Pyramid Algorithm

1. Summary of 1st Stage of Pyramid Algorithm

- transforms $\left\{X_{t}: t=0, \ldots, N-1\right\}$ into wavelet \& scaling coefficients
- $\frac{N}{2}$ wavelet coefficients $\left\{W_{1, t}, t=0, \ldots, \frac{N}{2}-1\right\}$ associated with:
- \mathbf{W}_{1}, an $\frac{N}{2} \times 1$ vector
- changes on scale $\tau_{1}=1$
- first level detail \mathcal{D}_{1}
- nominal frequencies $\frac{1}{4} \leq|f| \leq \frac{1}{2}$
- $\mathcal{W}_{1}=\mathcal{B}_{1}$, an $\frac{N}{2} \times N$ matrix consisting of first $\frac{N}{2}$ rows of \mathcal{W}
- $\frac{N}{2}$ scaling coefficients $\left\{V_{1, t}, t=0, \ldots, \frac{N}{2}-1\right\}$
associated with:
- \mathbf{V}_{1}, an $\frac{N}{2} \times 1$ vector
- averages on scale $\lambda_{1}=2$
- first level smooth \mathcal{S}_{1}
- nominal frequencies $0 \leq|f| \leq \frac{1}{4}$
$-\mathcal{V}_{1}=\mathcal{A}_{1}$, an $\frac{N}{2} \times N$ matrix spanning same subspace as last $\frac{N}{2}$ rows of \mathcal{W}

Please write down explicitly the elements of \mathcal{B}_{1} and \mathcal{A}_{1}
2. Summary of 2nd Stage of Pyramid Algorithm

- transforms $\left\{V_{1, t}: t=0, \ldots, \frac{N}{2}-1\right\}$ into wavelet \& scaling coefficients
- $\frac{N}{4}$ wavelet coefficients $\left\{W_{2, t}, t=0, \ldots, \frac{N}{4}-1\right\}$ associated with:
- \mathbf{W}_{2}, an $\frac{N}{4} \times 1$ vector
- changes on scale $\tau_{2}=2$
- second level detail \mathcal{D}_{2}
- nominal frequencies $\frac{1}{8} \leq|f| \leq \frac{1}{4}$
- $\mathcal{W}_{2}=\mathcal{B}_{2} \mathcal{A}_{1}$, an $\frac{N}{4} \times N$ matrix consisting of rows $\frac{N}{2}$ to $\frac{3 N}{4}-1$ of \mathcal{W}
- $\frac{N}{4}$ scaling coefficients $\left\{V_{2, t}, t=0, \ldots, \frac{N}{4}-1\right\}$ associated with:
- \mathbf{V}_{2}, an $\frac{N}{4} \times 1$ vector
- averages on scale $\lambda_{2}=4$
- second level smooth \mathcal{S}_{2}
- nominal frequencies $0 \leq|f| \leq \frac{1}{8}$
$-\mathcal{V}_{2}=\mathcal{A}_{2} \mathcal{A}_{1}$, an $\frac{N}{4} \times N$ matrix spanning same subspace as last $\frac{N}{4}$ rows of \mathcal{W}

Please write down explicitly the elements of \mathcal{B}_{2} and \mathcal{A}_{2}
3. Write down j-th stage of the Pyramid Algorithm
4. Justify that \mathcal{W} so obtained is indeed an orthonormal matrix.
5. Construct your own wavelet filter and see how it does vis-a-vis the Haar wavelet.

