Orthonormal Wavelet: A function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ such that

1. $\psi(t)$ tends to zero faster than any power of t as $t \rightarrow \infty$
2. ψ possesses continuous derivatives upto order N, for some positive integer N.
3. For all integers j and n, let

$$
\psi_{j n}(t)=2^{\frac{j}{2}} \psi\left(2^{j} t-n\right)
$$

Then "suitable" functions can be expanded uniquely in a series of $\psi_{j n}$:

$$
f(t)=\sum_{j, n=-\infty}^{\infty} c_{j n} \psi_{j n}(t)
$$

4. The coefficients $c_{j n}$ above are given by

$$
c_{j n}=\int_{-\infty}^{\infty} f(t) \overline{\psi_{j n}(t)} d t
$$

Notes

1. Please try to solve the problems in the next page.
2. If you had some confusion with today's lecture then please send me an email. I will try to clarify next time.
3. If you give me hand written/typed or electronic solutions then I shall try to give you feedback on them.

Problem Set 1

1. Consider $x(\cdot)$ a 'signal', i.e. a real-valued function of t defined over real axis and its average value of $x(\cdot)$ over $[a, b]$:

$$
\frac{1}{b-a} \int_{a}^{b} x(u) d u \equiv \alpha(a, b)
$$

(a) Suppose we divide $[a, b]$ into N equal parts and x is piece-wise constant on each part, what does $\alpha(a, b)$ correspond to ?
(b) Let

$$
A(\lambda, t)=\alpha\left(t-\frac{\lambda}{2}, t+\frac{\lambda}{2}\right) \text { and } D(\lambda, t)=A\left(\lambda, t+\frac{\lambda}{2}\right)-A\left(\lambda, t-\frac{\lambda}{2}\right)
$$

For given choices of λ : what will a plot of $A(\lambda, t)$ and $D(\lambda, t)$ as a function of t tells us about $x(\cdot)$?
(c) Can you find a function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ such that: $\int_{-\infty}^{\infty} x(u) \psi_{\lambda, t}(u)$ is proportional to $D(\lambda, t)$ with $\psi_{\lambda, t}: \mathbb{R} \rightarrow \mathbb{R}$ being obtained through with a suitable dilation and translation of ψ
(d) Generate/download/obtain a signal $x(\cdot)$ and for fixed choices of λ generate plots of $A(\lambda, t)$, $D(\lambda, t)$
(e) If we know $W(\lambda, t)=\int_{-\infty}^{\infty} x(u) \psi_{\lambda, t}(u)$ then do you know a way of recovering $x(\cdot)$?
2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is periodic with period P, can you write down the Fourier series expansion (similar to that of period 1) for the same? What happens to the formula when $P \rightarrow \infty$?
3. Consider $f, g_{1}, g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(t)=\sum_{n=-\infty}^{\infty} b_{n} e^{2 \pi n t}, g_{1}(t)=\sum_{n=1}^{\infty} \frac{\sin (2 \pi n t)}{n}, \text { and, } g_{2}(t)=\sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (2 \pi n t)}{n}
$$

(a) Show that $g_{1}=f$ with $b_{n}=\frac{1}{2 n}$ and find b_{n} which will make $g_{2}=f$.
(b) Show that f is of period 1 and interpret b_{n} interms of f.
with a suitable dilation and translation obtain
4. Suppose f is as in the definition of the orthonormal wavelet. Solve the following:
(a) Can you interpret the term orthonormal?
(b) Rewrite $f=\sum_{j=-\infty}^{\infty} S_{j}$, with $S_{j}=\sum_{n=-\infty}^{\infty} c_{j n} \psi_{j n}$. Interpret S_{j} in terms of f for positive, zero, and negative j.
(c) Suppose f is given as above and has continuous derivatives of order k at a point a then can you say something about $c_{j n}$ for $j, n \in \mathbb{Z}$?
(d) Can you find a way to see that g_{1}, g_{2} given in the above exercise will have a different expansion in the definition of the orthonormal wavelet?

