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Prelude
As far as the laws of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality. –attributed to ALBERT EINSTEIN
Introduction. This is a five-lecture introduction to stochastic partial differ-ential equations, or SPDEs for short. Because SPDEs is a huge subject thatspans a great amount of both theory and applications, we limit ourselvesonly to a family of more or less concrete, and interesting, mathematicalproblems. You can find several pointers to these, and other, aspects of theSPDE literature in the references.In order to have in mind an example of the sort of object that we plan tostudy, consider first the following Heat equation: We seek to find a function
u of a space-time variable (x , t) ∈ R+ × [0 , 1] such that ∂tu = 12∂2

xxu on (0 ,∞)× [0 , 1];with u(x , 0) = sin(πx) for every x ∈ 0 , 1];and u(0 , t) = u(1 , t) ≡ 0 for all t > 0. (He)
The solution to (He) is u(x , t) = sin(πx) exp(−π2t/2), as can be seen by directdifferentiation. Figure 1 shows a MATLAB plot of u(x , t) for x ∈ [0 , 1] and
t ∈ [0 , 1/10].

Figure 1: The solutions to (He); max. height = 1.00
Next let us consider the Stochastic heat equation. That is basically theheat equation, but also has a multiplicative random forcing term. Namely, ∂tu = 12∂2

xxu + λuẆ on (0 ,∞)× [0 , 1],with u(x , 0) = sin(πx),and u(0 , t) = u(1 , t) ≡ 0, (She)
where λ > 0 is a parameter, and Ẇ denotes “space-time white noise.”1

1Stated in rough terms, white noise is the continuum equivalent of i.i.d. standard normalrandom variables. We will discuss it in more detail though, as the proof of its existence requiresome effort.
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Figure 2 shows a simulation of the solution u for all x ∈ [0 , 1] in the casethat λ = 0.1, where x ranges over all of [0 , 1], and t ranges over the shorttime interval [0 , 1/10].

Figure 2: (She) with λ = 0.1; max. height ≈ 1.0197
We can compare Figures 1 and 2 in order to see that the presence of asmall amount of noise in (She) [here, λ = 0.1] can have noticable effect onthe solution. For instance, the solution to (She) is both rougher and tallerthan the solution to (He).These differences become more pronounced as we add more noise thethe system (She). For instance, Figure 3 shows a simulation for λ = 2 where

Figure 3: (She) with λ = 2; max. height ≈ 49.1866
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0 6 t 6 1/10 and 0 6 x 6 1, once again. In that simulation, the solution is quiterough, and the maximum height of the solution is approximately 50.2 Thetallest peaks are in fact so tall that they dwarf the remainder of the solution.That is why, most of the solution appears to be flat in Figure 3. In fact, thatportion is supposed to be a smaller statistical replica of the whole picture—this sort of property is called multifractal—see MANDELBROT [35]—thoughI am not aware of any rigorous ways to state and/or prove the multfractalityof u at present.As you can see from this table, even a modestly-noisy She is a great dealrougher and taller than its non-random cousin He. This apparent “peaki-ness” property of She is usually called intermittency, intermittence, or local-
ization. We will say a few things about this property later on. In the meantime, I mention that two excellent general-audience introductions to inter-mittency and localization in science are MANDELBROT [35] and ZELDOVITCHET AL [47].I conclude with a few sage words by WIGNER [46]:

“Let me end on a more cheerful note. The miracle of the
appropriateness of the language of mathematics for the for-
mulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it
and hope that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure, even though
perhaps also to our bafflement, to wide branches of learning.”

Notational convention. Suppose f : R+×R → R is a real-valued function ofa “time” variable t ∈ R+ and a “space” variable x ∈ R. From now on, I will
always write ft(x) in place of f (t , x). From an analytic point of view, thisconvention might seem particularly strange, since we are studying a familyof “random PDEs” and ft usually refers to ∂tf! But as you will soon see thisconvention makes excellent probabilistic sense. After all, we are interestedin the behavior of the stochastic process {ft}t>0, which typically ends uptaking values in some function space.
Numerical simulation. The following material are not covered in the course
per se, but it would be a shame to not say anything about how one can“produce neat pictures.”Suppose we wish to simulate the solution to the boundary-value prob-lem (She). One can indeed prove that, in this case, (She) has an a.s.-uniquesolution u. Moreover, because u0(x) > 0 for all x ∈ [0 , 1], one can provethat ut(x) > 0 for all t > 0 and x ∈ [0 , 1] a.s. Rather than prove these facts,I refer you to Chapters 1 [§6] and 5 [§5] of the minicourse by DALANG ETAL [17]. We will establish some of these properties for a different family ofSPDEs very soon.

2One might be tempted to run simulations for very high values of λ. But some carefulexperimentation will show that the algorithm’s errors add up irreparably for values of λ � 10.
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Suppose that we wish to simulate the preceding on the time interval
t ∈ [0 , T], where T > 0 is fixed. [In the simulations that we saw earlier,
T = 1/10.] It stands to reason that if ∆t,∆x � 1, then the solution ought tosatisfy3

ut+∆t(x)− ut(x)∆t ≈ ut(x + ∆x) + ut(x −∆x)− 2ut(x)2(∆x)2 + λut(x)ξt(x)∆t∆x ,

where ξt(x) is the following “Wiener integral,”
ξt(x) := ∫(t,t+∆t)×(x,x+∆x) Ẇs(y) ds dy.

We choose ∆t := N−2 and ∆x := N−1 for an integer N � 1—as is naturalfor heat-transfer problems—and obtain
ut+(T/N2)(x)− ut(x) ≈ ut(x + (1/N)) + ut(x − (1/N))− 2ut(x)2 + λNut(x)ξt(x),
whenever t ∈ [0 , T] and x ∈ (0 , 1), and ut+N−2 (0) = ut+N−2 (1) = 0. In particu-lar, relabel t := iN−2 and x := jN−1 to see that
u(i+1)/N2

(
j
N

)
≈ ui/N2 ((j + 1)/N) + ui/N2 ((j − 1)/N)2 +λNui/N2

(
j
N

)
ξi/N2

(
j
N

)
.

From now on we will ignore the error of approximation, as it is supposedto be small. In other words, we will pretend that “≈” is the same as “=.”Because the solution is nonnegative for all time, it would then follow that
Ui(j) := ui/N2 (j/N), ηi(j) := ξi/N2 (j/N) (i > 0, 0 6 j 6 N)should satisfy the recursion

Ui+1(j) = (Ui(j + 1) + Ui(j − 1)2 + λNUi(j)ηi(j))+ ,for all 0 6 i 6 N2 and 1 6 j 6 N − 1, where a+ := max(a , 0). And
U0(j) := Ui+1(0) := Ui+1(N) := 1 (i > 0, 0 6 j 6 N).It turns out that the ηi(j)’s are independent mean-zero normally-distributedrandom variables with common variance ∆t∆x = N−3. Therefore, Zi(j) :=

N3/2ηi(j) defines a family of independent standard normal random variables.In this way we obtain the following:
Ui+1(j) = (Ui(j + 1) + Ui(j − 1)2 + λUi(j)Zi(j)√

N

)
+ ;

for all i > 0 and 1 6 j 6 N−1; U0(j) := sin(πj/N); and Ui+1(0) := Ui+1(N) := 0when 0 6 j 6 N . Therefore, if we wish to simulate x 7Ï ut(x) for every t upto a given time T > 0, then we choose a large mesh N , and then simulate—asabove—Ui(j) for every 0 6 j 6 N , where i := bTN2c.
3This is a “one-step Euler method,” and can be shown to work reasonably well when∆t,∆x ≈ 0. For this, and a great deal more, see the recent paper [42] by WALSH, for ex-ample.
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A Matlab code. Here is the code that I used as a basis for the precedingsimulations. It has not been optimized. Feel free to use it if you want. Butbe warned that the error of approximation becomes rapidly too big, as λgrows [λ > 13 is almost certainly too big for this method].
%-----------------------------------------------------------%
FUNCTION [MH] = heat (T,N,L)
%-----------------------------------------------------------%
% PARAMETERS: T = terminal real time; %
% N = the mesh size for the space variable; %
% L = coefficient of the noise (lambda); %
% OUTPUT: MH = maximum height of the solution. %
%-----------------------------------------------------------%
tlim = floor(T*N^2); % terminal simulation;
z = randn(tlim,N+1); % standard normals are generated;
u(1,:) = abs(sin(pi*(1:N+1)/(N+1))); % initial data u(1,.);
FOR i=2:tlim

u(i,1) = 0;
u(i,N+1) = 0; % boundary values = 1;
FOR j=2:N

u(i,j) = max(0,(u(i-1,j+1)+u(i-1,j-1))/2+L*N^(-1/2)*u(i-1,j)*z(i,j));
END

END
%-----------------------------------------------------------%
MH = max(max(u)); % Maximum height at terminal time T.
%-----------------------------------------------------------%

Acknowledgements. These notes are the backbone of a five-lecture courseon stochastic partial differential equations, given in Recife, Brazil in August2012 as part of the 16th Brazilian School of Probability. I am grateful to allof the scientific committee and the organizers of the summer school, mostparticularly to Professor ANDREI TOOM, for inviting me to this physically-spectacular, and intellectually-stimulating environment.The material of this course is based in large part on many years ofdelightful collaborations with my colleagues DANIEL CONUS, MOHAMMUDFOONDUN, MATHEW JOSEPH, and SHANG-YUAN SHIU. I thank them deeplyfor this, and for suggesting several corrections and improvements to thepresent draft.Finally, I wish to thank the UNITED STATES’ NATIONAL SCIENCE FOUNDA-TION for their generous support of my research for many years.
Davar KhoshnevisanSalt Lake City, Utah, USAMay 14, 2012
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1 Lecture 1: Itô and Wiener integralsIn this lecture we develop space-time white noise, also known as white noisein dimension 1+1. But first, I describe the construction of white noise indimension one, since this is a slightly simpler object than space-time whitenoise, and is familiar to the audience of these lectures [albeit in slightlydifferent form]. After that we study space-time white noise properly.
1.1 White noise in dimension 1. Let {Wt}t>0 denote a one-dimensionalBrownian motion on a suitable probability space (Ω,F,P), and define

Ẇt := dWt/dt for t > 0.The stochastic process {Ẇt}t>0 is called white noise on R+, or white noise
in dimension 1. Because W is nowhere differentiable with probability one[theorem of PALEY ET AL [37]], we cannot define Ẇ as a classical stochasticprocess, rather only as a generalized random process, or better still a gener-alized random field [25]. One does this rigorously by mimicking distributiontheory: For all φ ∈ C∞c (R+)—the space of infinitely-differentiable functionson R+ := [0 ,∞) with compact support—define

Ẇ (φ) := ∫ ∞0 φtẆt dt := −∫ ∞0 φ̇tWt dt.
The right-most term is a well-defined Riemann integral; therefore the firsttwo quantities are now well defined. Moreover, {Ẇ (φ)}φ∈C∞c (R+) is a centeredGaussian process with the following properties:1. Ẇ (αφ + βψ) = αẆ (φ) + βẆ (ψ) for all α, β ∈ R, φ, ψ ∈ C∞c (R+); and2. For every φ, ψ ∈ C∞c (R+),

E (Ẇ (φ)Ẇ (ψ)) = ∫ ∞0 dt ∫ ∞0 ds min (s , t) φ̇tψ̇t = ∫ ∞0 φtψt dt.
Therefore, Ẇ is a linear isometric embedding of C∞c (R+) into L2(Ω). Bydensity, Ẇ can be extended uniquely to a linear isometric embedding of
L2(R+) in L2(Ω). If φ ∈ L2(R+) then Ẇ (φ) = ∫∞0 φtẆt dt is also called the
Wiener integral of φ. Our notation is suggestive but uncommon; usuallypeople write ∫∞0 φt dWt in place of our more suggestive ∫∞0 φt Ẇt dt. Butthe latter notation serves our needs much much better, as it turns out.We can apply, purely formally, FUBINI’s theorem to see that

E(∫ ∞0 φtẆt dt · ∫ ∞0 ψtẆs ds) = ∫ ∞0 dt ∫ ∞0 ds φtψsE(ẆtẆs

)
,

for every φ, ψ ∈ L2(R+). Since the left-hand side is rigorously equal to∫∞0 φtψt dt we can “conclude,” seemingly non-rigorously, that
E (ẆtẆs

) = δ0(t − s).
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This appears to be non rigorous since t 7Ï Ẇt is not a random function. Butin fact it is possible to create a theory of generalized Gaussian random fieldsthat makes this rigorous [25], though the “δ-function” (s , t) 7Ï δ0(t−s) has tobe interpreted as a Carathéodory–Hausdorff type version of the Lebesguemeasure on the diagonal of R+ ×R+. In this way, we are justified in sayingthat {Ẇt}t>0 is a generalized Gaussian random field with mean measure 0and covariance measure δ0(t − s). I will skip the details of this theory ofgeneralized random fields because we will only need the formal notationand not the machinations of the theory itself.
1.2 The Itô integral in dimension 1. As before, let {Ẇt}t>0 denote whitenoise on R+, and {Wt}t>0 the corresponding Brownian motion. Now wewish to integrate random functions against white noise.For all t > 0 define Ft to be the sigma-algebra generated by {Ws}s6t .One can check that Ft can also be defined as the sigma-algebra generatedby all variables for the form Ẇ (1[0,t]f ) = ∫ t0 frẆr dr, as f ranges over L2(R+).Suppose φ is an elementary process; i.e., has the form

φt := X · 1(α,β)(t),where 0 6 α 6 β are non random, and X ∈ L2(Ω) is Fα-measurable. Thenwe define
Ẇ (φ) := ∫ ∞0 φsẆs ds := X ·

∫ β

α
Ẇs ds := X · (Wβ −Wα).

The right-most term is well defined; therefore, the other three quantitiesare also well defined. Because X is independent of ∫ βα Ẇs ds = Wβ −Wα, itfollows also thatEẆ (φ) = 0, E(|Ẇ (φ)|2) = E(X2)(β − α) = E(‖φ‖2L2(R+)) .Let L2
P(R+) define the linear span, in L2(Ω), of all elementary processes

{φt}t>0 of the preceding form. Elements of L2
P(R+) are square-integrable

predictable processes; this predictability accounts for the subscript P.Since φ 7Ï Ẇ (φ) is linear, the preceding defines a linear map Ẇ mapping
L2
P(R+) isometrically into L2(Ω) such that EẆ (φ) = 0 for all φ ∈ L2

P(R+). Wecontinue to write
Ẇ (φ) := ∫ ∞0 φtẆt dt,and refer to the right-hand side as the Itô integral of φ. In probability theory,we usually write ∫∞0 φt dWt instead. But I will not do that in these lectures.The space L2

P(R+) is quite large; for example it contains all continu-ous stochastic processes {φt}t>0 that are adapted to {Ft}t>0 and satisfyE(‖φ‖2L2(R+)) < ∞.
Proposition 1.1 (ITÔ, 1944). t 7Ï ∫ t0 φsẆs ds is a mean-zero continuous
martingale with quadratic variation

∫ t0 φ2
s ds.
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Here is an outline of the proof of this proposition: First we prove it inthe case that φt = X · 1(α,β)(t) for an Fα-measurable X ∈ L2(Ω). In that case,∫ t0 φsẆs ds = X·(Wβ∧t−Wα∧t) clearly has the desired martingale properties.Then, we find φn → φ ∈ L2
P(R+) such that each φn is a finite nonrandomlinear combination of terms of the form Xn · 1(αn ,βn)(t) for Fαn -measurable

Xn ∈ L2(Ω), where the intervals (αn , βn) are disjoint as n varies. A directcomputation shows the isometry identity E(|Ẇ (1(0,t)φn) − Ẇ (1(0,t)φm)|2) =
‖(φn−φm)1(0,t)‖2L2(R+). Since L2(Ω)-limits of martingales are themselves L2(Ω)-martingales it follows that Mt := Ẇ (1(0,t)φ) defines a mean-zero L2(Ω)-martingale. If we showed that M is a.s. continuous, then its quadratic varia-tion at time t would also be ∫ t0 |φs|2 ds per force. The remaining continuityassertion follows from DOOB’s maximal inequality:

E( sup
t∈(0,T) |Ẇ (1(0,t)φn)− Ẇ (1(0,t)φm)|2) 6 4‖(φn − φm)1(0,T)‖2L2(R+),

valid as long as we used a standard augmentation of the filtration {Ft}t>0.
1.3 White noise in dimension (1+1). White noise {Ẇt(x)}t>0,x∈R in di-mension (1+1) is the generalized Gaussian random field such that

EẆt(x) = 0 and E(Ẇt(x)Ẇs(y)) = δ0(t − s)δ0(x − y),
where the product of the delta functions is understood rigorously as a mea-sure on (R+ × R)2. More commonly, one refers to Ẇ as “space-time whitenoise.”In order to understand this object probabilistically, let us introduce a“two-sided Brownian sheet” {Wt(x)}t>0,x∈R as follows: {Wt(x)}t>0,x∈R is acentered Gaussian process with

E (Wt(x)Ws(y)) = min(s , t) min(|x| , |y|)1(0,∞)(xy).
We can check the following by directly computing the covariances:1. For every fixed t > 0, {t−1/2Wt(x)}x>0 and {t−1/2Wt(−x)}x60 are twoindependent Brownian motions [provided that 0/0 := 0]; and2. For every x ∈ R fixed, {|x|−1/2Wt(x)}t>0 defines a Brownian motion[again if 0/0 := 0].Now we define Ẇt(x) := ∂2

txWt(x), or more precisely the Wiener integral
Ẇ (φ) := ∫

R+×R
∂2
txφt(x)Wt(x) dt dx for all φ ∈ C∞c (R+ ×R).
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Note that {Ẇ (φ)}φ∈C∞c (R+×R) defines a centered Gaussian random field with
E(Ẇ (φ)Ẇ (ψ))
= ∫

R+×R
dt dx ∫

R+×R
ds dy ∂2φt(x)

∂t ∂x
∂2ψs(y)
∂s ∂y min(s , t) min(|x| , |y|)1(0,∞)(xy)

= ∫
R+×R

φt(x)ψt(x) dt dx,
as one can check by considering functions φt(x) and ψt(x) of product form
ft×g(x). This discussion implies that the Gaussian random field φ 7Ï Ẇ (φ) isa linear isometry from C∞c (R+×R) into L2(Ω). Therefore, we find by densitya centered Gaussian random field {Ẇ (φ)}φ∈L2(R+×R) such that φ 7Ï Ẇ (φ) isa linear isometry from L2(R+ × R) into L2(Ω). We call Ẇ (φ) the Wiener
integral of φ ∈ L2(R+ ×R), and use alternatively the notation∫

R+×R
φs(x)Ẇs(x) ds dx for all φ ∈ L2(R+ ×R).

In this way we can also define consistently definite Wiener integrals∫
(a,b)×R

φs(x)Ẇs(x) ds dx := Ẇ
(
1(a,b)φ) ,

for all 0 < a < b and φ ∈ L2(R+ × R). Note, in particular, that (t , φ) 7Ï∫(0,t)×R φs(x)Ẇs(x) ds dx defines a Gaussian random field with mean zeroand covariance
Cov(∫(0,t)×R

φs(x)Ẇs(x) ds dx ,∫(0,t ′)×R
ψs(x)Ẇs(x) ds dx)

= ∫ t∧t ′

0 ds ∫ ∞
−∞

dx φs(x)ψs(x), (1.1)
for all 0 < t < t ′ and φ, ψ ∈ L2(R+ ×R+).
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2 Lecture 2: Stochastic convolutions
2.1 Walsh integrals. Let Ft define the sigma-algebra generated by thecollection of random variables {Ws(x)}s∈(0,t),x∈R . Equivalently, Ft denotesthe sigma-algebra generated by {Ẇ (1(0,t)φ)}φ∈L2(R+×R).4Consider a random field φ = {φt(x)}t>0,x∈R of the form

φt(x) = 1(α,β)(t) X · f (x),
where 0 6 α 6 β, X ∈ L2(Ω) is Fα-measurable, and f ∈ L2(R) is uniformlybounded. Such random fields are called elementary. We can define, for allelementary φ,

Ẇ (φ) := ∫
R+×R

φt(x)Ẇt(x) dt dx := X · Ẇ
(
1(α,β)f) .

Since the right-most quantity is well defined as a Wiener integral, the preced-ing defines the first two terms rigorously. We may observe that Ẇ (1(α,βf ) isindependent of Ẇ (1(0,α)g) for all g ∈ L2(R) since the correlation between thetwo Wiener integrals is the inner product—in L2(R+ × R)—between 1(0,α)gand 1(α,β)f . Therefore, X is independent of Ẇ (1(α,β)f ), whence
EẆ (φ) = 0, E(|Ẇ (φ)|2) = E(X2) ∥∥1(α,β)f∥∥2

L2(R+×R) = E(‖φ‖2L2(R+×R)) .
Finite linear combinations of simple random fields are called simple. Wecan define Ẇ (φ) for a simple φ by linearity. Let L2

P(R+×R) denote the linearspan of all such random fields φ in L2(Ω×R+×R). Elements of L2
P(R+×R)are called predictable random fields. The preceding defines uniquely alinear isometric embedding Ẇ of L2

P(R+ ×R) into L2(Ω) such that
EẆ (φ) = 0 and E(|Ẇ (φ)|2) = E(‖φ‖2L2(R+×R)) .

I will write
Ẇ (φ) := ∫

R+×R
φt(x)Ẇt(x) dt dx, for all φ ∈ L2

P(R+ ×R),
and refer to Ẇ (φ) as the Walsh integral of φ. In the probability literature,we usually write ∫∞0 ∫∞

−∞ φt(x)W (dt dx) instead; but I prefer the displayednotation and will not do that in these lectures.The space L2
P(R+ × R) is very large; for instance it contains all randomprocesses of the form φt(x) = f (t ,Wt(x)) where f : R+ × R → R is lowersemicontinuous and satisfies E(∫∞0 dt ∫∞−∞ dx |f (t ,Wt(x))|2) < ∞.

4We will be tacitly replace Ft by its usual augmentation, as described for example in DEL-LACHERIE AND MEYER [19].
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2.2 A connection to martingales. If φ ∈ L2(R), then
Mt := ∫(0,t)×R

φ(y)Ẇs(y) ds dy := Ẇ
(
1(0,t)φ) (t > 0)

defines a Gaussian process with mean zero. In fact, whenever s, t > 0,
E (MtMt+s) = ∫

R+×R
1(0,t)(r)φ(x)1(0,t+s)(r)φ(x) dr dx = t‖φ‖2L2(R).

Therefore, t 7Ï Mt/‖φ‖L2(R) defines a Brownian motion. This and a densityargument together yield the following.
Proposition 2.1 (WALSH [43]). For every φ ∈ L2

P(R+ ×R) and t > 0 define

Mt(φ) := ∫(0,t)×R
Ẇs(y)φs(y) ds dy := Ẇ

(
1(0,t)φ) .

Then {Mt(φ)}t>0 is a continuous mean-zero L2(Ω)-martingale with quadratic
variation

〈M(φ)〉t = ∫ t

0 ds ∫ ∞
−∞

dy |φs(y)|2 = ∥∥1(0,t)φ∥∥2
L2(R+×R) .

The following consequence is of paramount importance to us.
Corollary 2.2 (The BDG inequality). Choose and fix k ∈ [2 ,∞). If M is a
continuous martingale with Mt ∈ Lk(Ω) for all t > 0, then

E (|Mt |k
)
6 (4k)k/2E(|〈M〉t |k/2) (t > 0),

where 〈M〉t denotes the quadratic variation of M.This is the usual BDG inequality, due to BURKHOLDER, DAVIS, and GUNDY,for continuous L2(Ω)-martingales [5–7]. But we have also used the fact thatthe best constant in that inequality is at most (4k)k/2; see the bound byCARLEN and KREE [9] on the optimal constant in the BDG inequality, foundearlier by DAVIS [18].An application of the preceding together with the Minkowski inequalityyields the following. From now on, I will write ‖ · · · ‖k in place of ‖ · · · ‖Lk(Ω).That is,
‖Z‖k := {E (|Z|k)}1/k , (2.1)for every random variable Z ∈ Lk(Ω), and k ∈ [1 ,∞).

Corollary 2.3 (The BDG inequality [22]). If φ ∈ L2
P(R+ × R), then for all

k > 2, ∥∥∥∥∫
R+×R

φs(x)Ẇs(x) ds dx∥∥∥∥2
k
6 4k ∫ ∞0 ds ∫ ∞

−∞
dx ‖φs(x)‖2k.
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2.3 Stochastic convolutions. One can define quite general “stochastic con-volutions.” However, we define only what we need. With this in mind, let usfirst denote by pt(x) the following normalization of the heat kernel on R:
pt(x) := e−x2/(2t)(2πt)1/2 (t > 0, x ∈ R).

If Z is a predictable random field that satisfies∫ t

0 ds ∫ ∞
−∞

dy [pt−s(y − x)]2E (|Zs(y)|2) < ∞ (t > 0, x ∈ R), (2.2)
then we let

Mt,τ(x) := ∫(0,t)×R
pτ−s(y − x)Zs(y)Ẇs(y) ds dy (0 < t < τ, x ∈ R).

The stochastic integral is defined in the sense of WALSH, and {Mt,τ(x)}t∈[0,τ]is a continuous mean-zero martingale for every fixed τ > 0. The stochastic
convolution(

p ∗ ZẆ
)
t
(x) := Mt,t(x) = ∫(0,t)×R

pt−s(y − x)Zs(y) Ẇs(y) ds dy
is therefore a well-defined mean-zero random field, whose variance is de-scribed by the left-hand side of (2.2).Define for all k ∈ [2 ,∞) , β > 0, and every predictable random field Z,

Nk
β (Z) := sup

t>0 sup
x∈R

(e−βt‖Zt(x)‖k) . (2.3)
It is not hard to see that if Z is a predictable random field that satisfies
N2

β(Z) < ∞ for some β > 0 and k ∈ [2 ,∞) then Z also satisfies (2.2), andhence p∗ZẆ is a well-defined square-integrable random field. The followingis a stronger statement.
Proposition 2.4 (CONUS, FOONDUN, and K [14, 22]). For all k ∈ [2 ,∞), β > 0,
and every predictable random field Z,

Nk
β

(
p ∗ ZẆ

)
6

(2k)1/2
β1/4 Nk

β (Z).
Proof of Proposition 2.4. We apply the BDG inequality, in the form men-tioned earlier (Corollary 2.3), and deduce that

e−2βt ∥∥∥∥∫(0,t)×R
pt−s(y − x)Zs(y)Ẇs(y) ds dy∥∥∥∥2

k

6 4ke−2βt ∫ t

0 ds ∫ ∞
−∞

dy [pt−s(y − x)]2‖Zs(y)‖2k
6 4k [Nk

β (Z)]2 · ∫ t

0 e−2β(t−s)ds ∫ ∞
−∞

dy [pt−s(y − x)]2
6 4k [Nk

β (Z)]2 · ∫ ∞0 e−2βs‖ps‖2L2(R) ds.
13



In particular, we may optimize the left-most term over all x and t , in orderto see that[
Nk

β

(
p ∗ ZẆ

)]2
6 4k [Nk

β (Z)]2 · ∫ ∞0 e−2βs‖ps‖2L2(R) ds.
A direct computation shows that the preceding integral is equal to (4β)−1/2,and the proposition follows.Now define Lk

β to be the completion, in the normNk
β , of the vector spaceall predictable random fields Z such that Nk

β (Z) < ∞.
Corollary 2.5. Choose and fix β > 0 and k ∈ [2 ,∞). Then, the stochastic
convolution map Z 7Ï p ∗ ZẆ defines a bounded linear operator from Lk

β
into itself, with operator norm being no more than (2k)1/2β−1/4. Moreover,(x , t) 7Ï (p ∗ ZẆ )t(x) has a continuous modification.

Proof. The continuity assertion will follow from the ensuing remarks. If sothen, in light of the preceding proposition, it suffices to prove that if Z ∈ Lk
βis predictable then p ∗ ZẆ is predictable also. In fact it is enough to provethis assertion in the case that Z is an elementary function. But then ourproblem is reduced to the case that Zs(y) = 1[α,β](t)f (x) for a nonrandomand bounded f ∈ L2(R). In this case, a few elementary estimates show thatthe Gaussian random field p ∗ ZẆ satisfies∥∥∥(p ∗ ZẆ)

t
(x)− (p ∗ ZẆ)

t
(x′)∥∥∥2 = O

(
|x − x′|1/2

)
,

and ∥∥∥(p ∗ ZẆ)
t
(x)− (p ∗ ZẆ)

t ′
(x)∥∥∥2 = O

(
|t − t ′|1/4

)
,

uniformly for all x, x′ ∈ R and t, t ′ ∈ [0 , T], where T > 0 is fixed butarbitrary; see [17, Ch. 1]. It follows readily from this that [0 , T] × R 3(p ∗ ZẆ )t(x) is continuous in ∩p∈[2,∞)Lp(P) (and also almost surely, thanksto a suitable form of KOLMOGOROV’s continuity theorem) and therefore apredictable random field.
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3 Lecture 3: A stochastic heat equation
3.1 Existence and uniqueness. Let σ : R → R be a globally Lipschitzfunction; recall that this means that

Lipσ := sup
x6=y
|σ (x)− σ (y)|
|x − y| < ∞.

Our goal is to solve the following[
∂tut(x) = 12∂2

xxut(x) + σ (ut(x))Ẇt(x),subject to u0 being bounded, measurable, and nonrandom.
(3.1)

If Ẇt(x) were replaced by a smooth function, then classical PDEs tellsus that the solution to (3.1) is5
ut(x) = (pt ∗ u0)(x) + ∫(0,t)×R

pt−s(y − x)σ (us(y))Ẇs(y) ds dy. (3.2)
In the stochastic setting, our notion of solution remains the same, but weinterpret the integral that involves the noise Ẇ as a stochastic convolution. Itcan be proved that the resulting “solution,” when it exists, is a “weak solution”to (3.1). Any solution to (3.2) is called a mild solution to (3.1).

Theorem 3.1 (DALANG [16], FOONDUN and K [22], WALSH [43]). The stochas-
tic heat equation (3.1) has a mild solution u that is unique within Lk

β for
all β > 0 and k ∈ [2 ,∞). In addition, there exists a universal constant
C ∈ (0 ,∞) such that for all k > 2 and t > 0,

sup
x∈R

E (|ut(x)|k) 6 C exp (Ck3t) .
Remark 3.2. This moment condition is sharp. For example, if, in addition,infx∈R |σ (x)/x| > 0 and infx∈R u0(x) > 0, then one can prove that there exists
c ∈ (0 , 1) such that infx∈R E(|ut(x)|k) > c exp(ck3t) for all k > 2 and t > 0, aswell; see CONUS ET AL [12]. Since the kth moment grows very rapidly with k,this suggests strongly that the distribution of ut(x) might be not determinedby its moments; this is further corroborated by the somewhat exotic formof the tail estimate (5.3) below.
Proof (sketch). For the most part we follow the well-known Picard iteratonmethod from classical ODEs. Therefore, I will concentrate mostly on thenovel features of the proof and ask you to fill in the mostly-standard details.Define u(0)

t (x) := u0(x), and for all n > 0, t > 0, and x ∈ R,
u(n+1)
t (x) = (pt ∗ u0)(x) + ∫(0,t)×R

pt−s(y − x)σ (u(n)
s (y)) Ẇs(y) ds dy.

5This method is also known as the method of variation of constants, and the resulting mildformulation of the solution is called DUHAMEL’s formula.
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Because
u(n+1) − u(n) = p ∗

[
σ
(
u(n))− σ (u(n−1))] Ẇ,

it follows from Proposition 2.4 (p. 13) that for all β > 0 and k ∈ [2 ,∞),
Nk

β

(
u(n+1) − u(n)) 6

(2k)1/2
β1/4 Nk

β

(
σ
(
u(n))− σ (u(n−1)))

6
(2k)1/2
β1/4 LipσNk

β

(
u(n) − u(n−1)) ,

where, we recall, Lipσ denotes the Lipschitz constant of σ . We can nowapply the preceding, together with a “fixed-point argument,” to deduce thatif u(n) ∈ Lk
β for all n, and if also

β > (2k)2Lip4
σ , (3.3)

then u := limn→∞ u(n) exists in Lk
β , and solves our stochastic PDE. A simi-lar inequality shows also that supnNk

β (u(n)) < ∞ provided that (3.3) holds.All this has the desired result, and the asserted moment estimate followsbecause Nk
β (u) < ∞ for any β that satisfies (3.3) [check the arithmetic!].

3.2 Lyapunov exponents. Choose and fix some x ∈ R, and define for allreal numbers k > 0,
γ(k) := lim sup

t→∞

1
t log E (|ut(x)|k) .

The quantity γ(k) is the upper kth moment Lyapounov exponent of thesolution at x, and Theorem 3.1 implies that γ(k) is finite for all k > 0. ByJENSEN’s inequality, if 1 6 k 6 ` < ∞ then ‖ut(x)‖k 6 ‖ut(x)‖` , whence1
kt log E (|ut(x)|k) 6 1̀

t log E (|ut(x)|`) .
We first let t → ∞, and then k, ` → ∞ in different ways to find that

γ(k)
k is nondecreasing for k ∈ [1 ,∞).

The following is due to CARMONA and MOLCHANOV [8, p. 55].
Lemma 3.3. Suppose ut(x) > 0 a.s. for all t > 0 and x ∈ R, γ(k) < ∞ for
all k < ∞, and γ(c) > 0 for some c > 1. Then, γ(k)/k is strictly increasing
for k > c.It has been proposed that we call the solution to (3.1) intermittent [orweakly intermittent] if γ(k)/k is strictly increasing. You can find in the in-troduction of BERTINI and CANCRINI’s paper [4] a heuristic justification forwhy this mathematical property implies that the solution tends to develop

16



large peaks [see, for example, the simulation of the slightly different SPDE(2) on page 3 of these lectures.] Moreover, the mentioned heuristic suggestsstrongly that the height of the tall peaks grow exponentially fast with time.In other words, the stochastic heat equation behaves increasingly differentlyfrom the linear heat equation as t → ∞.Enough said; let us prove something next.
Proof of Lemma 3.3. Because u is nonnegative,

γ(k) = lim sup
t→∞

1
t log E (ut(x)k) for all k > 0. (3.4)

[N.B.: No absolute values!] Since Eut(x) = (pt ∗ u0)(x) is bounded aboveuniformly by supx u0(x) it follows that
γ(1) = 0 < γ(c). (3.5)

Next we claim that γ is convex on R+. Indeed, for all a, b > 0 and λ ∈ (0 , 1),HÖLDER’s inequality yields the following: For all p ∈ (1 ,∞) with q := p/(p−1),
E [ut(x)λa+(1−λ)b] 6 {E [ut(x)pλa]}1/p {E [ut(x)q(1−λ)b]}1/q

.

Choose p := 1/λ to deduce the convexity of γ from (3.4).Now we complete the proof: By (3.5) and convexity, γ(k) > 0 for all k > 2.If k′ > k > c, then we write k = λk′+ (1−λ)—with λ := (k− 1)/(k′− 1)—andapply convexity to conclude that
γ(k) 6 λγ(k′) + (1− λ)γ(1) = k − 1

k′ − 1 γ(k′). (3.6)
Since (3.6) holds in particular with k = c, it implies that γ(k′) > 0. And thelemma follows from (3.6) and the inequality (k − 1)/(k′ − 1) < k/k′.The following yields natural conditions under which the solution is in-deed non negative. In PDEs, such results are proved by means of a max-imum principle. Although SPDEs do not have a maximum principle, theyfortunately do have a comparison principle.
Theorem 3.4 (MUELLER’s comparison principle [36]). If σ (0) = 0 and u0(x) >0 for all x ∈ R, then ut(x) > 0 a.s. for all t > 0 and x ∈ R.As far as the intermittency of the solution is concerned, it remains todiscover conditions under which γ(c) > 0 for some c > 1. We will do thismomentarily. However, let us make an aside before going further.For every c ∈ R,

P {ut(x) > ect} 6 e−ckt‖ut(x)‖kk 6 exp{−tk [c − (1 + o(1))γ(k)
k

]}
.
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Take logarithms and let t → ∞ to see that
lim sup
t→∞

1
t log P{ut(x) > ect} 6 − sup

k>0
[
k
(
c − γ(k)

k

)]
< 0 for all c > 0.

In other words, we are confident [in the sense of large deviations] that thesolution does not grow exponentially with time. This is consistent with prop-erties of [nonrandom] heat equations.
Open Problem. It is not hard to show that limk↓0(γ(k)/k) exists; the limitis believed to be strictly negative for a large family of nonlinearities σ . Ifso, then the preceding argument shows in fact that there exists q = −c > 0such that with ut(x) < e−qx with overwhelming probability. There are nowinstances of concrete SPDEs where this has been proved; see for exampleAMIR ET AL [2]. It would be interesting if there were a way to prove thismore generally.
3.3 A lower bound. Recall that the remaining issue with intermittency forthe solution to (3.1) is to verify that γ(c) > 0 for some c > 1. The followingdoes exactly that in some cases.
Theorem 3.5 (FOONDUN and K [22]). We have γ(2) > 0, provided thatinfx∈R u0(x) > 0 and infz∈R |σ (z)/z| > 0.

Proof. Let I0 := infx∈R u0(x) and J0 := infz∈R |σ (z)/z|. For all x ∈ R fixed,
E (|ut(x)|2) = |(pt ∗ u0)(x)|2 + ∫ t

0 ds ∫ ∞
−∞

dy p2
t−s(y − x)E (|σ (us(y))|2)

> I20 + J20 ·
∫ t

0 ds ∫ ∞
−∞

dy p2
t−s(y − x)E (|us(y)|2) . (3.7)

Therefore,
Nβ(x) := ∫ ∞0 e−βtE (|ut(x)|2) dt

satisfies
Nβ(x) > I20

β + J20 ·
∫ ∞
−∞

Aβ(y − x)Nβ(y) dy,
where

Aβ(z) := ∫ ∞0 e−βtp2
t (z) dt.Therefore,

inf
x∈R

Nβ(x) > I20
β + J20 · inf

x∈R
Nβ(x) · ∫ ∞

−∞
Aβ(y) dy

= I20
β + J20 · inf

x∈R
Nβ(x) · ∫ ∞0 e−βt‖pt‖2L2(R) dt

= I20
β + const · J20√

β
· inf
x∈R

Nβ(x).
(3.8)
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If β > 0 is sufficiently small, then the coefficient of infx∈R Nβ(x) on the right-most term is > 1. Because I0 > 0, this implies that infx∈R Nβ(x) = ∞ forsuch a β. That is,
Nβ(x) = ∫ ∞0 e−βtE (|ut(x)|2) dt =∞ simultaneously for all x ∈ R,

for β sufficiently small. This has the desired effect. Indeed, suppose to thecontrary that γ(2) = lim supt→∞ t−1 log E(|ut(x)|2) = 0. Then, there exists t0large enough such that E(|ut(x)|2) 6 exp(βt/2) for t > t0, whence∫ ∞
t0 e−βtE (|ut(x)|2) dt 6 ∫ ∞

t0 e−βt/2 dt < ∞,
and this is a contradiction.The preceding has some variants that are interesting as well. Let memention one such result without proof.
Theorem 3.6 (FOONDUN and K [22]). Assume lim inf|z|→∞ |σ (z)/z| > 0 and
I0 := infx∈R u0(x) is strictly positive. Then γ(2) > 0 provided that infx u0(x)
is large enough.
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4 Lecture 4: On compact-support initial data
4.1 The position of the high peaks. The condition that infx∈R u0(x) > 0is very strong. In this section we analyze the complimentary case where
u0 decays at infinity. At this time, we are only able to study the case ofexponential decay, but our analysis has the added benefit that it tells usabout the position of the peaks where intermittency occurs. Let us definetwo indices:

λ(k) := inf {α > 0 : lim sup
t→∞

1
t sup
|x|>αt

log E (|ut(x)|k) < 0} ;
where inf∅ :=∞; and

λ(k) := sup{α > 0 : lim sup
t→∞

1
t sup
|x|>αt

log E (|ut(x)|k) > 0} ;
It is easy to see that0 6 λ(k) 6 λ(k) 6∞ for all k > 2.We are interested to know when the extreme inequalities are strict. In thatcase, one can make a heuristic argument that states that we have intermit-tency, and moreover the farthest high peaks travel, away from the origin,roughly at linear speed with time.
Theorem 4.1 (CONUS and K [14]). Suppose u0 : R → R+ is lower semicon-
tinuous, strictly positive on a set of strictly-positive measure, and satisfies
|u0(x)| = O(e−ρ|x|) as |x| → ∞ for some ρ > 0. If, in addition, σ (0) = 0 andinfx∈R |σ (x)/x| > 0, then0 < λ(k) 6 λ(k) < ∞ for all k > 2.

Conjecture. I believe that the middle inequality is an identity. LE CHENand ROBERT DALANG have recently verified this conjecture in the physically-important case that σ (x) ∝ x [that is the so-called parabolic Anderson model].If this is so, then it implies that the farthest high peaks travel exactly at linearspeed with time, away from the origin. Moreover, there is a phase separa-tion when λ(k) = λ(k) : −λ(k): If |x| > λ(k)t(1 + ε), then there is almost no“mass” at x [for t large]; whereas there is exponentially-large mass at some
|x| ' λ(k)t(1± o(1)) when t is large.
4.2 Proof. We say that θ : R → R+ is a weight when θ is measurable and

θ (a + b) 6 θ (a)θ (b) for all a, b ∈ R.As usual, the weighted L2-space L2
θ (R) denotes the collection of all measur-able functions h : R → R such that ‖h‖L2

θ (R) < ∞, where
‖h‖2L2

θ (R) := ∫ ∞
−∞
|h(x)|2 θ (x) dx.
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Define, for all predictable processes v, every real number k > 1, and all
β > 0,

Nβ,k,θ (v) := [sup
t>0 sup

x∈R
e−βtθ (x) ‖vt(x)‖2k]1/2

.

Suppose Γt(x) is a nonnegative, nonrandom, measurable function and
Z ∈ L2

P(R+ ×R). Let us write, for shorthand, Γ ~ ZẆ for the random field
(Γ ~ ZẆ )t(x) := ∫(0,t)×R

Γt−s(y − x)Zs(y)Ẇs(y) ds dy.
Proposition 4.2 (A stochastic Young inequality; CONUS and K [14]). For all
weights θ, all β > 0, and all k > 2,

Nβ,k,θ (Γ ~ ZẆ ) 6 (4k ∫ ∞0 e−βt ‖Γt‖2L2
θ (R) dt)1/2

· Nβ,k,θ (Z).
Proof. We apply our corollary to the BDG inequality as follows:

e−βtθ (x) ∥∥∥(Γ ~ ZẆ )t(x)∥∥∥2
k

6 4k ∫(0,t)×R
e−β(t−s)θ (y − x)Γ2

t−s(y − x) e−βsθ (y) ‖Zs(y)‖2k ds dy
6 4k |Nβ,k,θ (Z)|2 · ∫(0,t)×R

e−βrθ (z)Γ2
r(z) dr dz.

(4.1)

The proposition follows from optimizing this expression over all t > 0 and
x ∈ R.
Proposition 4.3. For all predictable random fields Z, all β > c2/2, and all
k > 2,

Nβ,k,θc (p ~ ZẆ ) 6 const ·√ k2β − c2 · Nβ,k,θc (Z), (4.2)
where θc(x) := exp(cx).
Proof. Note that

‖pt‖2L2
θc (R) 6 sup

z∈R
pt(z) · ∫ ∞

−∞
pt(x)ecx dx = const√

t
· ec2t/2,

whence ∫ ∞
0 e−βt‖pt‖2L2

θc (R) dt 6 const · ∫ ∞0 exp{(c2 − 2β)t/2}
√
t

dt (4.3)
Proposition 4.2 completes the proof.
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Lemma 4.4. If β > c2/4, then

Nβ,k,θc (p• ∗ u0) < Nβ,k,θc (u0).
Proof. Clearly,√

θc(x)(pt ∗ u0)(x) = ∫ ∞
−∞

√
θc(y − x)pt(y − x)√θc(y)u0(y) dy

6 sup
y∈R

[√
θc(y)u0(y)] · ∫ ∞

−∞

√
θc(z)pt(z) dz

= sup
y∈R

[√
θc(y)u0(y)] · exp(c2t/8).

Now multiply both sides by exp(−βt/2) and optimize.
Proposition 4.5. Suppose there exists c ∈ R such that supx∈R |ecx/2u0(x)| <
∞, and let β > Θc2 for a sufficiently large Θ > 1. Then for all k > 2
there exists a finite constant Aβ,k such that E(|ut(x)|k) 6 Aβ,k exp(βt − cx),
uniformly for all t > 0 and x ∈ R.

Proof. We begin by studying PICARD’s approximation to the solution u.Namely, let u(0)
t (x) := u0(x), and then define iteratively
u(n+1)
t (x) := (pt ∗ u0)(x) + (p ~

(
σ ◦ u(n)) Ẇ)

t
(x),

for t > 0, x ∈ R, and n > 0. Clearly,∥∥∥u(n+1)
t (x)∥∥∥

k
6 |(pt ∗ u0)(x)|+ ∥∥∥(p ~

(
σ ◦ u(n)) Ẇ)

t
(x)∥∥∥

k
,

whence for all β > c2/2,
Nβ,k,θc

(
u(n+1)) < const · Nβ,k,θc (u0) + const√2β − c2 · Nβ,k,θc

(
u(n)) ;

see Proposition 4.3 and Lemma 4.4. If Θ is sufficiently large then the coeffi-cients ofNβ,k,θc (u0) andNβ,k,θc (u(n)) are both at most 1/2, whence it followsthat
Nβ,k,θc (u(n+1)) 6Nβ,k,θc (u0) = sup

x∈R

∣∣∣ecx/2u0(x)∣∣∣ ,
uniformly for all n. Now let n → ∞ and apply FATOU’s lemma to concludethat Nβ,k,θc (u) < ∞. This is another way to state the conclusion.
Proof of the assertion that λ(k) < ∞. Since u0 undergoes exponential de-cay at infinity, there exists c > 0 such that supx∈R |e±cx/2u0(x)| < ∞. Conse-quently, E(|ut(x)|k) 6 Aβ,k exp(βt − c|x|) for β > Θc2. That is,

lim sup
t→∞

1
t sup
|x|>αt

log E (|ut(x)|k) 6 β − cα < 0,
provided that α > β/c. That is, λ(k) < α < ∞ for such an α.
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Proof of the assertion that λ(k) > 0. Let J0 := infz∈R |σ (z)/z| and note that
‖ut(x)‖22 > |(Ptu0)(x)|2 + J20 ·

∫ t

0 ds ∫ ∞
−∞

dy |pt−s(y − x)|2 ‖us(y)‖22 . (4.4)
Let us define for all α, β > 0, the following norms for an arbitrary randomfield v := {vt(x)}t>0,x∈R :

N+
α,β(v) := [∫ ∞0 e−βt dt ∫

x∈R:
x>αt

dx ‖vt(x)‖22]1/2
,

N−α,β(v) := [∫ ∞0 e−βt dt ∫
x∈R:
x6−αt

dx ‖vt(x)‖22]1/2
,

Nα,β(v) := [∫ ∞0 e−βt dt ∫
|x|>αt

dx ‖vt(x)‖22]1/2

= [(N+
α,β(v))2 + (N−α,β(v))2]1/2 .

If x, y ∈ R and 0 6 s 6 t , then the triangle inequality implies that
1[αt,∞)(x) > 1[α(t−s),∞)(x − y) · 1[αs,∞)(y). (4.5)

For all r > 0, let
Tα(r) := ∫

z∈R:
z>αr

|pr(z)|2 dz (symmetry)= ∫
z∈R:
z6−αr

|pr(z)|2 dz,
and

Sα(r) := ∫
y∈R:
y>αr

‖ur(y)‖22 dy.
According to (4.4) and (4.5),∫

x>αt
‖ut(x)‖22 dx >

∫
x>αt

|(pt ∗ u0)(x)|2 dx + J20 · (Tα ∗ Sα)(t). (4.6)
We multiply both sides of (4.6) by exp(−βt) and integrate [dt] to find∣∣N+

α,β(u)∣∣2 >
∣∣N+

α,β(p• ∗ u0)∣∣2 + J20 · T̃α(β)S̃α(β)= ∣∣N+
α,β(p• ∗ u0)∣∣2 + J20 · T̃α(β) ∣∣N+

α,β(u)∣∣2 , (4.7)
where H̃(β) := ∫∞0 exp(−βt)H(t) dt defines the Laplace transform of H forevery measurable function H : R+ → R+. Also, we can apply a similarargument, run on the negative half of the real line, to deduce that∣∣N−α,β(u)∣∣2 >

∣∣N−α,β(p• ∗ u0)∣∣2 + J20 · T̃α(β) ∣∣N−α,β(u)∣∣2 . (4.8)
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Next we add the inequalities (4.7) and (4.8) to conclude that
|Nα,β(u)|2 > |Nα,β(p• ∗ u0)|2 + J20 · T̃α(β) |Nα,β(u)|2 .

Next we may observe that |Nα,β(p• ∗u0)| > 0. This holds because u0 > 0,
u0 > 0 on a set of positive measure, and u0 is lower semicontinuous. Indeed,if it were not so, then ∫|x|>αt(pt ∗u0)(x) dx = 0 for almost all, hence all, t > 0.But then we would let t → 0 to deduce from this and FATOU’s lemma that∫∞
−∞ u0(x) dx = 0, which is a contradiction.The preceding development implies the following:

If Nα,β(u) < ∞, then T̃α(β) < J−20 . (4.9)
By the monotone convergence theorem,

lim
α↓0 T̃α(β) = 12

∫ ∞
0 e−βt‖pt‖2L2(R) dt ∝ β−1/2 for all β > 0.

Let β ↓ 0 to conclude that T̃α(β) > J−20 for all sufficiently-small positive α and
β. In light of (4.9), this completes our demonstration.
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5 Lecture 5: Fixed-time resultsIn this lecture we sometimes add a parameter to our stochastic heat equa-tion. Namely, we consider∣∣∣∣∣∣ ∂tut(x) = κ2∂2
xxut(x) + σ (ut(x))Ẇt(x),subject to u0 being bounded, measurable, and nonrandom,

(5.1)
where κ > 0 is a fixed constant. The proof of Theorem 3.1 can be easilyadjusted to show that (5.1) has a unique solution provided that Lipσ < ∞.It is natural to view the solution, dynamically, as a stochastic process utthat takes values in a suitable space of random functions. “Intermittency”gives information about ut for large values of t. Let us say a few things aboutthe behavior of ut for “typical” values of t. I will only state results—withoutproofs—as the proofs are somewhat long, and instead include pointers tothe literature wherein you can find the details of the arguments.
5.1 Chaotic behavior. Our first fixed-time result is that when u0 has com-pact support, ut is a bounded function for all t > 0.
Theorem 5.1 (FOONDUN and K [21]). If σ (0) = 0, infz∈R |σ (z)/z| > 0, and
u0 : R → R+ is Lipschitz continuous with compact support, then for all
t > 0: sup

x∈R
ut(x) = sup

x∈R
|ut(x)| < ∞ a.s.

In fact, supx∈R ut(x) ∈ Lk(Ω) for all k ∈ [2 ,∞).
Idea of the proof. Choose and fix a t > 0 throughout. Since σ (0) = 0 and
u0 > 0, MUELLER’s comparison principle tells us that ut > 0 a.s. In particular,supx∈R |ut(x)| = supx∈R ut(x). Moreover, the mild formulation (3.2) of ushows that if u0 is supported in [−c , c], then [keeping in mind some t > 0that is fixed],

E|ut(x)| = Eut(x) = (pt ∗ u0)(x)
6

supz∈R[u0(z)]√2πt
∫ c

−c
exp(−|x − y|22t

)dy (5.2)
6 const · exp(−x24t

)
.

since |x − y|2 > 12x2 − c2 whenever |y| 6 c.Therefore, one might imagine that with probability one lim|x|→∞ ut(x) =0. If so, then we would have desired result by continuity.Let us argue why limx→∞ ut(x) has to be zero a.s. A similar argumentwill show that limx→−∞ ut(x) = 0 also.Let xk := (2tq logk)1/2 for all integers k > 1, where q > 1 is fixed.According to (5.2), E|ut(xk)| = O(k−q), whence limk→∞ ut(xk) = 0 a.s., thanks
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to the Borel–Cantelli lemma. Since xk+1−xk ∼ const·[k√logk]−1 for k large,one might imagine that therefore supx∈[xk ,xk+1] |ut(x)−ut(xk)| ≈ 0 whenever
k � 1. This is the case, and clearly implies the result. The previous assertionrequires an “asymptotic modulus of continuity argument,” which is basicallya refinement of KOLMOGOROV’s continuity theorem of the general theory ofstochastic processes.By contrast with Theorem 5.1, if u0 is bounded uniformly away fromzero, then the solution is unbounded. Moreover, and this has some connec-tions to statistical physics, the solution grows at a predescribed rate in thatcase. This sensitive dependence on the initial data is evidence of “chaoticbehavior,” a term which best remains rigorously undefined.
Theorem 5.2 (CONUS, JOSEPH, and K [12]). If σ (x) = x and infx∈R u0(x) > 0,
then for all t > 0 there exists a finite constant c(t) > 1, such that

1
c(t)κδ 6 lim inf

R→∞
sup
|x|<R

logut(x)(logR)σ 6 lim sup
R→∞

sup
|x|<R

logut(x)(logR)σ 6
c(t)
κδ ,

where σ := 2/3 and δ := 1/3.
Remark 5.3. We might notice the following consequence:

1
c(t)κδ 6 lim sup

|x|→∞

logut(x)(log |x|)σ 6
c(t)
κδ almost surely for all t > 0.

Remark 5.4. Let u solve the stochastic heat equation (5.1) and σ (x) := x.Define ht(x) := logut(x) [a “COLE–HOPF transformation”]; then ut(x) =exp(ht(x)), and an informal computation shows that
∂tut(x) = eht (x)∂tht(x), ∂xxut(x) = eht (x) (∂xxht(x) + (∂xht(x))2) .

In other words, ht(x) is the COLE–HOPF solution to the SPDE, which isdescribed the following:6
∂tht(x) = κ2∂xxht(x) + κ2 (∂xht(x))2 + Ẇt(x).

This is the celebrated KPZ equation [29]—so named after KARDAR, PARISI,and ZHANG—and Theorem 5.2 asserts that1
c(t)κδ 6 lim inf

R→∞
sup
|x|<R

ht(x)(logR)σ 6 lim sup
R→∞

sup
|x|<R

ht(x)(logR)σ 6
c(t)
κδ ,

for σ := 2/3 and δ := 1/3. We may think of σ as a spatial scaling exponentand δ as a temporal [or diffusive] one. The relation “2σ = 1 + δ,” valid inthis context, is the socalled “KPZ relation,” after ref. [29], where it has been
6The KPZ equation is an informal equation, though great strides have been made recentlyto make rational sense of this equation in various related contexts [3, 26, 27].
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predicted for various models of statistical mechanics [including a large-time-fixed-space version of this one]. This relation has recently been verifiedfor a number of related models of statistical mechanics; see, in particular,ALBERTS ET AL [1] and CONUS ET AL [13].
Some ideas for the proof of Theorem 5.2. MUELLER’s comparison principlereduces the problem to the case that u0 is identically a constant, say u0 ≡ 1.At this point there are two key main steps behind the proof of Theorem 5.2.
Step 1. First, that there exists c = ct ∈ (1 ,∞) such that for all λ > 1,

c−1 exp(−c| log λ|3/2) 6 P {ut(x) > λ} 6 c exp(−c−1| log λ|3/2) . (5.3)
[The distribution of ut(x) does not depend on x, since u0 ≡ 1. A hint to howone would prove this: Use PICARD’s iteration method, and show that everystep of this approximation has the property that its law at the space-timepoint (x , t) does not depend on x.]One can prove the following variation of CHEBYSHEV’s inequality:
Side Lemma: If Z is a positive random variable for which there exists
A ∈ (1 ,∞) such that E[Zk] 6 A exp(Ak3) for all k > 2, then there exists
B ∈ (1 ,∞) such that

P{Z > λ} 6 B exp(−B−1| log λ|3/2) for all λ > 1.
I will leave this for you to prove on your own. [This is a nice exercise.]From it we can conclude that our moment estimates for ut(x) yield theupper probability bound in (5.3).The lower bound uses an old idea of PALEY and ZYGMUND [38]. Namely,that if Z > 0 then

4P{Z > 2−1/k‖Z‖k} > ‖Z‖2kk ‖Z‖−2k2k .

Here is the quick proof: For every µ > 0,
E(Zk) 6 µk + E(Zk; Z > µ) 6 µk +√E(Z2k) · P{Z > µ}.

Solve this with µ := [(1/2)E(Zk)]1/k to finish.We may apply the Paley–Zygmund inequality to Z := |ut(x)|k , using thefollowing bounds, rigorously derived first by BERTINI and CANCRINI [4]: (i)E(|ut(x)|k) > c exp(ck3t) for c ∈ (0 , 1); and (ii) E(|ut(x)|2k) 6 C exp(Ck3t) for
C > 1. In this way we find that

4P{ut(x) > (c/2)1/keck2t} > 4P{ut(x) > 2−1/k‖ut(x)‖k}
> ‖ut(x)‖2kk ‖ut(x)‖−2k2k > (c2/C) exp(−Ck3t).
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Set λ := 2−kc1/k exp(ck2t) and solve the preceding inequality for λ large [sothat k 6 const · | log λ|1/2, whence exp(Ck3t) 6 exp(const · | log λ|3/2)] to obtainthe probability lower bound.
Step 2. We would like to show that if x and x′ are “sufficiently far apart,”then ut(x) and ut(x′) are “sufficiently independent.” Once this is done, theresult of Step 1 and the Borel–Cantelli lemma together do the job.Our goal is achieved by coupling: We use the same white noise Ẇ , andconsider the solution to the random integral equation:

u(β)
t (x) := 1 + ∫(s,y)∈(0,t)×R:

|y−x|6β

pt−s(y − x)σ (u(β)
s (y)) Ẇs(y) ds dy.

One proves the existence and uniqueness of the solution u(β) as one wouldfor an SPDE [though, strictly speaking, the preceding is not an SPDE]. More-over, one can show that if β is sufficiently large, then u(β) ≈ u. Choose andfix β � 1 so large that it ensures that u(β) is “sufficiently close” to u. Oncedone carefully, our argument will reduce our problem to the following claim:If x and x′ are “sufficiently close,” then u(β)
t (x) and u(β)

t (x′) are “almost inde-pendent.”In order to accomplish this we proceed with a second coupling argument:Define u(β,n) to be the nth step of PICARD’s iteration approximation to u(β).That is, u(β,0)
t (x) := 1, and

u(β,n+1)
t (x) := 1 + ∫(s,y)∈(0,t)×R:

|y−x|6β

pt−s(y − x)σ (u(β,n)
s (y)) Ẇs(y) ds dy.

As part of the existence/uniqueness proof of u(β), we show that u(β,n) ≈
u(β) if n is “sufficiently large.” Now you should convince yourself that if
|x − x′| > 2nβ then u(β,n)

t (x) and u(β,n)
t (x′) are [exactly] independent. Tofinish this argument it remains to make precise what “sufficiently large”means throughout. This can be done by performing very careful [thoughsomewhat tedious] moment computations.

5.2 Fractal-like exceedance sets. Suppose ut(x) solves (3.1) once again,and define exeedance sets,
Eα(R) := {x ∈ [0 , R] : ut(x) > exp(α(logR)2/3)} ,

where t > 0 is fixed here and throughout. As it turns out, x 7Ï ut(x) is a.s.continuous (WALSH [43, Ch. 3]). Therefore, every Eα(R) is a random closedsubset of [0 , R] for every R > 0.Theorem 5.2 implies that: (i) If α is too small then Eα(R) is eventuallyunbounded a.s. as R →∞; and (ii) If α is too large, then Eα(R) is eventuallyempty as R →∞ a.s.
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Open Problem. Scale Eα(R) so that it is a set in [0 , 1]; i.e.,
Fα(R) := {x ∈ [0 , 1] : ut(Rx) > exp(α(logR)2/3)} .

Is it true that Fα(R) a.s. “converges” to a [random] set Fα ⊂ [0 , 1] as R →∞?One might imagine that if Fα(R) did converge to some random set Fα,then it would do so nicely, and Fα would have to be a random fractal. More-over, if dimH Fα denotes a “fractal dimension” for that fractal Fα, then onemight also expect that limR→∞ log |Fα(R)|/ logR = −dimH Fα a.s., where | · · · |denotes Lebesgue measure. In light of this discussion, the following sug-gests that F (α) is likely to be fractal like with non-trivial “fractal dimension.”
Theorem 5.5 (CONUS, JOSEPH, and K [11]). There exists α∗ > 0 such that
for all α ∈ (0 , α∗),

−1 < lim inf
R→∞

log |Fα(R)|logR 6 lim sup
R→∞

log |Fα(R)|logR < 0 a.s.

Open Problem. Does δ := limR→∞ log |Fα(R)|/ logR exist?
5.3 Intermittency islands. Consider the following non-linear stochasticheat equation, where σ : R → R is Lipschitz continuous:∣∣∣∣∣ ∂tut(x) = 12∂2

xxut(x) + σ (ut(x))Ẇt(x),subject to u0(x) ≡ 1 for all x ∈ R.

Since ∫∞−∞ pt(y −x)u0(y) dy = 1, the solution u can be written, in mild form,as follows:
ut(x) = 1 + ∫(0,t)×R

pt−s(y − x)σ (us(y))Ẇs(y) ds dy. (5.4)
We have seen that if σ grows roughly linearly, then the solution tends todevelop tall peaks. I conclude these lectures by presenting an estimate forthe number of peaks. With this aim in mind, let us choose and fix a time
t > 0.
Definition 5.6. Choose and fix two numbers 0 < a < b, and a time t > 0.We say that a closed interval I ⊂ R+ is an (a , b)-island if: (i) ut(inf I) =
ut(sup I) = a; (ii) ut(x) > a for all x ∈ I◦; and (iii) supx∈I ut(x) > b. Let
Jt(a , b ;R) denote the length of the largest (a , b)-island inside the interval(0 , R).
Theorem 5.7 (CONUS, JOSEPH, and K [11]). If σ (1) 6= 0, 1 < a < b andP{ut(0) > b} > 0, then

lim sup
R→∞

Jt(a , b ;R)(logR)2 < ∞ a.s.
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If, in addition, σ is bounded then

lim sup
R→∞

Jt(a , b ;R)logR · (log logR)3/2 < ∞ a.s.

The idea is that to estimate the correlation length of x 7Ï ut(x) very care-fully, and then use coupling to relate the islands to the longest-run problemin coin tossing (ERDŐS and RÉNYI [20]). The proof is somewhat technical.Therefore, instead of hashing that out, let me conclude by making a fewrelated remarks:1. The condition that σ (1) 6= 0 is necessary. Indeed, if σ (1) = 0 then
ut = 1 [because u0 ≡ 1]. In other words, if σ (1) = 0 then there areinitial functions for which the solution to the heat equation is bounded.In those cases any discussion of tall islands is manifestly moot.2. In order to see the condition that P{ut(0) > b} > 0 is non vacuous, wesuppose to the contrary that P{ut(0) > b} = 0 for all b > 1 and derive acontradiction as follows: Since Eut(0) = 1, there must exist b > 1 suchthat P{ut(0) > b} > 0. Therefore, it must be that P{ut(0) > 1} = 0,whence ut(0) = 1 a.s. This and (5.4) together show that∫

(0,t)×R
pt−s(y)σ (us(y))Ẇs(y) ds dy = 0 a.s.

But Mτ := ∫ τ0 pt−s(y)σ (us(y))Ẇs(y) ds dy (0 6 τ 6 t) defines a mean-zero continuous L2 martingale. Therefore, its quadratic variation mustbe zero. In particular,∫ t

0 ds ∫ ∞
−∞

dy [pt−s(y)σ (us(y))]2 = 0 a.s.
The heat kernel never vanishes; therefore, σ (us(y)) = 0 a.s. for almostall s ∈ (0 , t) and y ∈ R, whence σ (us(y)) = 0 a.s. for all s ∈ (0 , t) and
y ∈ R, by continuity. Let s ↓ 0 to deduce that σ (u0(y)) = 0, whence
u0(y) 6= 1. This is a contradiction.

Open Problem. Are there any nontrivial lower bounds on the lim sup of
Jt(a , b ;R)? For instance, is it true that lim supR→∞ Jt(a , b ;R) > 0 a.s.?
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