Basics and Notation:

- $i \equiv \sqrt{-1}$, so z = x + iy is complex-valued (note: ' \equiv ' means 'equal by definition')
- $z^* \equiv x iy$
- $|z| \equiv \sqrt{x^2 + y^2}$ so $|z|^2 = x^2 + y^2 = |z^*|^2 = zz^*$
- $e^{ix} \equiv \cos(x) + i\sin(x)$ (Euler's relationship)
 - $|e^{ix}|^2 = 1$ because $\cos^2(x) + \sin^2(x) = 1$
 - $-e^{i(x+y)} = e^{ix}e^{iy}$ just expand out both sides
 - $-(e^{ix})^n = e^{inx}$ for integer *n* (de Moivre's theorem)
 - $-\int e^{ix} dx = \frac{e^{ix}}{i} \text{ because}$ $\int \cos(x) + i\sin(x) dx = \sin(x) i\cos(x) = \frac{i\sin(x) + \cos(x)}{i}$ $\text{ since } e^{-ix} = \cos(x) i\sin(x), \text{ have}$ $\cos(x) = \frac{e^{ix} + e^{-ix}}{2} \text{ and } \sin(x) = \frac{e^{ix} e^{-ix}}{2i}$ $e^{\pm i\pi} = -1 \text{ (trivial, but useful!)}$
- can write $z = |z|e^{i\theta}$ (polar representation)
 - -|z| is magnitude of z (|z| is nonnegative)
 - $\begin{array}{l} \ \theta = \arg(z) \text{ is argument of } z \ (\text{defined if } |z| > 0); \\ \theta = \text{ angle between positive } x \text{ axis } \& \text{ line to } (x, y) \end{array}$
 - make convention that $-\pi < \theta \le \pi$; $\theta > 0$ when (x, y) plotted above x axis
- place real-valued time series in column vector:

$$\mathbf{X} = \begin{bmatrix} X_0, & X_1, & \dots, & X_{N-1} \end{bmatrix}^T$$

note: 'T' denote transpose

• inner product:
$$\langle \mathbf{X}, \mathbf{Y} \rangle \equiv \mathbf{X}^T \mathbf{Y} = \sum_{t=0}^{N-1} X_t Y_t$$

- squared norm: $\|\mathbf{X}\|^2 \equiv \langle \mathbf{X}, \mathbf{X} \rangle = \sum_{t=0}^{N-1} X_t^2 \equiv \mathcal{E}_{\mathbf{X}};$
- For any matrix ${\cal O}$
 - $-\mathcal{O}_{i\bullet}^T$ denotes *j*th row vector
 - $\mathcal{O}_{\bullet k}$ denotes kth column vector

Discrete Fourier Transform for infinite sequences: $\{a_t : t = \dots, -1, 0, 1, \dots\}, a_t$'s are real or complex-valued variables and assume $\sum_t |a_t|^2 < \infty$. The DFT of a_t is

$$A(f) \equiv \sum_{t=-\infty}^{\infty} a_t e^{-i2\pi ft}, \qquad -\infty < f < \infty$$

- 1. Can you tell when will $|A(\cdot)|$ be large ?
- 2. If a_t is real then show that A(-f) = A * (f).
- 3. Show that for $t \in \mathbb{Z}$, $a_t = \int_{-1/2}^{1/2} A(f) e^{i2\pi ft} df$
- 4. Suppose b_t is another time series,
 - (a) show that $\sum_{t=-\infty}^{\infty} a * b_t e^{-i2\pi ft} = A(f)B(f)$
 - (b) A related concept is complex cross-correlation: $a^* \star b_t \equiv \sum_{u=-\infty}^{\infty} a_u^* b_{u+t}$ $t = \dots, -1, 0, 1, \dots$ Show that $\{a^* \star b_t\} \longleftrightarrow A^*(\cdot)B(\cdot)$. What do we get when a = b?

Discrete Fourier Transform for finite sequences: $\{a_t : t = \dots, -1, 0, 1, \dots, N-1\}, a_t$'s are real or complex-valued variables and assume $\sum_t |a_t|^2 < \infty$. The DFT of a_t is

$$A_k \equiv \sum_{t=0}^{N-1} a_t e^{-i2\pi \frac{k}{N}t}, \qquad k = 0, 1, \dots, N-1$$

- 1. Can you relate $A(\cdot)$ and A. ?
- 2. Show that for t = 0, 1, ..., N 1, $a_t = \frac{1}{N} \sum_{k=0}^{N-1} A_k e^{i2\pi t \frac{k}{N}}$
- 3. Suppose b_t is another finite time series,
 - (a) if $\{a_t\} \longleftrightarrow \{A_k\} \& \{b_t\} \longleftrightarrow \{B_k\}$, then show that

$$\sum_{t=0}^{N-1} a_t b_t^* = \frac{1}{N} \sum_{k=0}^{N-1} A_k B_k^*$$

What do you get when a = b? Can you give a generalisation of this problem for the infinite time series case ?

- (b) Show that $\{a * b_t\} \longleftrightarrow \{A_k B_k\}$.
- (c) Suitably define the concept of complex cross-correlation, $a^* \star b_t$ in the finite case and find its DFT.

Periodised (Circular) Filter: Let $\{b_t : t = 0, ..., N-1\}$ be a finite sequence, and use $\{a_t : t = ..., -1, 0, 1, ...\}$ to form

$$c_t \equiv \sum_{v=-\infty}^{\infty} a_v b_{t-v \mod N}, \qquad t = 0, \dots, N-1$$

(a) Show that $c_t = \sum_{u=0}^{N-1} a_u^{\circ} b_{t-u \mod N}$ with $a_u^{\circ} = \sum_{n=-\infty}^{\infty} a_{u+nN}$.

(b) Suppose

$$a_t = \begin{cases} 1/2, & t=0; \\ 1/4, & t=+1,-1; \\ 0, & otherwise. \end{cases}$$

find a_t° and its DFT.

- (c) In general show that if $\{a_t\} \longleftrightarrow A(\cdot)$ then $\{a_t^\circ\} \longleftrightarrow \{A(\frac{k}{N}) : k = 0, \dots, N-1\}$; Justify the statement: "periodisation in time domain is equivalent to sampling in frequency domain."
- (d) Suppose $\sum_{t=-\infty}^{\infty} |a_t|^2 = 1$. does it imply $\sum_{t=0}^{N-1} |a_t^{\circ}|^2 = 1$?

Orthonormal Transformations: A real matrix \mathcal{O} is called Orthonormal if $\mathcal{O}^T \mathcal{O} = I$

- 1. Let **X** be as in notation and $A = \mathcal{O}X$. Show that $\|\mathbf{X}\|^2 = \sum_{j=0}^{N-1} \|a_j \mathcal{O}_{j\bullet}\|^2$
- 2. Suppose $\widehat{\mathbf{X}} = \sum_{j=0}^{N'-1} \alpha_j \mathcal{O}_{j\bullet}$, N' < N for some $\alpha_j \in \mathbb{R}$.and $\mathbf{e} \equiv \mathbf{X} \widehat{\mathbf{X}}$. Show that $\|\mathbf{e}\|^2 = \sum_{j=0}^{N'-1} (a_j \alpha_j)^2 + \sum_{j=N'}^{N-1} a_j^2$

Unitary Transformations: A real(complex) matrix \mathcal{U} is called Unitary if $\mathcal{U}^H \mathcal{U} = I$.

- 1. Let \mathcal{F} be $N \times N$ matrix with elements $e^{-i2\pi tk/N}/\sqrt{N}$, $0 \le k, t \le N-1$, show that \mathcal{F} is unitary.
- 2. Let N be even. Suppose **X** be as in notation, $F = \mathcal{F} \mathbf{X}$
 - (a) Show that $F_{N-k}^* = F_k, \ 0 < k < N/2.$
 - (b) Show that $X = \overline{X}\mathbf{1} + \sum_{1 \le k \le \frac{N}{2}} \mathcal{D}_{\mathcal{F},k}$ where

$$\mathcal{D}_{\mathcal{F},k} = \begin{cases} F_k \mathcal{F}_{k\bullet} + F_{N-k} \mathcal{F}_{N-k\bullet} & 1 < k < \frac{N}{2} \\ F_{\frac{N}{2}} \mathcal{F}_{\frac{N}{2}} & k = \frac{N}{2} \end{cases}$$

(c) Suppose $F_k = A_k - iB_k$, then show that the t term in $\mathcal{D}_{\mathcal{F},k}$ is given by

$$\mathcal{D}_{\mathcal{F},k,t} = \frac{2}{\sqrt{N}} \left[A_k \cos(2\pi f_k t) + B_k \sin(2\pi f_k t) \right]$$

Invariance under Circular Shifts Let \mathcal{T} & \mathcal{T}^{-1} be $N \times N$ matrices such that

$$\mathbf{X} = \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ \vdots \\ X_{N-2} \\ X_{N-1} \end{bmatrix} \Longrightarrow \mathcal{T}\mathbf{X} = \begin{bmatrix} X_{N-1} \\ X_0 \\ X_1 \\ X_2 \\ \vdots \\ X_{N-2} \end{bmatrix} \& \mathcal{T}^{-1}\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_{N-2} \\ X_{N-1} \\ X_0 \end{bmatrix}$$

- 1. Suppose $\mathcal{T} \& \mathcal{T}^{-1}$ contain just 0's and 1's $\& \mathcal{T}\mathcal{T}^{-1} = I_N$. Define $\mathcal{T}^2 \mathbf{X} = \mathcal{T}\mathcal{T}\mathbf{X}, \ \mathcal{T}^{-2}\mathbf{X} = \mathcal{T}^{-1}\mathcal{T}^{-1}\mathbf{X}$, etc. Show that the *k*th Fourier coefficient of $\mathcal{T}^m \mathbf{X}$ is $F_k \exp(-i2\pi mk/N)$
- 2. Conclude that $\mathbf{X} \& \mathcal{T}^m \mathbf{X}$ have same power spectrum
- 3. Show that if **X** has detail $\mathcal{D}_{\mathcal{F},k}$, then $\mathcal{T}^m \mathbf{X}$ has detail $\mathcal{T}^m \mathcal{D}_{\mathcal{F},k}$
- 4. Discuss why isn't ODFT used instead of DFT?