Basics and Notation:

- $i \equiv \sqrt{ }-1$, so $z=x+i y$ is complex-valued (note: ' \equiv ' means 'equal by definition')
- $z^{*} \equiv x-i y$
- $|z| \equiv \sqrt{x^{2}+y^{2}}$ so $|z|^{2}=x^{2}+y^{2}=\left|z^{*}\right|^{2}=z z^{*}$
- $e^{i x} \equiv \cos (x)+i \sin (x)$ (Euler's relationship)
$-\left|e^{i x}\right|^{2}=1$ because $\cos ^{2}(x)+\sin ^{2}(x)=1$
$-e^{i(x+y)}=e^{i x} e^{i y}-$ just expand out both sides
$-\left(e^{i x}\right)^{n}=e^{i n x}$ for integer n (de Moivre's theorem)
$-\int e^{i x} d x=\frac{e^{i x}}{i}$ because $\int \cos (x)+i \sin (x) d x=\sin (x)-i \cos (x)=\frac{i \sin (x)+\cos (x)}{i}$
- since $e^{-i x}=\cos (x)-i \sin (x)$, have

$$
\cos (x)=\frac{e^{i x}+e^{-i x}}{2} \text { and } \sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}
$$

$-e^{ \pm i \pi}=-1$ (trivial, but useful!)

- can write $z=|z| e^{i \theta}$ (polar representation)
$-|z|$ is magnitude of $z(|z|$ is nonnegative $)$
$-\theta=\arg (z)$ is argument of z (defined if $|z|>0$); $\theta=$ angle between positive x axis \& line to (x, y)
- make convention that $-\pi<\theta \leq \pi$; $\theta>0$ when (x, y) plotted above x axis
- place real-valued time series in column vector:

$$
\mathbf{X}=\left[\begin{array}{llll}
X_{0}, & X_{1}, & \ldots, & X_{N-1}
\end{array}\right]^{T}
$$

note: ' T ' denote transpose

- inner product: $\langle\mathbf{X}, \mathbf{Y}\rangle \equiv \mathbf{X}^{T} \mathbf{Y}=\sum_{t=0}^{N-1} X_{t} Y_{t}$
- squared norm: $\|\mathbf{X}\|^{2} \equiv\langle\mathbf{X}, \mathbf{X}\rangle=\sum_{t=0}^{N-1} X_{t}^{2} \equiv \mathcal{E}_{\mathbf{X}}$;
- For any matrix \mathcal{O}
$-\mathcal{O}_{j \bullet}^{T}$ denotes j th row vector
$-\mathcal{O}_{\bullet} k$ denotes k th column vector

Discrete Fourier Transform for infinite sequences: $\left\{a_{t}: t=\ldots,-1,0,1, \ldots\right\}, a_{t}$'s are real or complex-valued variables and assume $\sum_{t}\left|a_{t}\right|^{2}<\infty$. The DFT of a_{t} is

$$
A(f) \equiv \sum_{t=-\infty}^{\infty} a_{t} e^{-i 2 \pi f t}, \quad-\infty<f<\infty
$$

1. Can you tell when will $|A(\cdot)|$ be large ?
2. If a_{t} is real then show that $A(-f)=A *(f)$.
3. Show that for $t \in \mathbb{Z}, a_{t}=\int_{-1 / 2}^{1 / 2} A(f) e^{i 2 \pi f t} d f$
4. Suppose b_{t} is another time series,
(a) show that $\sum_{t=-\infty}^{\infty} a * b_{t} e^{-i 2 \pi f t}=A(f) B(f)$
(b) A related concept is complex cross-correlation: $a^{*} \star b_{t} \equiv \sum_{u=-\infty}^{\infty} a_{u}^{*} b_{u+t} \quad t=\ldots,-1,0,1, \ldots$. Show that $\left\{a^{*} \star b_{t}\right\} \longleftrightarrow A^{*}(\cdot) B(\cdot)$. What do we get when $a=b$?

Discrete Fourier Transform for finite sequences: $\left\{a_{t}: t=\ldots,-1,0,1, \ldots, N-1\right\}, a_{t}$'s are real or complex-valued variables and assume $\sum_{t}\left|a_{t}\right|^{2}<\infty$. The DFT of a_{t} is

$$
A_{k} \equiv \sum_{t=0}^{N-1} a_{t} e^{-i 2 \pi \frac{k}{N} t}, \quad k=0,1, \ldots, N-1
$$

1. Can you relate $A(\cdot)$ and A. ?
2. Show that for $t=0,1, \ldots, N-1, a_{t}=\frac{1}{N} \sum_{k=0}^{N-1} A_{k} e^{i 2 \pi t \frac{k}{N}}$
3. Suppose b_{t} is another finite time series,
(a) if $\left\{a_{t}\right\} \longleftrightarrow\left\{A_{k}\right\} \&\left\{b_{t}\right\} \longleftrightarrow\left\{B_{k}\right\}$, then show that

$$
\sum_{t=0}^{N-1} a_{t} b_{t}^{*}=\frac{1}{N} \sum_{k=0}^{N-1} A_{k} B_{k}^{*}
$$

What do you get when $a=b$? Can you give a generalisation of this problem for the infinite time series case ?
(b) Show that $\left\{a * b_{t}\right\} \longleftrightarrow\left\{A_{k} B_{k}\right\}$.
(c) Suitably define the concept of complex cross-correlation, $a^{*} \star b_{t}$ in the finite case and find its DFT.

Periodised (Circular) Filter: Let $\left\{b_{t}: t=0, \ldots, N-1\right\}$ be a finite sequence, and use $\left\{a_{t}: t=\right.$ $\ldots,-1,0,1, \ldots\}$ to form

$$
c_{t} \equiv \sum_{v=-\infty}^{\infty} a_{v} b_{t-v \bmod N}, \quad t=0, \ldots, N-1
$$

(a) Show that $c_{t}=\sum_{u=0}^{N-1} a_{u}^{\circ} b_{t-u \bmod N}$ with $a_{u}^{\circ}=\sum_{n=-\infty}^{\infty} a_{u+n N}$.
(b) Suppose

$$
a_{t}= \begin{cases}1 / 2, & \mathrm{t}=0 \\ 1 / 4, & \mathrm{t}=+1,-1 \\ 0, & \text { otherwise }\end{cases}
$$

find a_{t}° and its DFT.
(c) In general show that if $\left\{a_{t}\right\} \longleftrightarrow A(\cdot)$ then $\left\{a_{t}^{\circ}\right\} \longleftrightarrow\left\{A\left(\frac{k}{N}\right): k=0, \ldots, N-1\right\}$; Justify the statment: "periodisation in time domain is equivalent to sampling in frequency domain."
(d) Suppose $\sum_{t=-\infty}^{\infty}\left|a_{t}\right|^{2}=1$. does it imply $\sum_{t=0}^{N-1}\left|a_{t}^{\circ}\right|^{2}=1$?

Orthonormal Transformations: A real matrix \mathcal{O} is called Orthonormal if $\mathcal{O}^{T} \mathcal{O}=I$

1. Let \mathbf{X} be as in notation and $A=\mathcal{O} X$. Show that $\|\mathbf{X}\|^{2}=\sum_{j=0}^{N-1}\left\|a_{j} \mathcal{O}_{j \bullet}\right\|^{2}$
2. Suppose $\widehat{\mathbf{X}}=\sum_{j=0}^{N^{\prime}-1} \alpha_{j} \mathcal{O}_{j \bullet}, \quad N^{\prime}<N$ for some $\alpha_{j} \in \mathbb{R}$.and $\mathbf{e} \equiv \mathbf{X}-\widehat{\mathbf{X}}$. Show that $\|\mathbf{e}\|^{2}=$ $\sum_{j=0}^{N^{\prime}-1}\left(a_{j}-\alpha_{j}\right)^{2}+\sum_{j=N^{\prime}}^{N-1} a_{j}^{2}$

Unitary Transformations:A real(complex) matrix \mathcal{U} is called Unitary if $\mathcal{U}^{H} \mathcal{U}=I$.

1. Let \mathcal{F} be $N \times N$ matrix with elements $e^{-i 2 \pi t k / N} / \sqrt{ } N, \quad 0 \leq k, t \leq N-1$, show that \mathcal{F} is unitary.
2. Let N be even. Suppose \mathbf{X} be as in notation, $F=\mathcal{F} \mathbf{X}$
(a) Show that $F_{N-k}^{*}=F_{k}, 0<k<N / 2$.
(b) Show that $X=\bar{X} \mathbf{1}+\sum_{1 \leq k \leq \frac{N}{2}} \mathcal{D}_{\mathcal{F}, k}$ where

$$
\mathcal{D}_{\mathcal{F}, k}= \begin{cases}F_{k} \mathcal{F}_{k \bullet}+F_{N-k} \mathcal{F}_{N-k} \bullet & 1<k<\frac{N}{2} \\ F_{\frac{N}{2}} \mathcal{F}_{\frac{N}{2}} & k=\frac{N}{2}\end{cases}
$$

(c) Suppose $F_{k}=A_{k}-i B_{k}$, then show that the t term in $\mathcal{D}_{\mathcal{F}, k}$ is given by

$$
\mathcal{D}_{\mathcal{F}, k, t}=\frac{2}{\sqrt{ } N}\left[A_{k} \cos \left(2 \pi f_{k} t\right)+B_{k} \sin \left(2 \pi f_{k} t\right)\right]
$$

Invariance under Circular Shifts Let $\mathcal{T} \& \mathcal{T}^{-1}$ be $N \times N$ matrices such that

$$
\mathbf{X}=\left[\begin{array}{c}
X_{0} \\
X_{1} \\
X_{2} \\
\vdots \\
X_{N-2} \\
X_{N-1}
\end{array}\right] \Longrightarrow \mathcal{T} \mathbf{X}=\left[\begin{array}{c}
X_{N-1} \\
X_{0} \\
X_{1} \\
X_{2} \\
\vdots \\
X_{N-2}
\end{array}\right] \& \mathcal{T}^{-1} \mathbf{X}=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{N-2} \\
X_{N-1} \\
X_{0}
\end{array}\right]
$$

1. Suppose $\mathcal{T} \& \mathcal{T}^{-1}$ contain just 0's and 1's \& $\mathcal{T} \mathcal{T}^{-1}=I_{N}$. Define $\mathcal{T}^{2} \mathbf{X}=\mathcal{T} \mathcal{T} \mathbf{X}, \mathcal{T}^{-2} \mathbf{X}=$ $\mathcal{T}^{-1} \mathcal{T}^{-1} \mathbf{X}$, etc. Show that the k th Fourier coefficient of $\mathcal{T}^{m} \mathbf{X}$ is $F_{k} \exp (-i 2 \pi m k / N)$
2. Conclude that $\mathbf{X} \& \mathcal{T}^{m} \mathbf{X}$ have same power spectrum
3. Show that if \mathbf{X} has detail $\mathcal{D}_{\mathcal{F}, k}$, then $\mathcal{T}^{m} \mathbf{X}$ has detail $\mathcal{T}^{m} \mathcal{D}_{\mathcal{F}, k}$
4. Discuss why isn't ODFT used instead of DFT?
