- 1. Let X denote the height of a randomly selected pipal tree. Assume, that X is normally distributed with unknown mean and standard deviation 16. Take a random sample of n = 16 trees, so that, after setting the probability of committing a Type I error at α , we can test the null hypothesis $H_0: \mu = 100$ against the alternative hypothesis that $H_1: \mu > 100$.
 - (a) Graph the power function for $\alpha = 0.05$. What is the power of the hypothesis test if the true population mean were $\mu = 108$?
 - (b) Graph the power function for $\alpha = 0.01$. What is the power of the hypothesis test if the true population mean were $\mu = 108$?
- 2. Use the Neyman-Pearson Lemma to find the form of the critical region for the UMP level α test for H_0 vs H_1 when
 - (a) X_1, X_2, \ldots, X_n is i.i.d sample from Poisson distribution with mean θ and $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1, \theta > 0.$
 - (b) X_1, X_2, \ldots, X_n is i.i.d sample from Exponential distribution with mean $\frac{1}{\theta}$ and $H_0: \theta = \theta_0$, $H_1: \theta = \theta_1, \theta_1 > \theta_0$.