The Haar DWT

- to see scale/location aspect, consider Haar \mathcal{W}
- formulation of first $\frac{N}{2}$ rows:

$$
\begin{aligned}
& \text { - row } j=0:[-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, \underbrace{0, \ldots, 0}_{N-2 \text { zeros }}] \equiv \mathcal{W}_{0 \bullet}^{T} \\
& \text { note: }\left\|\mathcal{W}_{0} \bullet\right\|^{2}=\frac{1}{2}+\frac{1}{2}=1, \text { as required } \\
& \text { - row } j=1:[0,0,-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}, \underbrace{0, \ldots, 0}_{N-4 \text { zeros }}] \equiv \mathcal{W}_{1 \bullet}^{T} \\
& \text { note: } \mathcal{W}_{0 \bullet} \& \mathcal{W}_{1 \bullet} \text { are orthonormal pair } \\
& \text { - row } j=\frac{N}{2}-1:[\underbrace{0, \ldots, 0}_{N-2 \text { zeros }},-\frac{1}{\sqrt{ } 2}, \frac{1}{\sqrt{ } 2}] \equiv \mathcal{W}_{\frac{N}{2}-1 \bullet}^{T}
\end{aligned}
$$

- can express transpose of j th row as

$$
\mathcal{W}_{j \bullet}=\mathcal{T}^{2 j} \mathcal{W}_{0 \bullet}, \quad j=0, \ldots \frac{N}{2}-1
$$

- first $\frac{N}{2}$ rows form orthonormal set of $\frac{N}{2}$ vectors
- yields $\frac{N}{2}$ wavelet coefficients of 'scale 1 ,' location $2 j$
- formulation of next $\frac{N}{4}$ rows:
$-j=\frac{N}{2}:[-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \underbrace{0, \ldots, 0}_{N-4 \text { zeros }}] \equiv \mathcal{W}_{\frac{N}{2}}^{T} \bullet$
note: $\left\|\mathcal{W}_{\frac{N}{2} \bullet}\right\|^{2}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1$, as required note: $\mathcal{W}_{\frac{N}{2}} \bullet \& \mathcal{W}_{0}$. etc. are orthonormal pair
$-j=\frac{N}{2}+1:[0,0,0,0,-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \underbrace{0, \ldots, 0}_{N-8 \text { zeros }}] \equiv \mathcal{W}_{\frac{N}{2}+1}^{T} \bullet$
note: $\mathcal{W}_{\frac{N}{2}} \bullet \& \mathcal{W}_{\frac{N}{2}+1} \bullet$ are orthonormal pair
- row $j=\frac{3 N}{4}-1:[\underbrace{0, \ldots, 0}_{N-4 \text { zeros }},-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}] \equiv \mathcal{W}_{\frac{3 N}{T}-1}^{T}$ •
- can express transpose of row $j=\frac{N}{2}+k$ as

$$
\mathcal{W}_{\frac{N}{2}+k \bullet}=\mathcal{T}^{4 k} \mathcal{W}_{\frac{N}{2} \bullet}, \quad k=0, \ldots \frac{N}{4}-1
$$

- first $\frac{3 N}{4}$ rows form orthonormal set of $\frac{3 N}{4}$ vectors
- $\frac{N}{4}$ rows from $j=\frac{N}{2}$ to $\frac{3 N}{4}-1$ yield
$\frac{N}{4}$ wavelet coefficients of 'scale 2,' location $4 j$
- formulation of next $\frac{N}{8}$ rows:

$$
\begin{gathered}
-j=\frac{3 N}{4}:[\underbrace{-\frac{1}{\sqrt{ } 8}, \ldots,-\frac{1}{\sqrt{ } 8}}_{4 \text { of these }}, \underbrace{\frac{1}{\sqrt{ } 8}, \ldots, \frac{1}{\sqrt{ } 8}}_{4 \text { of these }}, \underbrace{0, \ldots, 0}_{N-8 \text { zeros }}] \equiv \mathcal{W}_{\frac{3 N}{4}}^{T} \bullet \\
\text { note: }\left\|\mathcal{W}_{\frac{3 N}{4}} \bullet\right\|^{2}=8 \cdot \frac{1}{8}=1, \text { as required }
\end{gathered}
$$

- can express transpose of row $j=\frac{3 N}{4}+k$ as

$$
\mathcal{W}_{\frac{3 N}{4}+k \bullet}=\mathcal{T}^{8 k} \mathcal{W}_{\frac{3 N}{4} \bullet}, \quad k=0, \ldots \frac{N}{8}-1
$$

- $\frac{N}{8}$ rows starting with $j=\frac{3 N}{4}$ yield
$\frac{N}{8}$ wavelet coefficients of 'scale 4,' location $8 k$
- ... and so it goes until finally we come to:

$$
-j=N-2:[\underbrace{-\frac{1}{\sqrt{ } N}, \ldots,-\frac{1}{\sqrt{ } N}}_{\frac{N}{2} \text { of these }}, \underbrace{\frac{1}{\sqrt{N}}, \ldots, \frac{1}{\sqrt{ } N}}_{\frac{N}{2} \text { of these }}] \equiv \mathcal{W}_{N-2}^{T} \bullet
$$

- associated with wavelet coefficient of scale $\frac{N}{2}$
$-j=N-1:[\underbrace{\frac{1}{\sqrt{ } N}, \ldots, \frac{1}{\sqrt{ } N}}_{N \text { of these }}] \equiv \mathcal{W}_{N-1}^{T}$ •
note: $\left\|\mathcal{W}_{N-2 \bullet}\right\|^{2}=\left\|\mathcal{W}_{N-1 \bullet}\right\|^{2}=N \cdot \frac{1}{N}=1$
- associated with coefficient of scale N
- set of N orthonormal vectors in all

Problem 1: Verify that \mathcal{W} is an orthonormal matrix. Can you construct another \mathcal{W} from this ?

