \overline{X}_{N-5}(4))$$

Next $\frac{N}{8}$ rows yield W_j 's \propto changes on scale 4

Interpretation of Haar DWT: W = WX

$$\begin{array}{rcl} \vdots \\ W_{N-2} & = & (X_{N-1} + \dots + X_{\frac{N}{2}} - X_{\frac{N}{2}-1} - \dots - X_0 \\ & = & \sqrt{N} (\overline{X}_{N-1} (\frac{N}{2}) - \overline{X}_{\frac{N}{2}-1} (\frac{N}{2}))/2 \\ W_{N-1} & = & (X_{N-1} + \dots + X_0)/\sqrt{N} = \sqrt{N} \overline{X} \end{array}$$

Next to last row yields $W_j \propto change$ on scale $\frac{N}{2}$

Last row yields $W_j \propto average$ on scale $N=2^J$

Structure of DWT Matrix W

- structure of rows in \mathcal{W}
 - first $rac{N}{2}$ rows yield W_j 's \propto *changes* on scale 1
 - next $\frac{N}{4}$ rows yield W_j 's \propto *changes* on scale 2
 - next $\frac{N}{8}$ rows yield W_j 's \propto *changes* on scale 4
 - next to last row yields $W_j \propto change$ on scale $\frac{N}{2}$
 - last row yields $W_j \propto$ average on scale $N=2^J$
- $ullet rac{N}{2 au_j}$ wavelet coeff.'s for scale $au_j \equiv 2^{j-1},$ $j=1,\ldots,J$

 $(au_j ext{ is standardized scale}; au_j extstyle t ext{ is physical scale})$

Structure of DWT Matrix W

- Each W_j localized in time: as scale \uparrow , localization \downarrow
- Rows of \mathcal{W} for given scale τ_j :
 - circularly shifted with respect to each other
 - shift between adjacent rows is $2 au_j=2^j$
- Differences of averages common theme for DWTs

$$\mathcal{E}_{\mathrm{W}} = \|\mathrm{W}\|^2 = \|\mathrm{X}\|^2 = \mathcal{E}_{\mathrm{X}}$$

$$\hat{\sigma}_{X}^{2} = \frac{1}{N} \sum_{t=1}^{N-1} (X_{t} - \overline{X})^{2}$$

$$= \frac{1}{N} ||\mathbf{X}||^{2} - \overline{X}^{2} = \frac{1}{N} ||\mathbf{W}||^{2} - \overline{X}^{2}$$

Partition W into subvectors associated with scale:

$$egin{array}{c|c} \mathbf{W_1} \\ \mathbf{W_2} \\ \vdots \\ \mathbf{W} = & \mathbf{W_j} \\ \vdots \\ \mathbf{W}_J \\ \mathbf{V}_J \end{array}$$

 \mathbf{W}_j has $rac{N}{2^j}$ elements (scale $au_j = 2^{j-1}$ changes)

 \mathbf{V}_{J} has 1 element, namely, $\sqrt{N}\overline{X}$ (scale N average)

Define discrete wavelet power spectrum:

$$P_{\mathcal{W}}(au_j) \equiv rac{1}{N} \|\mathbf{W}_j\|^2, \;\; au_j = 1, 2, 4, \ldots, rac{N}{2},$$

so
$$\sum_{j=1}^J P_{\mathcal{W}}(au_j) = \hat{\sigma}_X^2$$
.

 $P_{\mathcal{W}}(\tau_j)$ not invariant as X circularly shifts

DWT-Based Additive Decomposition

Synthesis: $X = \mathcal{W}^T W$

Partition W commensurate with partition of W:

$$egin{array}{c|c} \mathcal{W}_1 & & & & \\ \mathcal{W}_2 & & & & \\ & & \vdots & & \\ \mathcal{W}_J & & & \\ & \mathcal{V}_J & & \\ \end{array}$$

DWT-Based Additive Decomposition

$$\mathcal{W}_j$$
 is $\frac{N}{2^j} \times N$ matrix (scale $\tau_j = 2^{j-1}$ changes)
Two properties: (a) $W_j = \mathcal{W}_j X$ & (b) $\mathcal{W}_j \mathcal{W}_j^T = I_{\frac{N}{2^j}}$

DWT-Based Additive Decomposition

 \mathcal{V}_J is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)

DWT-Multi Resolution Analysis

$$\mathbf{X} = \sum_{j=1}^J \mathcal{W}_j^T \mathbf{W}_j + \mathcal{V}_J^T \mathbf{V}_J = \sum_{j=1}^J \mathcal{D}_j + \mathcal{S}_J$$

where
$$\mathcal{D}_j \equiv \mathcal{W}_j^T \mathbf{W}_j$$
 (synthesis-scale τ_j)

$$\mathcal{S}_J \equiv \mathcal{V}_J^T \mathrm{V}_J = \overline{X} 1$$

$$\mathbf{X} = \sum_{j=1}^{J} \mathcal{D}_j + \mathcal{S}_J$$
 (Multiresolution analysis)

Analysis of Variance

$$\|\mathcal{D}_j\|^2 = \|\mathcal{W}_j^T \mathbf{W}_j\|^2 = \mathbf{W}_j^T \underbrace{\mathcal{W}_j \mathcal{W}_j^T}_{I_{\frac{N}{2^j}}} \mathbf{W}_j = \mathbf{W}_j^T \mathbf{W}_j = \|\mathbf{W}_j\|^2$$

Analysis of variance using details:

$$\hat{\sigma}_X^2 = \sum_{j=1}^J P_{\mathcal{W}}(au_j) = rac{1}{N} \sum_{j=1}^J \| \mathbf{W}_j \|^2 = rac{1}{N} \sum_{j=1}^J \| \mathcal{D}_j \|^2$$

Note: $\frac{1}{N} ||\mathcal{D}_j||^2$ is sample variance of detail series (Argue that sample mean of \mathcal{D}_j is 0)

Wavelet Smooths

Define jth level wavelet smooth for

$$0 \le j \le J - 1$$
:

$$\mathcal{S}_{j} \equiv \sum_{k=j+1}^{J} \mathcal{D}_{k} + \mathcal{S}_{J}$$

'smooth' since small τ_j variations removed from X:

$$\mathcal{S}_j = \mathrm{X} - \sum_{k=1}^j \mathcal{D}_k$$

Wavelet Roughs

Define *j*th level wavelet rough:

$$\mathcal{R}_j \equiv \left\{egin{array}{ll} 0, & j=0; \ \sum_{k=1}^j \mathcal{D}_k, & 1 \leq j \leq J, \end{array}
ight.$$

Three interpretations of details, roughs and smooths: $S_j + \mathcal{R}_j = X$,

$$egin{aligned} \mathcal{D}_j &= \mathcal{S}_{j-1} - \mathcal{S}_j, \ \mathcal{D}_j &= \mathcal{R}_j - \mathcal{R}_{j-1} \end{aligned}$$

Defining the DWT

- can formulate DWT via 'pyramid algorithm'
 - defines \mathcal{W} for non-Haar wavelets
 - leads to same definition for Haar \mathcal{W}
 - computes $\mathbf{W} = \mathcal{W}\mathbf{X}$ using O(N) multiplications
 - st 'brute force' method uses $O(N^2)$
 - * faster than the fast Fourier transform!