DWT: Qualitative Description

Like ODFT, Discrete Wavelet Transform, (DWT) is orthonormal transform

- analysis of variance: wavelet variance (discrete wavelet power spectrum)
- additive decomposition: multiresolution analysis

DWT: Different from ODFT?

- Real-valued (complex-valued DWTs do exist!)
- Basis vectors associated with scale \& location (time)
- Requires $N=2^{J}$ for some positive integer J (a restrictive assumption)

DWT : W = WX.

W is $N \times 1$ vector of DWT coefficients
(\boldsymbol{j} th component denoted as $\boldsymbol{W}_{\boldsymbol{j}}$)
\mathcal{W} is $N \times N$ transform matrix: $\mathcal{W}^{T} \mathcal{W}=I_{N}$.

$$
\mathcal{E}_{\mathrm{X}}=\|\mathrm{X}\|^{2}=\mathcal{E}_{\mathrm{W}}=\|\mathrm{W}\|^{2}=\sum_{j=0}^{N-1} W_{j}^{2}
$$

Key: W_{j}^{2} is 'scale/location' contribution to \mathcal{E}_{X}

The Haar DWT: Row 0 to $\frac{N}{2}$

Row $j=0:[-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, \underbrace{0, \ldots, 0}_{N-2 \text { zeros }}] \equiv \mathcal{W}_{0 \bullet}^{T}$
Row $j=1:[0,0,-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, \underbrace{0, \ldots, 0}_{N-4 \text { zeros }}] \equiv \mathcal{W}_{1 \bullet}^{T}$
Transpose of \boldsymbol{j} th row as

$$
\mathcal{W}_{j \bullet}=\mathcal{T}^{2 j} \mathcal{W}_{0 \bullet}, \quad j=0, \ldots \frac{N}{2}-1
$$

First $\frac{N}{2}$ rows form orthonormal set of $\frac{N}{2}$ vectors yields $\frac{N}{2}$ wavelet coefficients of 'scale 1 ,' location $2 j$

The Haar DWT: Row $\frac{N}{2}$ to $\frac{3 N}{4}$

Row $j=\frac{N}{2}$:
$[-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \underbrace{0, \ldots, 0}_{N-4 \text { zeros }}] \equiv \mathcal{W}_{\frac{N}{2}}^{T}$.
Transpose of row $\boldsymbol{j}=\frac{N}{2}+\boldsymbol{k}$ as

$$
\mathcal{W}_{\frac{N}{2}+k \bullet}=\mathcal{T}^{4 k} \mathcal{W}_{\frac{N}{2} \bullet}, \quad k=0, \ldots \frac{N}{4}-1
$$

First $\frac{3 N}{4}$ rows form orthonormal set of $\frac{3 N}{4}$ vectors yield $\frac{N}{4}$ wavelet coefficients of 'scale 2 ,' location $4 j$

The Haar DWT:Row $\frac{3 N}{4}$ to $\frac{7 N}{8}$

Row $\boldsymbol{j}=\frac{3 N}{4}$:
$[\underbrace{-\frac{1}{\sqrt{ } 8}, \ldots,-\frac{1}{\sqrt{ } 8}}_{4 \text { of these }}, \underbrace{\frac{1}{\sqrt{ } 8}, \ldots, \frac{1}{\sqrt{ } 8}}_{4 \text { of these }}, \underbrace{0, \ldots, 0}_{N-8 \text { zeros }}] \equiv \mathcal{W}_{\frac{3 N}{4}}^{T} \bullet$
Transpose of row $\boldsymbol{j}=\frac{3 N}{4}+k$ as

$$
\mathcal{W}_{\frac{3 N}{4}+k \bullet}=\mathcal{T}^{8 k} \mathcal{W}_{\frac{3 N}{4} \bullet}, \quad k=0, \ldots \frac{N}{8}-1
$$

$\frac{N}{8}$ rows starting with $j=\frac{3 N}{4}$ yield $\frac{N}{8}$ wavelet coefficients of 'scale 4,' location $8 k$

The Haar DWT: Row . . . to N - 2

Row $\boldsymbol{j}=\boldsymbol{N}-2$:

$$
[\underbrace{-\frac{1}{\sqrt{ } N}, \ldots,-\frac{1}{\sqrt{ } N}}_{\frac{N}{2} \text { of these }}, \underbrace{\frac{1}{\sqrt{ } N}, \ldots, \frac{1}{\sqrt{ } N}}_{\frac{N}{2} \text { of these }}] \equiv \mathcal{W}_{N-2 \bullet}^{T}
$$

associated with wavelet coefficient of scale $\frac{N}{2}$

$$
\text { Row } j=N-1:[\underbrace{\frac{1}{\sqrt{ } N}, \ldots, \frac{1}{\sqrt{ } N}}_{N \text { of these }}] \equiv \mathcal{W}_{N-1 \bullet}^{T}
$$

associated with coefficient of scale N
We have created a set of N orthonormal vectors in all

Interpretation of Haar DWT

- Define

$$
\bar{X}_{t}(\lambda) \equiv \frac{1}{\lambda} \sum_{l=0}^{\lambda-1} X_{t-l}
$$

'scale λ ' average
Note:
$\bar{X}_{t}(1)=X_{t}=$ scale 1 'average'
$\bar{X}_{N-1}(N)=\bar{X}=$ sample average

Interpretation of Haar DWT : $\mathrm{W}=\mathcal{W}$ X

$$
\begin{aligned}
W_{0} & =\left(X_{1}-X_{0}\right) / \sqrt{ } 2=\left(\bar{X}_{1}(1)-\bar{X}_{0}(1)\right) / \sqrt{ } 2 \\
W_{1} & =\left(X_{3}-X_{2}\right) / \sqrt{ } 2=\left(\bar{X}_{3}(1)-\bar{X}_{2}(1)\right) / \sqrt{ } 2 \\
& \vdots \\
W_{\frac{N}{2}-1} & =\left(X_{N-1}-X_{N-2}\right) / \sqrt{ } 2=\left(\bar{X}_{N-1}(1)-\bar{X}_{N-2}(1)\right) / \sqrt{ } 2
\end{aligned}
$$

First $\frac{N}{2}$ rows yield \boldsymbol{W}_{j} 's \propto changes on scale 1

Interpretation of Haar DWT : $\mathrm{W}=\mathcal{W}$ X

$$
\begin{aligned}
W_{\frac{N}{2}} & =\left(X_{3}+X_{2}-X_{1}-X_{0}\right) / 2=\bar{X}_{3}(2)-\bar{X}_{1}(2) \\
& \vdots \\
W_{\frac{3 N}{4}-1} & =\left(X_{N-1}+X_{N-2}-X_{N-3}-X_{N-4}\right) / 2 \\
& =\bar{X}_{N-1}(2)-\bar{X}_{N-3}(2)
\end{aligned}
$$

Next $\frac{N}{4}$ rows yield $\boldsymbol{W}_{\boldsymbol{j}}$'s \propto changes on scale 2

Interpretation of Haar DWT : $\mathrm{W}=\mathcal{W}$ X

$$
\begin{aligned}
W_{\frac{3 N}{4}} & =\left(X_{7}+\cdots+X_{4}-X_{3}-\cdots-X_{0}\right) / \sqrt{ } 8 \\
& =\sqrt{ } 2\left(\bar{X}_{7}(4)-\bar{X}_{3}(4)\right) \\
& \vdots \\
W_{\frac{7 N}{8}-1} & =\left(X_{N-1}+\cdots+X_{N-4}-X_{N-5}-\cdots-X_{N-8}\right) / \sqrt{ } 8 \\
& =\sqrt{ } 2\left(\bar{X}_{N-1}(4)-\bar{X}_{N-5}(4)\right)
\end{aligned}
$$

Next $\frac{N}{8}$ rows yield W_{j} 's \propto changes on scale 4

Interpretation of Haar DWT : $\mathrm{W}=\mathcal{W}$ X

$$
\begin{aligned}
W_{N-2} & =\left(X_{N-1}+\cdots+X_{\frac{N}{2}}-X_{\frac{N}{2}-1}-\cdots-X_{0}\right. \\
& =\sqrt{N}\left(\bar{X}_{N-1}\left(\frac{N}{2}\right)-\bar{X}_{\frac{N}{2}-1}\left(\frac{N}{2}\right)\right) / 2 \\
W_{N-1} & =\left(X_{N-1}+\cdots+X_{0}\right) / \sqrt{ } N=\sqrt{N} \bar{X}
\end{aligned}
$$

Next to last row yields $W_{j} \propto$ change on scale $\frac{N}{2}$

Last row yields $W_{j} \propto$ average on scale $N=\mathbf{2}^{J}$

Structure of DWT Matrix \mathcal{W}

- structure of rows in \mathcal{W}
- first $\frac{N}{2}$ rows yield \boldsymbol{W}_{j} 's \propto changes on scale 1
- next $\frac{N}{4}$ rows yield \boldsymbol{W}_{j} 's \propto changes on scale 2
- next $\frac{N}{8}$ rows yield \boldsymbol{W}_{j} 's \propto changes on scale 4
- next to last row yields $\boldsymbol{W}_{j} \propto$ change on scale $\frac{N}{2}$
- last row yields $W_{j} \propto$ average on scale $N=\mathbf{2}^{J}$
- $\frac{N}{2 \tau_{j}}$ wavelet coeff.'s for scale $\tau_{j} \equiv 2^{j-1}$, $j=1, \ldots, J$
($\boldsymbol{\tau}_{j}$ is standardized scale; $\tau_{j} \Delta t$ is physical scale)

Structure of DWT Matrix \mathcal{W}

- Each \boldsymbol{W}_{j} localized in time: as scale \uparrow, localization \downarrow
- Rows of \mathcal{W} for given scale $\boldsymbol{\tau}_{j}$:
- circularly shifted with respect to each other
- shift between adjacent rows is $2 \tau_{j}=2^{j}$
- Differences of averages common theme for DWTs

DWT-Based Analysis of Variance

$$
\mathcal{E}_{\mathrm{W}}=\|\mathrm{W}\|^{2}=\|\mathrm{X}\|^{2}=\mathcal{E}_{\mathrm{X}}
$$

$$
\begin{aligned}
\hat{\sigma}_{X}^{2} & =\frac{1}{N} \sum_{t=1}^{N-1}\left(X_{t}-\bar{X}\right)^{2} \\
& =\frac{1}{N}\|\mathrm{X}\|^{2}-\bar{X}^{2}=\frac{1}{N}\|\mathrm{~W}\|^{2}-\bar{X}^{2}
\end{aligned}
$$

DWT-Based Analysis of Variance

Partition W into subvectors associated with scale:

$$
\mathbf{W}=\left[\begin{array}{c}
\mathrm{W}_{1} \\
\mathrm{~W}_{2} \\
\vdots \\
\mathrm{~W}_{j} \\
\vdots \\
\mathrm{~W}_{J} \\
\mathrm{~V}_{J}
\end{array}\right]
$$

W_{j} has $\frac{N}{2^{j}}$ elements (scale $\tau_{j}=2^{j-1}$ changes)

DWT-Based Analysis of Variance

$$
\mathbf{W}=\left[\begin{array}{c}
\mathbf{W}_{1} \\
\mathrm{~W}_{2} \\
\vdots \\
\mathrm{~W}_{j} \\
\vdots \\
\mathrm{~W}_{J} \\
\mathrm{~V}_{J}
\end{array}\right]
$$

V_{J} has 1 element, namely, $\sqrt{\boldsymbol{N}} \overline{\boldsymbol{X}}$ (scale N average)

DWT-Based Analysis of Variance

Define discrete wavelet power spectrum:

$$
\begin{aligned}
& P_{\mathcal{W}}\left(\tau_{j}\right) \equiv \frac{1}{N}\left\|\mathbf{W}_{j}\right\|^{2}, \tau_{j}=1,2,4, \ldots, \frac{N}{2} \\
& \text { so } \sum_{j=1}^{J} P_{\mathcal{W}}\left(\tau_{j}\right)=\hat{\sigma}_{X}^{2}
\end{aligned}
$$

$\boldsymbol{P}_{\mathcal{W}}\left(\boldsymbol{\tau}_{j}\right)$ not invariant as \mathbf{X} circularly shifts

DWT-Based Additive Decomposition

Synthesis: $X=\mathcal{W}^{T} W$
Partition \mathcal{W} commensurate with partition of \mathbf{W} :

$$
\mathcal{W}=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]
$$

DWT-Based Additive Decomposition

$$
\mathcal{W}=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]
$$

\mathcal{W}_{j} is $\frac{N}{2^{j}} \times N$ matrix (scale $\tau_{j}=2^{j-1}$ changes) Two properties: (a) $\mathrm{W}_{j}=\mathcal{W}_{j} \mathbf{X}$ \& (b) $\mathcal{W}_{j} \mathcal{W}_{j}^{T}=I_{\frac{N}{2 j}}$

DWT-Based Additive Decomposition

$$
\mathcal{W}=\left[\begin{array}{c}
\mathcal{W}_{1} \\
\mathcal{W}_{2} \\
\vdots \\
\mathcal{W}_{j} \\
\vdots \\
\mathcal{W}_{J} \\
\mathcal{V}_{J}
\end{array}\right]
$$

\mathcal{V}_{J} is $1 \times N$ row vector (each element is $\frac{1}{\sqrt{N}}$)

DWT-Multi Resolution Analysis

$$
\mathbf{X}=\sum_{j=1}^{J} \mathcal{W}_{j}^{T} \mathbf{W}_{j}+\mathcal{V}_{J}^{T} \mathbf{V}_{J}=\sum_{j=1}^{J} \mathcal{D}_{j}+\mathcal{S}_{J}
$$

where $\mathcal{D}_{j} \equiv \mathcal{W}_{j}^{T} \mathbf{W}_{j}$ (synthesis-scale τ_{j})
$\mathcal{S}_{J} \equiv \mathcal{V}_{J}^{T} \mathrm{~V}_{J}=\overline{\boldsymbol{X}} 1$
$\mathbf{X}=\sum_{j=1}^{J} \mathcal{D}_{j}+\mathcal{S}_{J}$ (Multiresolution analysis)

Analysis of Variance

$$
\left\|\mathcal{D}_{j}\right\|^{2}=\left\|\mathcal{W}_{j}^{T} \mathrm{~W}_{j}\right\|^{2}=\mathrm{W}_{j}^{T} \underbrace{\mathcal{W}_{j} \mathcal{W}_{j}^{T}}_{I_{2 j}} \mathrm{~W}_{j}=\mathrm{W}_{j}^{T} \mathrm{~W}_{j}=\left\|\mathrm{W}_{j}\right\|^{2}
$$

Analysis of variance using details:

$$
\hat{\sigma}_{X}^{2}=\sum_{j=1}^{J} P_{\mathcal{W}}\left(\tau_{j}\right)=\frac{1}{N} \sum_{j=1}^{J}\left\|\mathrm{~W}_{j}\right\|^{2}=\frac{1}{N} \sum_{j=1}^{J}\left\|\mathcal{D}_{j}\right\|^{2}
$$

Note: $\frac{1}{N}\left\|\mathcal{D}_{j}\right\|^{2}$ is sample variance of detail series (Argue that sample mean of \mathcal{D}_{j} is 0)

Wavelet Smooths

Define \boldsymbol{j} th level wavelet smooth for $0 \leq j \leq J-1$:

$$
\mathcal{S}_{j} \equiv \sum_{k=j+1}^{J} \mathcal{D}_{k}+\mathcal{S}_{J}
$$

'smooth' since small $\boldsymbol{\tau}_{j}$ variations removed from X:

$$
\mathcal{S}_{j}=\mathrm{X}-\sum_{k=1}^{j} \mathcal{D}_{k}
$$

Wavelet Roughs

Define \boldsymbol{j} th level wavelet rough:

$$
\mathcal{R}_{j} \equiv \begin{cases}0, & j=0 \\ \sum_{k=1}^{j} \mathcal{D}_{k}, & 1 \leq j \leq J\end{cases}
$$

Three interpretations of details, roughs and smooths: $\mathcal{S}_{j}+\mathcal{R}_{j}=\mathrm{X}$,
$\mathcal{D}_{j}=\mathcal{S}_{j-1}-\mathcal{S}_{j}$,
$\mathcal{D}_{j}=\boldsymbol{\mathcal { R }}_{j}-\boldsymbol{\mathcal { R }}_{j-1}$

Defining the DWT

- can formulate DWT via 'pyramid algorithm'
- defines \mathcal{W} for non-Haar wavelets
- leads to same definition for Haar \mathcal{W}
- computes $\mathrm{W}=\mathcal{W} \mathrm{X}$ using $O(N)$
multiplications
* 'brute force' method uses $O\left(N^{2}\right)$
* faster than the fast Fourier transform!

