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Prelude

As far as the laws of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality. —attributed to ALBERT EINSTEIN

Introduction. This is a five-lecture introduction to stochastic partial differ-
ential equations, or SPDEs for short. Because SPDEs is a huge subject that
spans a great amount of both theory and applications, we limit ourselves
only to a family of more or less concrete, and interesting, mathematical
problems. You can find several pointers to these, and other, aspects of the
SPDE literature in the references.

In order to have in mind an example of the sort of object that we plan to
study, consider first the following #eat equation: We seek to find a function
u of a space-time variable (x, t) € R, x [0, 1] such that

du = 1% on (0,00) x [0,1];
) = sin(stx) for every x € 0,1]; (He)
and u(0,t) = u(1,t) =0 forall t > 0.
The solution to () is u(x , t) = sin(;rx) exp(—m2t/2), as can be seen by direct

differentiation. Figure 1 shows a MatLAB plot of u(x, t) for x € [0,1] and
t €10, 10].

Figure 1: The solutions to (#e); max. height = 1.00

Next let us consider the Stochastic Zeat equation. That is basically the
heat equation, but also has a multiplicative random forcing term. Namely,

dru = 28, u+AuW on (0,00) x [0,1],

with u(x,0) = sin(mx), (Ste)
and u(0,t) =u(l,t) =0,

where A > 0 is a parameter, and W denotes “space-time white noise.”!

Stated in rough terms, white noise is the continuum equivalent of iid. standard normal
random variables. We will discuss it in more detail though, as the proof of its existence require
some effort.



Figure 2 shows a simulation of the solution u for all x € [0, 1] in the case
that A = 0.1, where x ranges over all of [0,1], and t ranges over the short
time interval [0, 1/10].
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Figure 2: (S#e) with A = 0.1; max. height =~ 1.0197

We can compare Figures 1 and 2 in order to see that the presence of a
small amount of noise in (S#e) [here, A = 0.1] can have noticable effect on
the solution. For instance, the solution to (S#e) is both rougher and taller
than the solution to ().

These differences become more pronounced as we add more noise the
the system (S#e). For instance, Figure 3 shows a simulation for A = 2 where
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Figure 3: (S#e) with A = 2; max. height ~ 49.1866



0 <t <toand 0 < x < 1, once again. In that simulation, the solution is quite
rough, and the maximum height of the solution is approximately 50.> The
tallest peaks are in fact so tall that they dwarf the remainder of the solution.
That is why, most of the solution appears to be flat in Figure 3. In fact, that
portion is supposed to be a smaller statistical replica of the whole picture—
this sort of property is called mulfifractal—see MANDELBROT [35]—though
I am not aware of any rigorous ways to state and/or prove the multfractality
of u at present.

As you can see from this table, even a modestly-noisy S#e is a great deal
rougher and taller than its non-random cousin . This apparent “peaki-
ness” property of S#e is usually called intermittency, intermittence, or local-
ization. We will say a few things about this property later on. In the mean
time, I mention that two excellent general-audience introductions to inter-
mittency and localization in science are MANDELBROT [35] and ZELDOVITCH
ET AL [47].

I conclude with a few sage words by WIGNER [46]:

“Let me end on a more cheerful note. The miracle of the
appropriateness of the language of mathematics for the for-
mulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it
and hope that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure, even though
perhaps also to our bafflement, to wide branches of learning.”

Notational convention. Suppose f : R, x R — R is a real-valued function of
a “time” variable t € R, and a “space” variable x € R. From now on, I will
always write f¢(x) in place of f(t,x). From an analytic point of view, this
convention might seem particularly strange, since we are studying a family
of “random PDESs” and f; usually refers to 0;f! But as you will soon see this
convention makes excellent probabilistic sense. After all, we are interested
in the behavior of the stochastic process {f}>0, which typically ends up
taking values in some function space.

Numerical simulation. The following material are not covered in the course
per se, but it would be a shame to not say anything about how one can
“produce neat pictures.”

Suppose we wish to simulate the solution to the boundary-value prob-
lem (S#e). One can indeed prove that, in this case, (S#e) has an a.s.-unique
solution u. Moreover, because ugp(x) > 0 for all x € [0,1], one can prove
that us(x) > 0 for all t > 0 and x € [0, 1] a.s. Rather than prove these facts,
I refer you to Chapters 1 [§6] and 5 [§5] of the minicourse by DALANG ET
AL [17]. We will establish some of these properties for a different family of
SPDEs very soon.

20ne might be tempted to run simulations for very high values of A. But some careful
experimentation will show that the algorithm’s errors add up irreparably for values of A > 10.



Suppose that we wish to simulate the preceding on the time interval
€ [0,T], where T > 0O is fixed. [In the simulations that we saw earlier,
= 1/10.] It stands to reason that if At, Ax « 1, then the solution ought to

satisfy®

Ut at(x) — uglx) ~ u¢(x + Ax) + uele — Ax) —2ue(x)  Aug(x)&(x)

At 2(Ax)? AtAx

where &(x) is the following “Wiener integral,”

&)= [ Wily) ds dy.
(t,t+At)x(x,x+Ax)

We choose At := N2 and Ax := N~! for an integer N > 1—as is natural
for heat-transfer problems—and obtain

e le) — i) » WO ANl 2 QD Z20e) gy (e ),

whenever t € [0, T] and x € (0,1), and u¢,y-2(0) = us,y-2(1) = 0. In particu-
lar, relabel t := iN~2 and x := jN~! to see that

; v (G 1IN + uge (G — 1)/N ' ;
U(i11)/N2 <Iif> B (G + 1)/N) 5 e 1) )+)»Nui/N2 <]i,> &i/ne <](]> .

From now on we will ignore the error of approximation, as it is supposed
to be small. In other words, we will pretend that “~” is the same as “=
Because the solution is nonnegative for all time, it would then follow that

Ui(j) := uyn2(j/N), ni(j) := &2 (i/N) (i>0,0<j<N)

should satisfy the recursion

4

UG +1) + U 1
Ui+1(f)=< TS0 NG )
forall 0 <i < N?and 1 <j<N -1, where a. := max(a,0). And
Uo(]) i= Ui1(0) := Upa(N):=1  (i>0, 0<j<N).

It turns out that the n;(j)’s are independent mean-zero normally-distributed
random variables with common variance AfAx = N~°. Therefore, Z;(j) :=
N32n:(j) defines a family of independent standard normal random variables.
In thls way we obtain the following:

. Ul +1) + Ui = 1) | AUG)Zi(j)
Ui ;
1) = < D) + N .
foralli >0and 1 <j <N —1; Uyl(j) := sin(7rj/N); and U;,1(0) := U; 1 (N):=0
when 0 <j < N. Therefor'e, if we wish to simulate x — uy(x) for every t up

to a given time T > 0, then we choose a large mesh N, and then simulate—as
above—U;(j) for every 0 < j < N, where i := |TN?|.

3This is a “one-step Euler method,” and can be shown to work reasonably well when
At,Ax =~ 0. For this, and a great deal more, see the recent paper [42] by WALsH, for ex-
ample.



A Matlab code. Here is the code that I used as a basis for the preceding
simulations. It has not been optimized. Feel free to use it if you want. But
be warned that the error of approximation becomes rapidly too big, as A
grows [A > 13 is almost certainly too big for this method].

R et et YA
FUNCTION [MH] = heat (T,N,L)

== )
%  PARAMETERS: T = terminal real time; %
% N = the mesh size for the space variable; %
% L = coefficient of the noise (lambda); %
%  OUTPUT: MH = maximum height of the solution. %
hmm A

tlim = floor(T*N"2); % terminal simulation;

z = randn(tlim,N+1); % standard normals are generated;

u(l,:) = abs(sin(pi*(1:N+1)/(N+1))); % initial data u(il,.);

FOR i=2:tlim
u(i,1) = 0;
u(i,N+1) =
FOR j=2:N

u(i,j) = max(0, (u(i-1,j+1)+u(i-1,3j-1))/2+L*xN~(-1/2)*u(i-1,j)*z(i,j));

END

0; % boundary values = 1;

END
S —— %
MH = max(max(u)); % Maximum height at terminal time T.

0, 0,
R —— %
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1 Lecture 1: Itd and Wiener integrals

In this lecture we develop space-time white noise, also known as white noise
in dimension 1+1. But first, I describe the construction of white noise in
dimension one, since this is a slightly simpler object than space-time white
noise, and is familiar to the audience of these lectures [albeit in slightly
different form]. After that we study space-time white noise properly.

1.1 White noise in dimension 1. Let {W;};>, denote a one-dimensional
Brownian motion on a suitable probability space (2, %, P), and define

W, = dW,/dt for t > 0.

The stochastic process { Wt }>0 is called white noise on R, or white noise
in dimension 1. Because W is nowhere differentiable with probability one
[theorem of PALEvY ET AL [37]], we cannot define W as a classical stochastic
process, rather only as a generalized random process, or better still a gener-
alized random field [25]. One does this rigorously by mimicking distribution
theory: For all ¢ € C°(R,)—the space of infinitely-differentiable functions
on R, := [0, 00) with compact support—define

W) := /Ooo@wtdt:: —/Ooodnw,dt.

The right-most term is a well-defined Riemann integral; therefore the first
two quantities are now well defined. Moreover, {W(¢) }sccxm.) is a centered
Gaussian process with the following properties:

1. W(ao + By) = aW(¢) + BW() for all a, B € R, ¢, ¥ € CZ(R,); and
2. For every ¢, € C(R,),

B (Wieww) - [ "t | " ds min(s, f) iy = / " by dt.

Therefore, W is a linear isometric embedding of C°(R,) into L%(Q). By
density, W can be extended uniquely to a linear isometric embedding of
L?(R,) in L3(Q). If ¢ € L?(R,) then W(¢) = [;° ¢ W, dt is also called the
Wiener integral of ¢. Our notation is suggestive but uncommon; usually
people write [;° ¢;dW; in place of our more suggestive [;°¢; W;dt. But
the latter notation serves our needs much much better, as it turns out.

We can apply, purely formally, FUBINI's theorem to see that

E</Ooo¢tWtdt-/0mlptW5ds> =/Ooodt/0mds ¢t¢sE<Wth>,

for every ¢,9 € L%(R,). Since the left-hand side is rigorously equal to
fo‘x’ oy dt we can “conclude,” seemingly non-rigorously, that

E (v‘v,v’vs> = Solt — 5).
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This appears to be non rigorous since t — W is not a random function. But
in fact it is possible to create a theory of generalized Gaussian random fields
that makes this rigorous [25], though the “6-function” (s, t) — &y(t —s) has to
be interpreted as a Carathéodory-Hausdorff type version of the Lebesgue
measure on the diagonal of R, x R,. In this way, we are justified in saying
that { Wt}t}O is a generalized Gaussian random field with mean measure 0
and covariance measure &(t — s). I will skip the details of this theory of
generalized random fields because we will only need the formal notation
and not the machinations of the theory itself.

1.2 The It6 integral in dimension 1. As before, let { Wt}@o denote white
noise on R., and {W;}s>o the corresponding Brownian motion. Now we
wish to integrate random functions against white noise.

For all t > O define % to be the sigma-algebra generated by {W; }s<¢.
One can check that & can also be defined as the sigma-algebra generated
by all variables for the form W(l[olt]f) = jot f. W, dr, as f ranges over L*R,).

Suppose ¢ is an elementary process; i.e., has the form

G 1= X - Ligpt),

where 0 < a < 8 are non random, and X € LQ(Q) is F,-measurable. Then
we define

00 B
W(¢):=/O d)sVVsds::X-/ Wids = X - (Wg — W,).

The right-most term is well defined; therefore, the other three quantities

are also well defined. Because X is independent of f f W,ds = Wp — W, it
follows also that

EW(@) =0,  E(IW@)F) = EX)B - ) = E ([¢lEm,)) -

Let L%(R.) define the linear span, in L%(R2), of all elementary processes
{1 }+>0 of the preceding form. Elements of L%(R,) are square-integrable
predictable processes; this predictability accounts for the subscript &.

Since ¢ — W(¢) is linear, the preceding defines a linear map W mapping
LZ(R,) isometrically into L?(Q) such that EW(¢) = 0 for all ¢ € LZ(R,). We
continue to write

W) := /OOO oW, dt,

and refer to the right-hand side as the It6 integral of ¢. In probability theory,
we usually write fooo ¢¢ dWy instead. But I will not do that in these lectures.

The space L?,,(R+) is quite large; for example it contains all continu-
ous stochastic processes {¢;}i>o that are adapted to {F¢}>0 and satisfy
E(II¢[|%2(R+)) < 00.

Proposition 1.1 (IT6, 1944). t — fot ¢sW,ds is a mean-zero continuous
martingale with quadratic variation fot ¢? ds.

8



Here is an outline of the proof of this proposition: First we prove it in
the case that ¢ = X - 1(45(t) for an F,-measurable X € L?(Q). In that case,
fot s W,ds = X- (Wgnt — Want) clearly has the desired martingale properties.
Then, we find ¢" — ¢ € Lé(]&h) such that each ¢" is a finite nonrandom
linear combination of terms of the form X" - 14, g,)(t) for %, -measurable
X" ¢ L%(Q), where the intervals (a, ,f,) are disjoint as n varies. A direct
computation shows the isometry identity E(|W(1(0,t)d>”) — W(i(o,t)df”)lg) =
[(d" —d™)110,1) Iliz(m). Since L?(Q2)-limits of martingales are themselves L?(<2)-
martingales it follows that M; := W(l(olt)¢>) defines a mean-zero L?(Q)-
martingale. If we showed that M is a.s. continuous, then its quadratic varia-
tion at time t would also be fot |¢s|?> ds per force. The remaining continuity
assertion follows from DoOOB’s maximal inequality:

E < S(%l;) |W(1,00") - W(l(o,t)¢m)|2> < 49" = ¢™ ol Tom,)
te(0,

valid as long as we used a standard augmentation of the filtration {% }>o.

1.3 White noise in dimension (1+1). White noise {Wt(x)}@o,xek in di-
mension (1+1) is the generalized Gaussian random field such that

EWi(x) =0 and E(Wi(x)Wi(y)) = éolt - s)Solx - 9),

where the product of the delta functions is understood rigorously as a mea-
sure on (R, x R)%. More commonly, one refers to W as “space-time white
noise.”

In order to understand this object probabilistically, let us introduce a
“two-sided Brownian sheet” {W(x)}t>0xer as follows: {Wi(x)}>oxer is @
centered Gaussian process with

E (Wi(x)Ws(y)) = min(s, t) min(|x|, [9])1(0,00) (x¥)-
We can check the following by directly computing the covariances:

1. For every fixed t > 0, {t"Y2Wy(x)}r>0 and {t"Y2W(-x)}x<o are two
independent Brownian motions [provided that 0/0 := 0]; and

2. For every x € R fixed, {|x|""2W;(x)}>0 defines a Brownian motion
[again if 0/0 := 0].

Now we define W(x) := 8?1 We(x), or more precisely the Wiener integral

W(¢) := / Ra%x@(x)wt(x)dtdx for all € C°(R, x R).



Note that { W((l))}d,ecgo(m «r) defines a centered Gaussian random field with

E (Wig)Wiw))
o s . .
= /mmdtdx L+XRdsdy 6?:9(;) 8?(’9(5) min(s, t) min(|x|, |¥|) 10,00 (x¥)
- [ etwatar,
R, xR

as one can check by considering functions ¢¢(x) and ¥¢(x) of product form
fi x g(x). This discussion implies that the Gaussian random field ¢ — W(¢) is
a linear isometry from C2(R, x R) into L?(R2). Therefore, we find by density
a centered Gaussian random field {W(®)}scror, r) such that ¢ — W(¢) is
a linear isometry from L%(R, x R) into L%(2). We call W(¢) the Wiener
integral of ¢ € L?(R. x R), and use alternatively the notation

/ &5 (x)Ws(x) ds dx for all ¢ € L2(R, x R).
R, xR
In this way we can also define consistently definite Wiener integrals
[ bWl dsdri= W (1an9),
(a,b)xR

forall0 <a < band ¢ € L%(R, x R). Note, in particular, that (t,¢) —
f(o,t «r Os(x)Ws(x)dsdx defines a Gaussian random field with mean zero
and covariance

Cov </ ¢s(x)Wi(x)ds dx,/ s (x) Ws(x) ds dx>
(0.t)xR 0.t)xR (1.1)

AL 00
_ OA ds ] dr b (x)(x)

forall 0 < t <t and ¢,v¥ € L*(R, x R,).
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2 Lecture 2: Stochastic convolutions

2.1 Walsh integrals. Let & define the sigma-algebra generated by the
collection of random variables {W;(x)}scio,1)xcr- Equivalently, ¢ denotes
the sigma-algebra generated by { W(l(o,t)¢)}¢€L2(R+xm.4

Consider a random field ¢ = {¢¢(x) }¢>0er Of the form

Oe(x) = Liap(t) X - flx),

where 0 < a < B, X € L) is F,-measurable, and f € L?(R) is uniformly
bounded. Such random fields are called elementary. We can define, for all
elementary ¢,

W(¢):=/R Rd)t(x)Wt(x)dtdx:=X-W(1(a,,3)f).

Since the right-most quantity is well defined as a Wiener integral, the preced-
ing defines the first two terms rigorously. We may observe that W(l(a,ﬂf) is
independent of W(1(y 4 g) for all g € L?(R) since the correlation between the
two Wiener integrals is the inner product—in L?(R, x R)—between 10,09
and 1,5 f. Therefore, X is independent of W(l(alﬁ) f), whence

EW(9) =0, E(IW©)?) = EC?) |[1apf[un, n = E (1917w, cm)) -

Finite linear combinations of simple random fields are called simple. We
can define W(¢) for a simple ¢ by linearity. Let L% (R, x R) denote the linear
span of all such random fields ¢ in L?(Q x R, x R). Elements of L4 (R, x R)
are called predictable random fields. The preceding defines uniquely a
linear isometric embedding W of LgTJ(RJr x R) into L%(Q2) such that

EW(¢)=0 and E(|W@)F) = E (163, n) -

I will write

W(e) := /R Rcbt(x)Wt(x)dtdx, for all ¢ € LL(R, x R),

and refer to W(¢) as the Walsh integral of ¢. In the probability literature,
we usually write [;° [% ¢¢(x) W(dtdx) instead; but I prefer the displayed
notation and will not do that in these lectures.

The space Lgp(RJr x R) is very large; for instance it contains all random
processes of the form ¢(x) = f(t, W¢(x)) where f : R, x R — R is lower
semicontinuous and satisfies E(f;° dt [ dx [f(t, Wi(x))?) < oo.

4We will be tacitly replace F; by its usual augmentation, as described for example in DEL-
LACHERIE AND MEVER [19].

11



2.2 A connection to martingales. If ¢ ¢ L?(R), then
M= [ SlWil)dsdyi= W(logs) (>0
0,t)xR
defines a Gaussian process with mean zero. In fact, whenever s, > 0,
E(M{My,s) = / 10,6 (r)d(x) Lo s (r)dlx) dr dax = 1|72 q-

R, xR

Therefore, t — M;/||¢||12m) defines a Brownian motion. This and a density
argument together yield the following.

Proposition 2.1 (WALsH [43]). For every ¢ € L4(R, x R) and t > 0 define
Mig)= [ Wnigl)dsdy = W (1049).
,t) x

Then {M;() }+>o is a continuous mean-zero L%(Q2)-martingale with quadratic
variation

t 00
(M) = /O ds ] Ay 1650 = [ 10,00 o -

The following consequence is of paramount importance to us.

Corollary 2.2 (The BDG inequality). Choose and fix k € [2,00). If M is a
continuous martingale with M; € L¥(Q) for all t > 0, then

E (M) < GR)FZE ([(M)[*) (£ 0),

where (M); denotes the quadratic variation of M.

This is the usual BDG inequality, due to BURKHOLDER, Davis, and GUNDY,
for continuous L*(Q2)-martingales [5-7]. But we have also used the fact that
the best constant in that inequality is at most (4k)¥’?; see the bound by
CARLEN and KREE [9] on the optimal constant in the BDG inequality, found
earlier by Davis [18].

An application of the preceding together with the Minkowski inequality
yields the following. From now on, I will write || --- || in place of || - - ||1xq).
That is,

e 2.1)

1Z]lk = {E(12[*) }
for every random variable Z ¢ L¥(Q), and k € [1, c0).

Corollary 2.3 (The BDG inequality [22]). If ¢ € L%(R, x R), then for all
k>2

2 00 00
<4k /O ds ] dx [gs(x)l}

/ s (x) W (x) ds dx
R, xR

12



2.3 Stochastic convolutions. One can define quite general “stochastic con-

volutions.” However, we define only what we need. With this in mind, let us

first denote by p¢(x) the following normalization of the heat kernel on R:
e-x2/2t)

pt(x) := W

If Z is a predictable random field that satisfies

(t>0,xecR).

t o)
/0 ds [ dy [pialy - ¥PE(Z)P) <00 ((>0, xR, (22)
then we let

My (x) = / Pesly — ) Zo(9)Waly)dsdy  (0< <, x € R).
0.6)xR

The stochastic integral is defined in the sense of WALSH, and {M; +(x) }tc[0,1
is a continuous mean-zero martingale for every fixed T > 0. The stochastic
convolution

(px2W) (x)i= Musx) = [ prealy = 01Z.ly) Wely) dsdy
t 0,6)xR

is therefore a well-defined mean-zero random field, whose variance is de-
scribed by the left-hand side of (2.2).
Define for all k € [2,00) , B > 0, and every predictable random field Z,

N§(Z) = sup sup (e P Zi(x) k) - (2.3)

It is not hard to see that if Z is a predictable random field that satisfies
Nl%(Z) < oo for some B > 0 and k € [2,00) then Z also satisfies (2.2), and
hence p*ZW is a well-defined square-integrable random field. The following
is a stronger statement.

Proposition 2.4 (Conus, FOONDUN, and K [14,22]). Forallk € [2,00), B > 0,
and every predictable random field Z,
(Qk)l/Z

31/4
Proof of Proposition 2.4. We apply the BDG inequality, in the form men-
tioned earlier (Corollary 2.3), and deduce that

NE <p*ZW> < NE(Z).

2
o2t

] Prsly — X)Zs(y) Waly) ds dy
(0,t)xR k

t [e%s)
< hke P! / ds [ dy [pesly — X)PIZs)I
0 —00
t 0%}
2 _ _
<ar[Npz)]" - [ 0as [ ay prily - x)f
0 —00

2 [T _ops
<Ak [NEZ) /O & |ps [furn, ds.

13



In particular, we may optimize the left-most term over all x and ¢, in order
to see that

. 2 &
(%5 (px2W)|" <k [NBE] [ e palfa .
_1/2,

A direct computation shows that the preceding integral is equal to (48)
and the proposition follows. O

Now define Lf; to be the completion, in the norm N, ;;, of the vector space
all predictable random fields Z such that N’ g (Z) < oo.

Corollary 2.5. Choose and fix B > 0 and k € [2,00). Then, the stochastic
convolution map Z — p x ZW defines a bounded linear operator from Lﬁ
into itself, with operator norm being no more than (2k)"?B~"". Moreover,
(x,t)— (p* ZW)s(x) has a continuous modification.

Proof. The continuity assertion will follow from the ensuing remarks. If so
then, in light of the preceding proposition, it suffices to prove that if Z ¢ LIE

is predictable then p x ZW is predictable also. In fact it is enough to prove
this assertion in the case that Z is an elementary function. But then our
problem is reduced to the case that Zs(y) = 14 (t)f(x) for a nonrandom
and bounded f € L?(R). In this case, a few elementary estimates show that
the Gaussian random field p * ZW satisfies

H(p*ZW)t (x) — <p>x<ZW>t (x') , = 0] <[x —x']1/2> ,

and
(o 2) 1 (o 2), ], = 0 - ).

uniformly for all x,x’ € R and t,¢ € [0,T], where T > O is fixed but
arbitrary; see [17, Ch. 1]. It follows readily from this that [0, T] x R >
(p * ZW)(x) is continuous in Npejo,0LP(P) (and also almost surely, thanks
to a suitable form of KOLMOGOROV's continuity theorem) and therefore a
predictable random field. O
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3 Lecture 3: A stochastic heat equation

3.1 Existence and uniqueness. Let 0 : R — R be a globally Lipschitz
function; recall that this means that
lo(x) — oy)|

Lipy := sup ——— < oo.
’ ty X =Y

Our goal is to solve the following

drue(x) = 382 ug(x) + oluylx)) Wylx),

341
subject to uy being bounded, measurable, and nonrandom. (54)
If W;(x) were replaced by a smooth function, then classical PDEs tells

us that the solution to (3.1) is®

welx) = (pe* wo)x) + /@ Pty ROl Wl dsdy. (52)

In the stochastic setting, our notion of solution remains the same, but we
interpret the integral that involves the noise W as a stochastic convolution. It
can be proved that the resulting “solution,” when it exists, is a “weak solution”
to (3.1). Any solution to (3.2) is called a mild solution to (3.1).

Theorem 3.1 (DALANG [16], FOONDUN and K [22], WaLsH [43]). The stochas-
tic heat equation (3.1) has a mild solution u that is unique within LE for

all B > 0 and k € [2,00). In addition, there exists a universal constant
C € (0,00) such that forallk > 2 and t > 0,

supE (Ju¢(x)|*) < Cexp (CE*t).
xeR

Remark 3.2. This moment condition is sharp. For example, if, in addition,
inf,cr [0(x)/x| > 0 and inf,cr up(x) > 0, then one can prove that there exists
c € (0,1) such that inf,cg E(Jus(x)[*) > c exp(ck’t) forall k > 2 and t > 0, as
well; see CONUS ET AL [12]. Since the kth moment grows very rapidly with k,
this suggests strongly that the distribution of u(x) might be not determined
by its moments; this is further corroborated by the somewhat exotic form
of the tail estimate (5.3) below. O

Proof (sketch). For the most part we follow the well-known Picard iteraton
method from classical ODEs. Therefore, I will concentrate mostly on the
novel features of the proof and ask you to fill in the mostly-standard details.

Define ugo) (x) := up(x), and for alln >0, t > 0, and x € R,

") = (py o uo)(x) + j Pr-sly —x)o (ufl (y)> Wi(y)ds dy.

(0.6)xR

5This method is also known as the method of variation of constants, and the resulting mild
formulation of the solution is called DuHAMEL’s formula.
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Because
I [6 <u(")> -0 <u(“‘1)>] w,

it follows from Proposition 2.4 (p. 13) that for all 8 > 0 and k € [2, ),

2k)"
g () < P (o (um) o (a1 )
(2k)" _
< WLlp(j N;; (u(") —um ”) ,
where, we recall, Lip, denotes the Lipschitz constant of 0. We can now
apply the preceding, together with a “fixed-point argument,” to deduce that
if u™ ¢ L§ for all n, and if also

B > (2k)’Lip, (3.3)

then u := lim,_. u™ exists in Llé, and solves our stochastic PDE. A simi-

lar inequality shows also that sup, N’ g(u(”)) < oo provided that (3.3) holds.
All this has the desired result, and the asserted moment estimate follows
because N g(u) < oo for any B that satisfies (3.3) [check the arithmetic!]. O

3.2 Lyapunov exponents. Choose and fix some x € R, and define for all
real numbers k > 0,

_ . 1
(k) := hrtnsup i log E (Ju(x)[¥) .

The quantity (k) is the upper kth moment Lyapounov exponent of the
solution at x, and Theorem 3.1 implies that (k) is finite for all k > 0. By
JENSEN's inequality, if 1 < k < £ < oo then [Ju¢(x)||r < [|u¢(x)]e whence

1 1
i log E (Ju(x)[¥) < i

We first let t — oo, and then k, ¢ — oo in different ways to find that

log E (Ju(x)|%) .

%k) is nondecreasing for k € [1, c0).

The following is due to CARMONA and MoOLCHANOV [§, p. 55].

Lemma 3.3. Suppose u¢(x) > 0 a.s. forall t > 0 and x € R, 7(k) < oo for
all k < oo, and y(c) > 0 for some ¢ > 1. Then, %(k)/k is strictly increasing
for k > c.

It has been proposed that we call the solution to (3.1) intermittent [or
weakly intermittent] if 7(k)/k is strictly increasing. You can find in the in-
troduction of BERTINI and CANCRINI's paper [4] a heuristic justification for
why this mathematical property implies that the solution tends to develop
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large peaks [see, for example, the simulation of the slightly different SPDE
(2) on page 3 of these lectures.] Moreover, the mentioned heuristic suggests
strongly that the height of the tall peaks grow exponentially fast with time.
In other words, the stochastic heat equation behaves increasingly differently
from the linear heat equation as t — oo.

Enough said; let us prove something next.

Proof of Lemma 3.3. Because u is nonnegative,

¥(k) = lim sup 1 log E (u¢(x)¥) forall k > 0. (3.4)

t—o0 t

[N.B.: No absolute values!] Since Eu¢(x) = (p; * up)(x) is bounded above
uniformly by sup,. ug(x) it follows that

7(1) =0 < 7(c). (3.5)

Next we claim that % is convex on R,. Indeed, for alla,b > 0and A € (0,1),
HOLDER's inequality yields the following: For all p € (1, co) with q := p/(p—1),

E ut(x)AaJr(l_)‘)b] < A{E [ut(x)p)»a] }“P {E [ut(x)q“—’\)b] }1/61.

Choose p := 1/A to deduce the convexity of 7 from (3.4).
Now we complete the proof: By (3.5) and convexity, 7(k) > 0 for all k > 2.
If " > k > ¢, then we write k = Ak’ + (1 — A)—with A := (k —1)/(k’ — 1)—and
apply convexity to conclude that
_ ., _ k—-1_,,
7(k) < A7(R) + (1 = A7) = o— 7 (k). (3.6)
Since (3.6) holds in particular with k = ¢, it implies that (k') > 0. And the
lemma follows from (3.6) and the inequality (k — 1)/(k" — 1) < k/Ek'. O

The following yields natural conditions under which the solution is in-
deed non negative. In PDEs, such results are proved by means of a max-
imum principle. Although SPDEs do not have a maximum principle, they
fortunately do have a comparison principle.

Theorem 3.4 (MUELLER’s comparison principle [36]). If 6(0) = 0 and ug(x) >
0 for all x € R, then u¢(x) >0 a.s. forall t > 0 and x € R.

As far as the intermittency of the solution is concerned, it remains to
discover conditions under which 7(c) > 0 for some ¢ > 1. We will do this
momentarily. However, let us make an aside before going further.

For every c € R,

P {ulx) > e} < e |ulx)|k < exp {—tk [c 1+ o<1))7§)] } .
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Take logarithms and let f — oo to see that

k(c—rﬂk))] <0Oforallc > 0.

1
lim sup 1 log P {u(x) > €'} < —sup X

t—00 k>0
In other words, we are confident [in the sense of large deviations] that the
solution does not grow exponentially with time. This is consistent with prop-
erties of [nonrandom] heat equations.

Open Problem. It is not hard to show that limyo(7(k)/k) exists; the limit
is believed to be strictly negative for a large family of nonlinearities o. If
s0, then the preceding argument shows in fact that there exists g = —c > 0
such that with us(x) < e~ with overwhelming probability. There are now
instances of concrete SPDEs where this has been proved; see for example
AMIR ET AL [2]. It would be interesting if there were a way to prove this
more generally. O

3.3 A lower bound. Recall that the remaining issue with intermittency for
the solution to (3.1) is to verify that 7(c) > 0 for some ¢ > 1. The following
does exactly that in some cases.

Theorem 3.5 (FoonDUN and K [22]). We have 7(2) > 0, provided that
inf,er uox) > 0 and inf,cp |0(z)/z| > 0.

Proof. Let I := inf,cp up(x) and Jy := inf,cn |0(z)/z|. For all x € R fixed,

E (Jugx)2) = |(py * uo)(x / ds / dy p?_y(y — )E (Jolus(y))?)
(3.7)
S /0 ds / dy p?_y(v — x)E (Jus(v)?).
Therefore,
Nplx) i= /O e PE (Jugx)?) dt
satisfies )
Nalx) > &+ I3 / Agly — x)Nply) dy,
where
A (Z)'= /OO -Bt 2( )dt
B\Z) - A ptiz
Therefore,
2 00
inf Np(x) > 2 + I inf No(x) - [ Agly)dy
= ﬁ+]§ inf Ng(x) - /me_Btht”QQ dt (3.8)
ﬁ xeR 0 L*(R)
2 2
= IEO + const - % ]lcrelliiNB( x).
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If B > 0 is sufficiently small, then the coefficient of inf,.p Ng(x) on the right-
most term is > 1. Because Iy > 0, this implies that inf,cg Ng(x) = oo for
such a 8. That is,

Nplx) = / e P'E (Jus(x)]*) dt = co simultaneously for all x € R,
0

for B sufficiently small. This has the desired effect. Indeed, suppose to the
contrary that %(2) = limsup,_,., t ! log E(jus(x)[?) = 0. Then, there exists to
large enough such that E(ju¢(x)[?) < exp(Bt/2) for t > ty, whence

/ e P'E (Jui(x)?) dt < / e P24t < oo,
to to
and this is a contradiction. O

The preceding has some variants that are interesting as well. Let me
mention one such result without proof.

Theorem 3.6 (FOONDUN and K [22]). Assume liminf|,_,., |0(z)/z| > 0 and
Iy := inf,cg up(x) is strictly positive. Then 7(2) > 0 provided that inf, ug(x)
is large enough.
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4  Lecture 4: On compact-support initial data

4.1 The position of the high peaks. The condition that inf,cp ug(x) > 0
is very strong. In this section we analyze the complimentary case where
ug decays at infinity. At this time, we are only able to study the case of
exponential decay, but our analysis has the added benefit that it tells us
about the position of the peaks where intermittency occurs. Let us define
two indices:

A(R) := inf {a >0: limsup% sup log E (Ju(x)|¥) < O};

t—o0 x| >at

where inf @ := oo; and

ME) := sup {a >0: limsup1 sup logE (|ut(x)|k) > 0]» ;

t—00 x| >at
It is easy to see that
0<AMR)<AR)<oo forallk>2.

We are interested to know when the extreme inequalities are strict. In that
case, one can make a heuristic argument that states that we have intermit-
tency, and moreover the farthest high peaks travel, away from the origin,
roughly at linear speed with time.

Theorem 4.1 (Conus and K [14]). Suppose ug: R — R, is lower semicon-
tinuous, strictly positive on a set of strictly-positive measure, and satisfies
[up(x)| = Ole 1) as |x| — oo for some p > 0. If, in addition, 6(0) = 0 and
inf,cr |0(x)/x| > O, then
0 < Alk) < AlR) < 00 forall k > 2.

Conjecture. I believe that the middle inequality is an identity. LE CHEN
and ROBERT DALANG have recently verified this conjecture in the physically-
important case that (x) o x [that is the so-called parabolic Anderson model].
If this is so, then it implies that the farthest high peaks travel exactly at linear
speed with time, away from the origin. Moreover, there is a phase separa-
tion when A(R) = A(k) : —A(k): If |x| > A(R)t(1 + €), then there is almost no
“mass” at x [for t large]; whereas there is exponentially-large mass at some
|x] =~ A(k)t(1 £ o(1)) when t is large.

4.2 Proof. We say that ¥ : R — R, is a weight when ¥ is measurable and
¥(a + b) < d(a)d(b) for all a,b € R.
As usual, the weighted L*-space L%(R) denotes the collection of all measur-

able functions h: R — R such that |h g, < oo, where

bl 2= /_OO |h(x)|* 0(x) dx.

o0
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Define, for all predictable processes v, every real number k > 1, and all
B >0,

1/2
Nprov) = [sup sup e Pox) [vlx)[| -
t>0 xeR

Suppose I'¢(x) is a nonnegative, nonrandom, measurable function and
Z € L%4(R, x R). Let us write, for shorthand, I' ® ZW for the random field

(T ® ZW),(x) i /(0 Ty = X1 Zi Wity ds dy.

Proposition 4.2 (A stochastic Young inequality; CoNus and K [14]). For all
weights ¥, all B > 0, and all k > 2,

00 1/2
Nawall ® ZW) < (4 [ |Pilfym af) Nanol2)
0
Proof. We apply our corollary to the BDG inequality as follows:

e Pole) (T e zv‘v)thi

<tk | e PNy — x)T7_(y — x) e P 0() | Z:w)]; dsdy (44
0,t)xR
<4k | NppolZ)f - / e P 9(z)I'?(z) dr dz.
(0,t)xR

The proposition follows from optimizing this expression over all t > 0 and
x € R. O

Proposition 4.3. For all predictable random fields Z, all B > c¢?/2, and all
k>2

. k
Nﬁ‘k,ﬂc <p ® ZW) < const - m . Nﬁ‘k,ﬂc (Z), (42)

where U, (x) := exp(cx).

Proof. Note that

IPellT gy < sup p(z) - ]: pil)ect dx = SO et
whence
= Bt 2 > exp {(c” - 2B)t/2}
/0 e Hpt“L%C ) dt < const - /0 7 dt (4.3)
Proposition 4.2 completes the proof. O
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Lemma 4.4. If B > c?/4, then

N8 k,o.(Pe % u0) < Nk, (U0).
Proof. Clearly,

V0c () (P * 1) (x)

[ Vi =xipily - x)y/3:huols) dy
sup [\ lunts)] - [ V3 (alpilz)dz

veR

sup /3 (¥)uo(y)| - explc?t/8).

yveR

N

Now multiply both sides by exp(—Bt/2) and optimize. O
<

Proposition 4.5. Suppose there exists ¢ € R such that sup, . |€*/*ug(x)|
oo, and let B > Oc? for a sufficiently large ® > 1. Then for all k > 2
there exists a finite constant Agy, such that E(|u¢(x)[¥) < Agrexp(Bt — cx),
uniformly for all t > 0 and x € R.

Proof. We begin by studying PICARD’s approximation to the solution u.
Namely, let ugo) (x) := up(x), and then define iteratively

u" ) 1= (pex wo)(x) + (p @ (cou™) W) (x),
for t >0, x € R, and n > 0. Clearly,

Ju )], < lperwolxl + || (p o (00 u™) W) (x)

’

k

whence for all 8 > c?/2,

(n-+1) ) const ) m) .
Nﬁ,k,ﬂc (u > < const NB,k,ﬂc (up) + 7\/%? NBIk,ﬁC <u > ;
see Proposition 4.3 and Lemma 4.4. If © is sufficiently large then the coeffi-
cients of N p9.(10) and N s, (u™) are both at most 1/2, whence it follows
that

N oo, W™ Y) < N o, (o) = sup
xe

ecx/2u0<x)’ ,

uniformly for all n. Now let n — oo and apply FATOU's lemma to conclude
that N'g 9, (1) < co. This is another way to state the conclusion. O

Proof of the assertion that A(k) < co. Since ug undergoes exponential de-
cay at infinity, there exists ¢ > 0 such that sup, . [e*“*"*ug(x)| < co. Conse-
quently, E(Ju¢(x)|¥) < Agrexp(Bt — c|x|) for B > Oc?. That is,

lirnsup1 sup logE (Ju(x)|*) <B —ca <0,

t—o00 |x|>at

provided that a > B/c. That is, A(k) < a < oo for such an a. O
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Proof of the assertion that A(k) > 0. Let ], := inf,cg |0(z)/z| and note that

t 00
Juex)]2 > |(Peuo) ) + T2 - /O ds / dy |prsly — )2 Jusw)lZ.  (44)

Let us define for all a, 8 > 0, the following norms for an arbitrary random
field v := {v¢(x) }t>0xer:

1/2

Fv) = [ /0 o Bt dt /x L dx ||Vt(x)||§} ,
x>at

o 1/2

Neglv) = [ [Cetta [ L, ax bl
0 xeR:
x<—at

1/2

Naplv) i= [ /O e P dt /lx o o)
- [( 2sv) + (N;,B(v))Q]”Q.

If x,y € R and 0 < s < t, then the triangle inequality implies that

1[at,oo) (I) = 1[a(t—s),oo) (x - y) : 1[055,00) (y) (45)
Forallr > 0, let
(symmetry)
Talr)i= [ Iorlaf a2 ™" [ et dz,
z;ai« zg—dr

and

Salr)i= [, Tur )l dy.
yzar

According to (4.4) and (4.5),
[ utigars [ fpesuol dxs (T s, (40
x>at x>at

We multiply both sides of (4.6) by exp(—Bt) and integrate [dt] to find

|Nzp)* = [N glpe % uo)|” + I8 - TulB)SalB)

B (4.7)
= | N ppa # wo)|” + J2 - TalB) | N p(w)

|2
where ﬁ(B) = fooo exp(—Bt)H(t) dt defines the Laplace transform of H for
every measurable function H : R, — R,. Also, we can apply a similar
argument, run on the negative half of the real line, to deduce that
‘2

|Nap)|” = | Naplpe % uo)|” + J2 - TalB) | Nz plu) (4.8)
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Next we add the inequalities (4.7) and (4.8) to conclude that

|INap)? = | NapDe # u0)® + JG - TalB) | Naplu).

Next we may observe that | N'q g(pe * uo)| > 0. This holds because ug > 0,
up > 0 on a set of positive measure, and ug is lower semicontinuous. Indeed,
if it were not so, then f] >a (Dt *up)(x) dx = O for almost all, hence all, t > 0.
But then we would let { — 0 to deduce from this and FATOU’s lemma that
ffooo up(x)dx = 0, which is a contradiction.

The preceding development implies the following:

If Naplu) < oo, then Ty(B) < J;2. (4.9)
By the monotone convergence theorem,

~ 1 0
11551 T.(B) = 5 / e PIpil|3 g dt < g7 forall B > 0.
a 0

Let B | 0 to conclude that T, (B) > J;2 for all sufficiently-small positive a and
B. In light of (4.9), this completes our demonstration. O
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5 Lecture 5: Fixed-time results
In this lecture we sometimes add a parameter to our stochastic heat equa-
tion. Namely, we consider

drue(x) = 7 ulx) + olue(x)) Wilx),

K
2
subject to up being bounded, measurable, and nonrandom,

(5.1)

where k > 0 is a fixed constant. The proof of Theorem 3.1 can be easily
adjusted to show that (5.1) has a unique solution provided that Lip, < co.

It is natural to view the solution, dynamically, as a stochastic process uy
that takes values in a suitable space of random functions. “Intermittency”
gives information about uy for large values of t. Let us say a few things about
the behavior of u; for “typical” values of t. I will only state results—without
proofs—as the proofs are somewhat long, and instead include pointers to
the literature wherein you can find the details of the arguments.

5.1 Chaotic behavior. Our first fixed-time result is that when ugy has com-
pact support, u; is a bounded function for all f > 0.

Theorem 5.1 (FoonpuN and K [21]). If 0(0) = O, inf,cgr |0(2)/z] > O, and
up : R — R, is Lipschitz continuous with compact support, then for all
t>0:

sup u¢(x) = sup |u¢(x)| < 00 a.s.

xeR xeR

In fact, sup,.p ut(x) € L*¥(Q) for all k € [2, 00).

Idea of the proof. Choose and fix a t > 0 throughout. Since ¢(0) = 0 and
up > 0, MUELLER’s comparison principle tells us that us > 0 a.s. In particular,
SUPyep [Ut(x)| = supyeg u¢(x). Moreover, the mild formulation (3.2) of u
shows that if ug is supported in [—c, c], then [keeping in mind some t > 0
that is fixed],

Elu¢(x)| = Euy(x) = (p¢ * uo)(x)

X2
< t - -—— .
const - exp < 7 t>
since |x — y|? > $x? — ¢ whenever |y| < c.
Therefore, one might imagine that with probability one limj |, u¢(x) =
0. If so, then we would have desired result by continuity.
Let us argue why lim,_,, u¢(x) has to be zero a.s. A similar argument
will show that lim,_, ., u¢(x) = 0 also.
Let x;, := (2tqlogk)!? for all integers k > 1, where q > 1 is fixed.
According to (5.2), E|us(xg)| = O(k™9), whence limg_,, u¢(xg) = 0 a.s., thanks
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to the Borel-Cantelli lemma. Since xj1 —X} ~ const-[k\/Iog k]! for k large,
one might imagine that therefore sup,cjy, x,.,] [ut(x) — ut(xe)| =~ 0 whenever
k >» 1. This is the case, and clearly implies the result. The previous assertion
requires an “asymptotic modulus of continuity argument,” which is basically
a refinement of KOLMOGOROV’s continuity theorem of the general theory of
stochastic processes. O

By contrast with Theorem 5.1, if ug is bounded uniformly away from
zero, then the solution is unbounded. Moreover, and this has some connec-
tions to statistical physics, the solution grows at a predescribed rate in that
case. This sensitive dependence on the initial data is evidence of “chaotic
behavior,” a term which best remains rigorously undefined.

Theorem 5.2 (CoNuUs, JosepH, and K [12]). If o(x) = x and infycgr up(x) > 0,
then for all t > O there exists a finite constant c(t) > 1, such that
1 log uy(x) logus(x) _ c(f)

< liminf sup ——— <limsup sup —1— < —,
c(t)ké =~ R-oo |y<p (log R)® Rooo [x|<r (I0OgR)? = K°

where 0 := 23 and 6 := 1/3.
Remark 5.3. We might notice the following consequence:

1 . logu¢(x)  c(t)
<limsup ———— < — almost surely for all t > 0. O
c(t)ké [x‘_)oop (log |x]|)® KS

Remark 5.4. Let u solve the stochastic heat equation (5.1) and o(x) :=
Define h¢(x) := logu(x) [a “CoLE-HOPE transformation”]; then u(x)
exp(h¢(x)), and an informal computation shows that

X.

dru(x) = eM™ohi(x), rrurlx) = e (8 hylx) + (Brhe(x))?) .

In other words, h¢(x) is the CoLE-HOPE solution to the SPDE, which is
described the following:®

Bhy(x) = ganh,(x) + g (Bche(x))® + Wilx).

This is the celebrated KPZ equation [29]—so named after KARDAR, PARIs],
and ZHANG—and Theorem 5.2 asserts that

1
< liminf sup hi(x) < lim sup sup

< hy(x) < C(t),
c(t)e® = Rooo pjcp I0gR) = Rl x<r (logR)® = K¢

for 0 := 2/3 and 6 := 1/3. We may think of 0 as a spatial scaling exponent
and § as a temporal [or diffusive] one. The relation “20 = 1 + 6,” valid in
this context, is the socalled “KPZ relation,” after ref. [29], where it has been

6The KPZ equation is an informal equation, though great strides have been made recently
to make rational sense of this equation in various related contexts [3, 26, 27].
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predicted for various models of statistical mechanics [including a large-time-
fixed-space version of this one]. This relation has recently been verified
for a number of related models of statistical mechanics; see, in particular,
ALBERTS ET AL [1] and CoNus ET AL [13]. O

Some ideas for the proof of Theorem 5.2. MUELLER’s comparison principle
reduces the problem to the case that ug is identically a constant, say up = 1.
At this point there are two key main steps behind the proof of Theorem 5.2.

Step 1. First, that there exists ¢ = ¢t € (1, 00) such that for all A > 1,
c'exp <—c| logAI%) <P {uglx) 2 A} <cexp <—c‘1l logk|3/2> . (5.3)

[The distribution of u¢(x) does not depend on x, since up = 1. A hint to how
one would prove this: Use PICARD’s iteration method, and show that every
step of this approximation has the property that its law at the space-time
point (x, t) does not depend on x.]

One can prove the following variation of CHEBYSHEV's inequality:

Side Lemma: If Z is a positive random variable for which there exists
A € (1,00) such that E[Z*] < Aexp(Ak®) for all k > 2, then there exists
B e (1,00) such that

P{Z > A} < Bexp (—B—1| 1og)\|3/2> for all A > 1.

I will leave this for you to prove on your own. [This is a nice exercise.]
From it we can conclude that our moment estimates for u(x) yield the
upper probability bound in (5.3).

The lower bound uses an old idea of PALEY and ZvGMUND [38]. Namely,
that if Z > 0 then
{2 27 Z) | > 122 25

Here is the quick proof: For every u > 0,

E(Z) < p* + E(Z% Z > ) < p* + \JE(Z2%) - P{Z > ).

Solve this with p := [(1/2)E(Z¥)]'* to finish.

We may apply the Paley-Zygmund inequality to Z := |u¢(x)|%, using the
following bounds, rigorously derived first by BERTINI and CANCRINI [4]: (i)
E(Ju¢(x)|¥) > c exp(ck®t) for c € (0,1); and (ii) E(ju¢(x)|?*) < C exp(CEk>t) for
C > 1. In this way we find that

k

4P {uglx) > (/2) et} > ap Ll > 27 ¥ uy(x) o |

> [lue) |2 ue(x) |22 > (c?/C) exp(—CEkt).

27



Set A := 2 kc!/k exp(ck®t) and solve the preceding inequality for A large [so
that k < const - |log A|'/2, whence exp(CEk’t) < exp(const - | log A|*)] to obtain
the probability lower bound.

Step 2. We would like to show that if x and x’ are “sufficiently far apart,”
then u¢(x) and u¢(x’) are “sufficiently independent.” Once this is done, the
result of Step 1 and the Borel-Cantelli lemma together do the job.

Our goal is achieved by coupling: We use the same white noise W, and
consider the solution to the random integral equation:

afltei= 4 [ o, g Py — 3l (ufl)) Wels) dsdy.

ly—x|<B

One proves the existence and uniqueness of the solution u®! as one would
for an SPDE [though, strictly speaking, the preceding is not an SPDE]. More-
over, one can show that if 8 is sufficiently large, then u®® ~ u. Choose and
fix B > 1 so large that it ensures that u® is “sufficiently close” to u. Once
done carefully, our argument will reduce our problem to the following claim:
If x and x’ are “sufficiently close,” then uSB /(x) and ugﬂ) (x’) are “almost inde-
pendent.”

In order to accomplish this we proceed with a second coupling argument:
Define u®™ to be the nth step of PICARD’s iteration approximation to u'®.

That is, uﬁB’O) (x):=1, and

ulr i) =1+ /(s,y)e(O,t)XR: pt-s(y —x)o (Uéﬁ'n)(y» Wi(y)ds dy.

ly—x|<B

As part of the existence/uniqueness proof of u), we show that u#m =
u if n is “sufficiently large.” Now you should convince yourself that if
lx — x’| > 2nB then uP™(x) and u™(x’) are [exactly] independent. To
finish this argument it remains to make precise what “sufficiently large”
means throughout. This can be done by performing very careful [though
somewhat tedious] moment computations. O

5.2 Fractal-like exceedance sets. Suppose uy(x) solves (3.1) once again,
and define exeedance sets,

E.(R) := {x € [0,R]: u¢(x) > exp (a(log R)%> } ,

where t > 0 is fixed here and throughout. As it turns out, x — u¢(x) is a.s.
continuous (WALsH [43, Ch. 3]). Therefore, every E,(R) is a random closed
subset of [0, R] for every R > 0.

Theorem 5.2 implies that: (i) If « is too small then E,(R) is eventually
unbounded a.s. as R — oo; and (ii) If « is too large, then E,(R) is eventually
empty as R — oo a.s.
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Open Problem. Scale Eq(R) so that it is a set in [0, 1]; i.e.,
FolR) = {x € [0,1]: w(Rx) > exp (allog R)*) | .

Is it true that Fy(R) a.s. “converges” to a [random] set F, C [0,1] as R — co?

One might imagine that if F,(R) did converge to some random set Fj,,
then it would do so nicely, and F, would have to be a random fractal. More-
over, if dim, F, denotes a “fractal dimension” for that fractal F,, then one
might also expect that limp_,, log |Fo(R)|/log R = —dim,, F, a.s, where | ---]
denotes Lebesgue measure. In light of this discussion, the following sug-
gests that F(a) is likely to be fractal like with non-trivial “fractal dimension.”

Theorem 5.5 (Conus, JosepH, and K [11]). There exists a, > 0 such that
forall a € (0, ay),

-1 < liminf w < lim sup w <0 a.s.

R—-oo ]Og R R0 lOg R

Open Problem. Does & := limg_, log |F(R)|/log R exist?

5.3 Intermittency islands. Consider the following non-linear stochastic
heat equation, where o : R — R is Lipschitz continuous:

Bruq(x) = 6%

xx

ue(x) + ouglx)) Welx),
subject to ug(x) = 1 for all x € R.

Since [ fooo pt(y — x)up(y)dy = 1, the solution u can be written, in mild form,
as follows:

wlx) =1+ /(0 ey ol ) Waly) dsdy. (5.4)

We have seen that if 0 grows roughly linearly, then the solution tends to
develop tall peaks. I conclude these lectures by presenting an estimate for
the number of peaks. With this aim in mind, let us choose and fix a time
t>0.

Definition 5.6. Choose and fix two numbers 0 < a < b, and a time t > 0.
We say that a closed interval I C R, is an (a,b)-island if: (i) u¢(infI) =
us(supl) = a; (ii) us(x) > a for all x € I° and (iii) sup,c;u¢(x) > b. Let
Jila ,b; R) denote the length of the largest (a, b)-island inside the interval
(0,R).

Theorem 5.7 (CoNus, JosepH, and K [11]). If o(1) + 0,1 < a < b and
P{u¢«0) > b} >0, then

lim sup Jila,b;R)

P W < 0 a.s.
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If, in addition, 0 is bounded then

I Jila,b;R)
1m sup

R—00 lOg R. (109 lOg R)3/2 <00 a.s.

The idea is that to estimate the correlation length of x — u¢(x) very care-
fully, and then use coupling to relate the islands to the longest-run problem
in coin tossing (ERDGs and RENvI [20]). The proof is somewhat technical.
Therefore, instead of hashing that out, let me conclude by making a few
related remarks:

1. The condition that o(1) # O is necessary. Indeed, if o(1) = 0 then
u¢ = 1 [because ug = 1]. In other words, if (1) = O then there are
initial functions for which the solution to the heat equation is bounded.
In those cases any discussion of tall islands is manifestly moot.

2. In order to see the condition that P{u(0) > b} > 0 is non vacuous, we
suppose to the contrary that P{u¢(0) > b} = 0 for all b > 1 and derive a
contradiction as follows: Since Eu¢(0) = 1, there must exist b > 1 such
that P{us(0) > b} > 0. Therefore, it must be that P{u,(0) > 1} = 0,
whence u¢(0) = 1 a.s. This and (5.4) together show that

/ Prs(9)olus(y))Waly)dsdy =0 ass.
(0,t)xR

But M, := fOT pi_s(¥)o(us(y))Ws(y)dsdy (0 < T < t) defines a mean-
zero continuous L? martingale. Therefore, its quadratic variation must
be zero. In particular,

t (o'}
/ds / dy [Pes®)olusm)P =0 as.
0 —00

The heat kernel never vanishes; therefore, o(us(y)) = 0 a.s. for almost
all s € (0,t) and y € R, whence o(us(y)) = 0 a.s. for all s € (0, t) and
v € R, by continuity. Let s | 0 to deduce that o(ug(y)) = 0, whence
uo(y) + 1. This is a contradiction.

Open Problem. Are there any nontrivial lower bounds on the limsup of
Jila,b; R)? For instance, is it true that lim supyg_, . Ji(a,b;R) > 0 a.s.?
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