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1. What is an SPDE?

Consider a perfectly even, infinitesimally-thin wire of length L. Lay it down flat, so that

we can think of it as [0 , L]. Now we apply pressure to the string in order to make it vibrate.

Let F (t , x) denote the amount of pressure per unit length applied in the direction of the

y-axis at place x ∈ [0 , L]. [F < 0 means press down toward y = −∞, and F > 0 means the

opposite.] Then the position u(t , x) of the wire solves the partial differential equation,

(1.1)
∂2u(t , x)

∂t2
= κ

∂2u(t , x)

∂x2
+ F (t , x), (t ≥ 0, 0 ≤ x ≤ L).

κ is a physical constant that depends on the linear mass density and the tension of the wire.

Equation (1.1) is the so-called one-dimensional wave equation whose physical derivation

goes back to De l’Ambert (Laplace’s mentor). Its solution—via separation of variables

and superposition—is likewise old. What if F is “random noise”? Here is an amusing

interpretation (Walsh, 1986): If a guitar string is bombarded by particles of sand then

its vibrations are determined by a suitable version of (1.1). It turns out that for most

interesting random noises F , (1.1) no longer has a classical meaning. But it can be interpreted

as an infinite-dimensional integral equation. These notes are a way to get you started

thinking in this direction. They are based on the Saint-Flour lecture notes of John B. Walsh

(1986, Chapters 1–3), which remains as one of the best introductions to this subject to date.

2. Gaussian Random Vectors

Let g := (g1 , . . . , gn) be an n-dimensional random vector. We say that the distribution of

g is Gaussian if t′g :=
∑n

j=1 tjgj is a Gaussian random variable for all t := (t1, . . . , tn) ∈ Rn.
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That is, there must exist µ ∈ Rn and an n × n, symmetric, nonnegative-definite matrix C

such that

(2.1) E [exp (it′g)] = exp

(
it · µ− 1

2
t′Ct

)
.

Exercise 2.1. Prove this assertion. [Recall that C is nonnegative definite if and only if

t′Ct ≥ 0 for all t ∈ Rn. Equivalently, if all eigenvalues of C are nonnegative.]

3. Gaussian Processes

Let T be a set, and G = {G(t)}t∈T a collection of random variables indexed by T . We

say that G is a Gaussian process if (G(t1) , . . . , G(tk)) is a k-dimensional Gaussian random

vector for all t1, . . . , tk ∈ T . The finite-dimensional distributions of the process G are the

collection of all probabilities obtained as follows:

(3.1) µt1,...,tk(A1 , . . . , Ak) := P {G(t1) ∈ A1 , . . . , G(tk) ∈ Ak} ,

as A1, . . . , Ak range over Borel subsets of R, and k over all positive integers. In principle,

these are the only pieces of information that one has about the random process G. All

properties of G are supposed to follow from properties of these distributions.

A theorem of Kolmogorov (1933) states that the finite-dimensional distributions of G are

uniquely determined by two functions:

(1) The mean function: µ(t) := E[G(t)]; and

(2) the covariance function C(s , t) := Cov(G(s) , G(t)).

Of course, µ is a real-valued function on T , whereas C is a real-valued function on T × T .

Exercise 3.1. Prove that C is nonnegative definite. That is, prove that for all t1, . . . , tk ∈ T
and all z1, . . . , zk ∈ C,

(3.2)
k∑

j=1

k∑
l=1

C(tj , tl)zjzl ≥ 0.

Exercise 3.2. Prove that whenever C : T × T → R is nonnegative definite,

(3.3) |C(s , t)|2 ≤ C(s , s)C(t , t), for all s, t ∈ T.

This is the Cauchy–Schwarz inequality. In particular, C(t , t) ≥ 0 for all t ∈ T .

Exercise 3.3. Prove that if G is a Gaussian process with mean function µ and covari-

ance function C then {G(t) − µ(t)}t∈T is a Gaussian process with mean function zero and

covariance function C.
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Exercise 3.4. Suppose there exist E,F ⊂ T such that C(s , t) = 0 for all s ∈ E and

t ∈ F . Then prove that {G(s)}s∈E and {G(t)}t∈F are independent Gaussian processes.

That is, prove that for all s1, . . . , sn ∈ E and all t1, . . . , tm ∈ F , (G(s1) , . . . , G(sn)) and

(G(t1) , . . . , G(tm)) are independent Gaussian random vectors.

A theorem of Bochner states that the collection of all nonnegative definite functions f on

T × T matches all covariance functions, as long as f is symmetric. [Symmetry means that

f(s , t) = f(t , s).] This, and the aforementioned theorem of Kolmogorov, together imply

that given a function µ : T → R and a nonnegative-definite function C : T × T → R there

exists a Gaussian process {G(t)}t∈T whose mean function is µ and covariance function is C.

Example 3.5 (Brownian Motion). Let T = R+ := [0 ,∞), µ(t) := 0, and C(s , t) :=

min(s , t) for all s, t ∈ R+. I claim that C is nonnegative definite. Indeed, for all z1, . . . , zk ∈
C and t1, . . . , tk ≥ 0,

k∑
j=1

k∑
l=1

min(tj , tl)zjzl =
k∑

j=1

k∑
l=1

zjzl

∫ ∞

0

1[0,tj ](x)1[0,tl](x) dx

=

∫ ∞

0

∣∣∣∣∣
k∑

j=1

1[0,tj ](x)zj

∣∣∣∣∣
2

dx,

(3.4)

which is manifestly greater than or equal to zero. Because C is also symmetric it must

be the covariance function of some mean-zero Gaussian process B := {B(t)}t≥0. That

process B is called Brownian motion; it was first invented by L. Bachelier (1900). Brownian

motion has the following important additional property: Let s > 0 be fixed. Then the process

{B(t+s)−B(s)}t≥0 is independent of {B(u)}0≤u≤s. Indeed, thanks to Exercise 3.4 it suffices

to prove that for all t ≥ 0 and 0 ≤ u ≤ s, E[(B(t + s) − B(s))B(u)] = 0 (why? Hash this

out carefully!). But this is easy to see because

E[(B(t+ s)−B(s))B(u)] = Cov(B(t+ s) , B(u))− Cov(B(s) , B(u))

= min(t+ s , u)−min(s , u) = u− u = 0.
(3.5)

By d-dimensional Brownian motion we mean the d-dimensional Gaussian process B :=

{(B1(t) , . . . , Bd(t))}t≥0, where B1, . . . , Bd are independent [one-dimensional] Brownian mo-

tions.

Exercise 3.6. Prove that if s > 0 is fixed and B is Brownian motion, then the process

{B(t + s) − B(s)}t≥0 is a Brownian motion independent of {B(u)}0≤u≤s. This and the

independent-increment property of B [Example 3.5] together prove that B is a Markov

process.
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Example 3.7 (Brownian Sheet). Let T := RN
+ := [0 ,∞)N , µ(t) := 0 for all t ∈ RN

+ , and

define C(s , t) :=
∏N

n=1 min(sn , tn) for all s, t ∈ RN
+ . Then C is a nonnegative-definite, sym-

metric function on RN
+×RN

+ , and the resulting mean-zero Gaussian process B = {B(t)}t∈RN
+

is the N -parameter Brownian sheet. When N = 1, this is just Brownian motion. One can

also introduce d-dimensional, N -parameter Brownian sheet as the d-dimensional process

whose coordinates are independent, [one-dimensional] N -parameter Brownian sheets.

Exercise 3.8 (Ornstein–Uhlenbeck Sheet). Let {B(t)}t∈RN
+

denote N -parameter Brownian

sheet, and define a new N -parameter stochastic process X as follows:

(3.6) X(t) :=
B (et1 , . . . , etN )

e(t1+···+tN )/2
, for all t ∈ RN

+ .

This is called the N -paramerter Ornstein–Uhlenbeck sheet. When N = 1, it is called the

Ornstein–Uhlenbeck process. Prove that X is also a mean-zero, N -parameter Gaussian pro-

cess and its covariance function C(s , t) depends on (s , t) only through
∑N

i=1 |si − ti|. Such

processes are called stationary Gaussian processes. This process was predicted in the works

of noble laureates Ornstein and Uhlenbeck. Its existence was proved in a landmark paper of

Doob (1942).

Example 3.9 (White Noise). Let T := B(RN) denote the collection of all Borel-measurable

subsets of RN , and µ(A) := 0 for all A ∈ B(RN). Define C(A ,B) := |A ∩ B|, where

| · · · | denotes the N -dimensional Lebesgue measure. Clearly, C is symmetric. It turns

out that C is also nonnegative definite (Exercise 3.10). The resulting Gaussian process

Ẇ := {Ẇ (A)}A∈B(RN ) is called white noise on RN .

Exercise 3.10. Complete the previous example by proving that the covariance of white

noise is indeed a nonnegative-definite function on B(RN)×B(RN).

Exercise 3.11. Prove that if A,B ∈ B(RN) are disjoint then Ẇ (A) and Ẇ (B) are inde-

pendent random variables. Use this to prove that if A,B ∈ B(RN) are non-random, then

with probability one, Ẇ (A ∪B) = Ẇ (A) + Ẇ (B)− Ẇ (A ∩B).

Exercise 3.12. Despite what the preceding may seem to imply, Ẇ is not a random signed

measure in the obvious sense. Let N = 1 for simplicity. Then, prove that with probability

one,

(3.7) lim
n→∞

2n−1∑
j=0

∣∣∣∣Ẇ ([
j − 1

2n
,
j

2n

])∣∣∣∣2 = 1.
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Use this to prove that with probability one,

(3.8) lim
n→∞

2n−1∑
j=0

∣∣∣∣Ẇ ([
j − 1

2n
,
j

2n

])∣∣∣∣ = ∞.

Conclude that if Ẇ were a random measure then with probability one Ẇ is not sigma-finite.

Nevertheless, the following example shows that one can integrate some things against Ẇ .

Example 3.13 (The Isonormal Process). Let Ẇ denote white noise on RN . We wish to

define Ẇ (h) where h is a nice function. First, we identify Ẇ (A) with Ẇ (1A). More generally,

we define for all disjoint A1, . . . , Ak ∈ B(RN) and c1, . . . , ck ∈ R,

(3.9) Ẇ

(
k∑

j=1

cj1Aj

)
:=

k∑
j=1

cjẆ (Aj).

Thanks to Exercise 3.11, Ẇ (A1), . . . , Ẇ (Ak) are independent. Therefore,

(3.10)

∥∥∥∥∥Ẇ
(

k∑
j=1

cj1Aj

)∥∥∥∥∥
2

L2(P)

=
k∑

j=1

c2j |Aj| =

∥∥∥∥∥
k∑

j=1

cj1Aj

∥∥∥∥∥
2

L2(RN )

.

Classical integration theory tells us that for all h ∈ L2(RN) we can find hn of the form∑k(n)
j=1 cjn1Aj,n

such that A1,n, . . . , Ak(n),n ∈ B(RN) are disjoint and ‖h − hn‖L2(RN ) → 0 as

n → ∞. This, and (3.10) tell us that {Ẇ (hn)}∞n=1 is a Cauchy sequence in L2(P). Denote

their limit by Ẇ (h). This is the Wiener integral of h ∈ L2(RN), and is sometimes written

as
∫
h dW [no dot!]. Its key feature is that

(3.11)
∥∥∥Ẇ (h)

∥∥∥
L2(P)

= ‖h‖L2(RN ).

That is, Ẇ : L2(RN) → L2(P) is an isometry; (3.11) is called Wiener’s isometry (Wiener,

1923a). [Note that we now know how to construct the stochastic integral
∫
h dW only if

h ∈ L2(RN) is non-random.] The process {Ẇ (h)}h∈L2(RN ) is called the isonormal process

(Dudley, 1967). It is a Gaussian process; its mean function is zero; and its covariance

function is C(h , g) =
∫
RN h(x)g(x) dx—the L2(RN) inner product—for all h, g ∈ L2(RN).

Exercise 3.14. Prove that for all [non-random] h, g ∈ L2(RN) and a, b ∈ R,

(3.12)

∫
(ah+ bg) dW = a

∫
h dW + b

∫
h dW,

almost surely.

Exercise 3.15. Let {hj}∞j=1 be a complete orthonormal system [c.o.n.s.] in L2(RN). Then

prove that {Ẇ (hj)}∞j=1 is a c.o.n.s. in L2(P). In particular, for all random variables Z ∈
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L2(P),

(3.13) Z =
∞∑

j=1

ajẆ (hj) almost surely, where aj := Cov
(
Z , Ẇ (hj)

)
,

and the infinite sum converges in L2(P). This permits one possible entry into the “Malliavin

calculus.”

Exercise 3.16. Prove that (3.9) is legitimate. That is, if we also have disjoint setsB1, . . . , B` ∈
B(RN) and d1, . . . , d` ∈ R such that

∑k
j=1 cj1Aj

=
∑`

l=1 dl1Bl
, then prove that

(3.14) Ẇ

(
k∑

j=1

cj1Aj

)
= Ẇ

(∑̀
l=1

dl1Bl

)
almost surely.

4. Regularity of Processes

Our construction of Gaussian processes is very general. That makes our construction both

useful, as well as useless. It is useful because we can make sense of objects such as Brownian

motion, Brownian sheet, white noise, etc. It is useless because our “random functions”

[namely, the Brownian motion and more generally sheet] are not yet nice random functions.

This has to do with the structure of Kolmogorov’s existence theorem. But rather than

discuss this technical subject let us consider a simple example.

Let {B(t)}t≥0 denote the Brownian motion, and suppose U is an independent positive

random variable with an absolutely continuous distribution. Define B′(t) := B(t) if t 6= U ,

and B′(t) = 5000 if t = U . Then B′ and B have the same finite-dimensional distributions.

Therefore, B′ is also a Brownian motion. This little example shows that there is no hope

of proving that a given Brownian motion is (say) a continuous random function. [Sort the

logic out!] Therefore, the best one can hope to do is to produce a modification of Brownian

motion that is continuous. A remarkable theorem of Wiener (1923b) states that this can

always be done. Thus, a Wiener process is a Brownian motion B such that the random

function t 7→ B(t) is continuous. It suffices to define a “modification.”

Definition 4.1. Let X and X ′ be two stochastic processes indexed by some set T . We say

that X ′ is a modification of X if P{X ′(t) = X(t)} = 1 for all t ∈ T .

Exercise 4.2. Prove that any modification of a stochastic process X is a process with the

same finite-dimensional distributions as X. Construct an example where X ′ is a modification

of X, but P{X ′ = X} = 0.
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4.1. A Diversion. In order to gel the ideas we consider first a simple finite-dimensional

example. Let f ∈ L1(R) and denote its Fourier transform by Ff , viz.,

(4.1) (Ff)(z) :=

∫ ∞

−∞
eizxf(x) dx.

Suppose, in addition, that Ff ∈ L1(R). We can proceed [intentionally] carelessly, and use

the inversion formula,

(4.2) f(x) =
1

2π

∫ ∞

−∞
e−izx(Ff)(z) dz.

It follows readily from this and the dominated convergence theorem that f is uniformly

continuous. But this cannot be so! For example, set g(x) = f(x) for all x 6= 0, and

g(x) = f(x) + 1. If f were continuous then g is not. But because Ff = Fg the preceding

argument would “show” that g is continuous too, which is a contradiction. The technical

detail that we overlooked is that (4.2) is true only for almost all x ∈ R. Therefore, the formula

(2π)−1
∫∞
−∞ e−izx(Ff)(z) dz defines a “modification” of f which happens to be uniformly

continuous.

4.2. Kolmogorov’s Continuity Theorem. Now we come to the question, “when does a

stochastic process X have a continuous modification?” If X is a Gaussian process then the

answer is completely known, but is very complicated (Dudley, 1967; Preston, 1972; Fernique,

1975; Talagrand, 1985; 1987). When X is a fairly general process, there are also complicated

sufficient conditions for the existence of a continuous modification. In the special case that

X is a process indexed by RN however there is a very useful theorem of Kolmogorov which

gives a sufficient condition as well.

Theorem 4.3 (Kolmogorov’s Continuity Theorem). Suppose {X(t)}t∈T is a stochastic pro-

cess indexed by a compact set T ⊂ RN . Suppose also that there exist constants C > 0, p > 0,

and γ > N such that uniformly for all s, t ∈ T ,

(4.3) E [|X(t)−X(s)|p] ≤ C|t− s|γ.

Then X has a continuous modification X̄. Moreover, whenever 0 < θ < (γ −N),

(4.4)

∥∥∥∥sup
s6=t

|X̄(s)− X̄(t)|
|s− t|θ

∥∥∥∥
Lp(P)

<∞.

Remark 4.4. Here, |x| could be any Euclidean norm for x ∈ Rk. Some examples are:

|x| := max1≤j≤k |xj|; |x| := (|x1|p + · · · + |xk|p)1/p for p ≥ 1; |x| := |x1|p + · · · + |xk|p for

0 < p < 1; and even an inhomogeneous norm such as |x| := (|x1|p1 + · · · + |xk|pk)1/p works

where 1 ≤ p1, . . . , pk with p := p1 + · · ·+ pk.
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Definition 4.5 (Hölder Continuity). A function f : RN → R is said to be globally Hölder

continuous with index α if there exists a constant A such that |f(x)− f(y)| ≤ A|x− y|α. It

is said to be [locally] Hölder continuous with index α if for all compact sets K ⊂ RN there

exists a constant AK such that |f(x)− f(y)| ≤ AK |x− y|α for all x, y ∈ K.

Exercise 4.6. Suppose {X(t)}t∈T is a process indexed by a compact set T ⊂ RN that

satisfies (4.3) for some C, p > 0 and γ > N . Choose and fix α ∈ (0 , (γ −N)/p). Prove that

with probability one, X has a modification which is Hölder continuous with index α.

Exercise 4.7. Suppose {X(t)}t∈RN is a process indexed by RN . Suppose for all compact

T ⊂ RN there exist constants CT , pT > 0 and γ := γT > N such that

(4.5) E [|X(s)−X(t)|pT ] ≤ CT |s− t|γ, for all s, t ∈ T.

Then, prove that X has a modification X̄ which is [locally] Hölder continuous with some

index εT . Warning: Mind your null sets!

Exercise 4.8 (Regularity of Gaussian Processes). Suppose {X(t)}t∈T is a Gaussian random

field ; i.e., a Gaussian process where T ⊆ RN for some N ≥ 1. Then, Check that for all

p > 0,

(4.6) E (|X(t)−X(s)|p) = cp
[
E
(
|X(t)−X(s)|2

)]p/2
,

where

(4.7) cp :=
1√
2π

∫ ∞

−∞
|x|pe−x2/2 dx =

2p/2

√
π

Γ

(
p+ 1

2

)
.

Suppose we can find ε > 0 with the following property: For all compact sets K ⊂ T there

exists a positive and finite constant A(K) such that

(4.8) E
(
|X(t)−X(s)|2

)
≤ A(K)|t− s|ε for all t, s ∈ K.

Then prove that X has a modification that is [locally] Hölder continuous of any given order

< ε/2.

Example 4.9 (Brownian Motion). Let B := {B(t)}t≥0 denote a Brownian motion. Note

that for all s, t ≥ 0, X(t)−X(s) is normally distributed with mean zero and variance |t− s|.
Therefore, E(|X(t)−X(s)|2) = |t− s| for all s, t ≥ 0. It follows that X has a modification

that is Hölder of any given order α < 1/2. This is due to Wiener (1923b). Warning: This is

not true for α = 1/2. Let B denote the modification as well. [This should not be confusing.]
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Then, a theorem of Khintchine (1933) asserts that

(4.9) P

lim sup
t↓s

|B(t)−B(s)|√
2(t− s) ln ln

(
1

t−s

) = 1

 = 1 for all s > 0.

In particular, for all s > 0,

(4.10) P

{
lim sup

t↓s

|B(t)−B(s)|√
(t− s)

= ∞

}
= 1.

Thus, B is not Hölder continuous of order 1/2 at s = 0, for instance.

Exercise 4.10. Let B denote N -parameter Brownian sheet. Prove that B has a modifi-

cation which is [locally] Hölder continuous with any non-random index α ∈ (0 , 1/2). This

generalized Wiener’s theorem on Brownian motion.

Exercise 4.11. Let B be a continuous Brownian motion. Then prove that the event in (4.9)

whose probability is one is measurable. Do the same for the event in (4.10).

5. Martingale Measures

5.1. A White Noise Example. Let Ẇ be white noise on RN . We have seen already that

Ẇ is not a signed sigma-finite measure with any positive probability. However, it is not hard

to deduce that it has the following properties:

(1) Ẇ (∅) = 0 a.s.

(2) For all disjoint [non-random] sets A1, A2, . . . ∈ B(RN),

(5.1) P

{
Ẇ

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

Ẇ (Ai)

}
= 1,

where the infinite sum converges in L2(P).

That is,

Proposition 5.1. White noise is an L2(P)-valued, sigma-finite, signed measure.

Proof. In light of Exercise 3.11 it suffices to prove two things: (a) If A1 ⊃ A2 ⊃ · · · are all

in B(RN) and ∩An = ∅, then Ẇ (An) → 0 in L2(P) as n → ∞; and (b) For all compact

sets K, E[(Ẇ (K))2] <∞.

It is easy to prove (a) because E[(Ẇ (An))2] is just the Lebesgue measure of An, and

|An| → 0 because Lebesgue measure is a measure. (b) is even easier to prove because

E[(Ẇ (K))2] = |K| <∞ because Lebesgue measure is sigma-finite. �
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Oftentimes in SPDEs one studies the “white-noise process” {Wt}t≥0 defined by Wt(A) :=

Ẇ ([0 , t]× A), where A ∈ B(RN−1). This is a proper stochastic process as t varies, but an

L2(P)-type noise in A.

Let F be the filtration of the process {Wt}t≥0. By this I mean the following: For all t ≥ 0,

we define Ft to be the sigma-algebra generated by {Ws(A); 0 ≤ s ≤ t, A ∈ B(RN−1)}.

Exercise 5.2. Check that F := {Ft}t≥0 is a filtration in the sense that Fs ⊆ Ft whenever

s ≤ t.

Lemma 5.3. {Wt(A)}t≥0,A∈B(RN−1) is a “martingale measure” in the sense that:

(1) For all A ∈ B(RN−1), W0(A) = 0 a.s.;

(2) If t > 0 then Wt is a sigma-finite, L2(P)-valued signed measure; and

(3) For all A ∈ B(RN−1), {Wt(A)}t≥0 is a mean-zero martingale.

Proof. Note that E[(Wt(A))2] = t|A| where |A| denotes the (N − 1)-dimensional Lebesgue

measure of A. Therefore, W0(A) = 0 a.s. This proves (1). (2) is proved in almost exactly

the same way that Proposition 5.1 was. [Check the details!] Finally, choose and fix A ∈
B(RN−1). Then, whenever t ≥ s ≥ u ≥ 0,

E [(Wt(A)−Ws(A))Wu(A)] = E
[(
Ẇ ([0 , t]× A)− Ẇ ([0 , s]× A)

)
Ẇ ([0 , u]× A)

]
= min(t , u)|A| −min(s , u)|A| = 0.

(5.2)

Therefore, Wt(A) −Ws(A) is independent of Fs (Exercise 3.4, page 4). As a result, with

probability one,

E [Wt(A) | Fs] = E [Wt(A)−Ws(A) | Fs] +Ws(A)

= E [Wt(A)−Ws(A)] +Ws(A)

= Ws(A).

(5.3)

This is the desired martingale property. �

Exercise 5.4. Choose and fix A ∈ B(RN−1) such that 1/c := |A|1/2 > 0. Then prove that

{cWt(A)}t≥0 is a Brownian motion.

Exercise 5.5 (Important). Suppose h ∈ L2(RN−1). Note that t−1/2Wt is white noise on

RN−1. Therefore, we can define Wt(h) :=
∫
h(x)Wt(dx) for all h ∈ L2(RN−1). Prove that

{Wt(h)}t≥0 is a continuous martingale with quadratic variation

(5.4) 〈W•(h) , W•(h)〉t = t

∫
RN−1

h2(x) dx.
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It might help to recall that if {Zt}t≥0 is a continuous L2(P)-martingale, then its quadratic

variation is uniquely defined as the continuous increasing process {〈Z ,Z〉t}t≥0 such that

〈Z ,Z〉0 = 0 and t 7→ Z2
t −〈Z ,Z〉t is a continuous martingale. More generally, if Z and Y are

two continuous L2(P)-martingales then ZtYt−〈Z , Y 〉t is a continuous L2(P)-martingale, and

〈Z , Y 〉t is the only such “compensator.” In fact prove that for all t ≥ 0 and h, g ∈ L2(RN−1),

〈W•(h) ,W•(g)〉t = t
∫
RN−1 h(x)g(x) dx.

5.2. More General Martingale Measures. Let F := {Ft}t≥0 be a filtration of sigma-

algebras. We assume that F is right-continuous ; i.e.,

(5.5) Ft =
⋂
s>t

Fs for all t ≥ 0.

[This ensures that continuous-time martingale theory works.]

Definition 5.6 (Martingale Measures). A process {Mt(A)}t≥0,A∈B(Rn) is a martingale mea-

sure [with respect to F ] if:

(1) M0(A) = 0 a.s.;

(2) If t > 0 then Mt is a sigma-finite L2(P)-valued signed measure; and

(3) For all A ∈ B(Rn), {Mt(A)}t≥0 is a mean-zero martingale with respect to the filtra-

tion F .

Exercise 5.7. Double-check that you understand that if Ẇ is white noise on RN then Wt(A)

defines a martingale measure on B(RN−1).

Exercise 5.8. Let µ be a sigma-finite L2(P)-valued signed measure on B(Rn), and F :=

{Ft}t≥0 a right-continuous filtration. Define µt(A) := E[µ(A) |Ft] for all t ≥ 0 and A ∈
B(Rn). Then prove that {µt(A)}t≥0,A∈B(Rn) is a martingale measure.

Exercise 5.9. Let {Mt(A)} be a martingale measure. Prove that for all T ≥ t ≥ 0,

Mt(A) = E[MT (A) |Ft] a.s. Thus, every martingale measure locally look like those of the

preceding exercise.

It turns out that martingale measures are a good class of integrators. In order to define

stochastic integrals we follow Walsh (1986, Chapter 2), and proceed as one does when one

constructs ordinary Itô integrals.

Definition 5.10. A function f : Rn ×R+ × Ω → R is elementary if it has the form

(5.6) f(x , t , ω) = X(ω)1(a,b](t)1A(x),
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where: (a) X is bounded and Fa-measurable; and (b) A ∈ B(Rn). Finite [nonrandom]

linear combinations of elementary functions are called simple functions. Let S denote the

class of all simple functions.

If M is a martingale measure and f is an elementary function of the form (6.2), then we

define the stochastic-integral process of f as

(5.7) (f ·M)t(B)(ω) := X(ω) [Mt∧b(A ∩B)−Mt∧a(A ∩B)] (ω).

Exercise 5.11 (Important). Prove that if f is an elementary function then (f · M) is a

martingale measure. This constructs new martingale measures from old ones. For instance,

if f is elementary and Ẇ is white noise then (f ·W ) is a martingale measure.

If f ∈ S then we can write f as f = c1f1 + · · ·+ ckfk where c1, . . . , ck ∈ R and f1, . . . , fk

are elementary. We can then define

(5.8) (f ·M)t(B) :=
k∑

j=1

cj(fj ·M)t(B).

Exercise 5.12. Prove that the preceding is well defined. That is, prove that the definition of

(f ·M) does not depend on a particular representation of f in terms of elementary functions.

Exercise 5.13. Prove that if f ∈ S then (f ·M) is a martingale measure. Thus, if Ẇ is

white noise and f ∈ S then (f ·W ) is a martingale measure.

The right class of integrands are functions f that are “predictable.” That is, they are

measurable with respect to the “predictable sigma-algebra” P that is defined next.

Definition 5.14. Let P denote the sigma-algebra generated by all functions in S . P is

called the predictable sigma-algebra.

In order to go beyond stochastic integration of f ∈ S we need a technical condition—

called “worthiness”—on the martingale measure M . This requires a little background.

Definition 5.15. LetM be a martingale measure. The covariance functional ofM is defined

as

(5.9) Q̄t(A ,B) := 〈M•(A) ,M•(B)〉t, for all t ≥ 0 and A,B ∈ B(Rn).

Exercise 5.16. Prove that:

(1) Q̄t(A ,B) = Q̄t(B ,A) almost surely;
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(2) If B ∩ C = ∅ then Q̄t(A ,B ∪ C) = Q̄t(A ,B) + Q̄t(A ,C) almost surely;

(3) |Q̄t(A ,B)|2 ≤ Q̄t(A ,A)Q̄t(B ,B) almost surely; and

(4) t 7→ Q̄t(A ,A) is almost surely non-decreasing.

Exercise 5.17. Let Ẇ be white noise on RN and consider the martingale measure defined

by Wt(A) := Ẇ ((0 , t] × A), where t ≥ 0 and A ∈ B(RN−1). Verify that the quadratic

functional of this martingale measure is described by Q̄t(A ,B) := tL N−1(A ∩ B), where

L k denotes the Lebesgue measure on Rk.

Next we define a random set function Q, in steps, as follows: For all t ≥ s ≥ 0 and

A,B ∈ B(Rn) define

(5.10) Q (A ,B ; (s , t]) := Q̄t(A ,B)− Q̄s(A ,B).

If Ai ×Bi × (si , ti] (1 ≤ i ≤ m) are disjoint, then we can define

(5.11) Q

(
n⋃

i=1

(Ai ×Bi × (si , ti])

)
:=

n∑
i=1

Q (Ai , Bi , (si , ti]) .

This extends the definition of Q to rectangles. It turns out that, in general, one cannot go

beyond this; this will make it impossible to define a completely general theory of stochastic

integration in this setting. However, all works fine if M is “worthy” (Walsh, 1986). Before

we define worthy martingale measures we point out a result that shows the role of Q.

Proposition 5.18. Suppose f ∈ S and M is a worthy martingale measure. Then,

(5.12) E
[
((f ·M)t(B))2] = E

 ∫∫∫
B×B×(0,t]

f(x , t)f(y , t)Q(dx dy dt)

 .
Question 5.19. Although Q is not a proper measure, the triple-integral is well-defined.

Why?

Proof. First we do this when f is elementary, and say has form (6.2). Then,

E
[
(f ·M)2

t (B)
]

= E
[
X2 (Mt∧b(A ∩B)−Mt∧a(A ∩B))2]

= E
[
X2M2

t∧b(A ∩B)
]
− 2E

[
X2Mt∧b(A ∩B)Mt∧a(A ∩B)

]
+ E

[
X2M2

t∧a(A ∩B)
]
.

(5.13)

Recall that X is Fa-measurable. Therefore, by the definition of quadratic variation,

E
[
X2
(
M2

t∧b(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧b

)]
= E

[
X2
(
M2

t∧a(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧a

)]
.

(5.14)
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Similarly,

E
[
X2 (Mt∧b(A ∩B)Mt∧a(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧a)

]
= E

[
X2
(
M2

t∧a(A ∩B)− 〈M(A ∩B) ,M(A ∩B)〉t∧a

)]
.

(5.15)

Combine to deduce the result in the case that f has form (6.2).

If f ∈ S then we can write f = c1f1 + · · · + ckfk where f1, . . . , fk are elementary with

disjoint support, and c1, . . . , ck are reals. [Why disjoint support?] Because E[(fj ·M)t] = 0,

we know that E[(f ·M)2
t (B)] =

∑k
j=1 c

2
jE[(fj ·M)2

t (B)]. The first part of the proof finishes

the derivation. �

Definition 5.20. A martingale measure M is worthy if there exists a random sigma-finite

measure K(A×B × C , ω)—where A,B ∈ B(Rn), C ∈ B(R+), and ω ∈ Ω—-such that:

(1) A×B 7→ K(A×B × C , ω) is nonnegative definite and symmetric;

(2) {K(A × B × (0 , t])}t≥0 is a predictable process (i.e., P-measurable) for all A,B ∈
B(Rn);

(3) For all compact sets A,B ∈ B(Rn) and t > 0, E[K(A×B × (0 , t])] <∞;

(4) For all A,B ∈ B(Rn) and t > 0, |Q(A×B × (0 , t])| ≤ K(A×B × (0 , t]) a.s.

[As usual, we drop the dependence on ω.] If and when such a K exists then it is called a

dominating measure for M .

Remark 5.21. If M is worthy then QM can be extended to a measure on B(Rn)×B(Rn)×
B(R+). This follows, basically, from the dominated convergence theorem.

Exercise 5.22 (Important). Suppose Ẇ denotes white noise on RN , and consider the mar-

tingale measure on B(RN−1) defined by Wt(A) = W ((0 , t] × A). Prove that it is worthy.

Hint: Try the dominating measure K(A×B×C) := L N−1(A∩B)L 1(C), where L k denotes

the Lebesgue measure on Rk. Is this different than Q?

Proposition 5.23. If M is a worthy martingale measure and f ∈ S , then (f ·M) is a

worthy martingale measure. If QN and KN respectively define the covariance functional and

dominating measure of a worthy martingale measure N , then

Qf ·M(dx , dy , dt) = f(x , t)f(y , t)QM(dx , dy , dt),

Kf ·M(dx , dy , dt) = |f(x , t)f(y , t)|KM(dx , dy , dt).
(5.16)



16 D. KHOSHNEVISAN

Proof. We will do this for elementary functions f ; the extension to simple functions is routine.

In light of Exercise 5.11 it suffices to compute Qf ·M . The formula for Kf ·M follows from this

immediately as well.

Now, suppose f has the form (6.2), and note that for all t ≥ 0 and B,C ∈ B(Rn),

(f ·M)t(B)(f ·M)t(C)

= X2 [Mt∧b(A ∩B)−Mt∧a(A ∩B)] [Mt∧b(A ∩ C)−Mt∧a(A ∩ C)]

= martingale +X2 〈M(A ∩B) ,M(A ∩ C)〉t∧b −X2 〈M(A ∩B) ,M(A ∩ C)〉t∧a

= martingale +X2QM ((A ∩B)× (A ∩B)× (s , t])

= martingale +

∫∫∫
B×C×(0 ,t]

f(x , s)f(y , s)QM(dx dy ds).

(5.17)

[Check!] This does the job. �

From now on we will be interested only in the case where the time variable t is in some

finite interval (0 , T ].

If KM is the dominating measure for a worthy martingale measure M , then we define for

all predictable function f ,

(5.18) ‖f‖M :=

E

 ∫∫∫
Rn×Rn×(0,T ]

|f(x , t)f(y , t)|KM(dx dy dt)




1/2

.

Let PM denote the collection of all predictable functions f such that E(‖f‖M) <∞.

Exercise 5.24. ‖ · ‖M is a norm on P, and PM is complete [hence a Banach space] in this

norm.

I will not prove the following technical result. For a proof see Proposition 2.3 of Walsh

(1986, p. 293).

Theorem 5.25. S is dense in PM .

Note from Proposition 5.18 that

(5.19) E
[
(f ·M)2

t (B)
]
≤ ‖f‖2

M for all t ∈ (0 , T ], f ∈ S , and B ∈ B(Rn).

Consequently, if {fm}∞m=1 is a Cauchy sequence in (S , ‖ · ‖M) then {(fm ·M)t(B)}∞m=1 is

Cauchy in L2(P). If fm → f in ‖·‖M then write the L2(P)-limit of (fm·M)t(B) as (f ·M)t(B).

A few more lines imply the following.

Theorem 5.26. Let M be a worthy martingale measure. Then for all f ∈ PM , (f ·M) is

a worthy martingale measure that satisfies (5.16). Moreover, for all t ∈ (0 , T ] and A,B ∈
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B(Rn),

〈(f ·M)(A) , (f ·M)(B)〉t =

∫∫∫
A×B×(0,t]

f(x , s)f(y , s)QM(dx dy ds),

E
[
(f ·M)2

t (B)
]
≤ ‖f‖2

M .

(5.20)

The above L2(P) bound has an Lp version as well.

Theorem 5.27 (Burkholder’s Inequality). For all p ≥ 2 there exists cp ∈ (0 ,∞) such that

for all predictable f and all t > 0,

(5.21) E [|(f ·M)t(B)|p] ≤ cpE


 ∫∫∫

Rn×Rn×(0,T ]

|f(x , t)f(y , t)|KM(dx dy dt)


p/2
 .

Proof in a Special Case. It is enough to prove that if {Nt}t≥0 is a martingale with N0 := 0

and quadratic variation 〈N ,N〉t at time t, then ‖Nt‖p
Lp(P) ≤ cp‖〈N ,N〉t‖p/2

Lp/2(P)
, but this is

precisely the celebrated Burkholder inequality (Burkholder, 1971). Here is why it is true in

the case that N is a bounded continuous martingale. Recall Itô’s formula (Itô, 1944; 1950;

1951): For all f that is C2 a.e.,

(5.22) f(Nt) = f(0) +

∫ t

0

f ′(Ns) dNs +
1

2

∫ t

0

f ′′(Ns) d〈N ,N〉s.

Apply this with f(x) := |x|p for p > 2 [f ′′(x) = p(p− 1)|x|p−2 a.e.] to find that

(5.23) |Nt|p =
p(p− 1)

2

∫ t

0

|Ns|p−2 d〈N ,N〉s + mean-zero martingale.

Take expectations to find that

(5.24) E (|Nt|p) ≤
p(p− 1)

2
E

(
sup

0≤u≤t
|Nu|p−2〈N ,N〉t

)
.

Because |Nt|p is a submartingale, Doob’s maximal inequality says that E(sup0≤u≤t |Nu|p) ≤
(p/(p− 1))pE(|Nt|p). Therefore, φp(t) := E(sup0≤u≤t |Nu|p) satisfies

φp(t) ≤
p(p− 1)

2

(
p

p− 1

)p

E

(
sup

0≤u≤t
|Nu|p−2〈N ,N〉t

)
:= apE

(
sup

0≤u≤t
|Nu|p−2〈N ,N〉t

)
.

(5.25)

Apply Hölder’s inequality to find that

(5.26) φp(t) ≤ ap (φp(t))
(p−2)/p

(
E
[
〈N ,N〉p/2

t

])2/p

.
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Solve to finish. �

Exercise 5.28. In the context of the preceding prove that for all p ≥ 2 there exists cp ∈
(0 ,∞) such that for all bounded stopping times T ,

(5.27) E

(
sup

0≤u≤T
|Nu|p

)
≤ cpE

(
〈N ,N〉p/2

T

)
.

Use this to improve itself in the following way: We do not need N to be a bounded martingale

in order for the preceding to hold. [Hint: Localize.]

Exercise 5.29 (Harder). In the context of the preceding prove that for all p ≥ 2 there exists

c′p ∈ (0 ,∞) such that for all bounded stopping times T ,

(5.28) E
(
〈N ,N〉p/2

T

)
≤ c′pE

(
sup

0≤u≤T
|Nu|p

)
.

Hint: Start with 〈N ,N〉t = N2
t −

∫ t

0
Ns dNs ≤ N2

t + |
∫ t

0
Ns dNs|.

From now on we adopt a more standard stochastic-integral notation:

(5.29) (f ·M)t(A) :=

∫∫
A×(0,t]

f dM :=

∫∫
A×(0,t]

f(x , s)M(dx ds).

[N.B.: The last f(x , s) is actually f(x , s , ω), but we have dropped the ω as usual.] These

martingale integrals have the Fubini–Tonelli property:

Theorem 5.30. Suppose M is a worthy martingale measure with dominating measure K.

Let (A ,A , µ) be a measure space and f : Rn ×R+ × Ω× A→ R measurable such that

(5.30)

∫∫∫∫
Ω×Rn×Rn×[0,T ]×A

|f(x , t , ω , u)f(y , t , ω , u)|K(x , y , dt)µ(du) P(dω) <∞.

Then almost surely,

∫
A

 ∫∫
Rn×[0,t]

f(x , s , • , u)M(dx ds)

 µ(du)

=

∫∫
Rn×[0,t]

(∫
A

f(x , s , • , u)µ(du)

)
M(dx ds).

(5.31)

It suffices to prove this for elementary functions of the form (6.2). You can do this yourself,

or consult Walsh (1986, p. 297).
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6. The Semilinear Heat Equation

We are ready to try and study a class of SPDEs. Let L > 0 be fixed, and consider

∂tu = ∂xxu+ f(u)Ẇ , t > 0, x ∈ [0 , L],

∂xu(0 , t) = ∂xu(L , t) = 0, t > 0,

u(x , 0) = u0(x), x ∈ [0 , L],

(6.1)

where Ẇ is white noise with respect to some given filtration {Ft}t≥0, and u0 : [0 , L] → R

is a non-random, measurable, and bounded function. As regards the function f : R → R,

we assume that

(6.2) K := sup
0≤x 6=y≤L

|f(x)− f(y)|
|y − x|

+ sup
0≤x≤L

|f(x)| <∞.

In other words, we assume that f is globally Lipschitz, as well as bounded.

Exercise 6.1. Recall that f : R → R is globally Lipschitz if there exists a constant A such

that |f(x) − f(y)| ≤ A|x − y| for all x, y ∈ R. Verify that any globally Lipschitz function

f : R → R satisfies |f(x)| = O(|x|) as |x| → ∞. That is, prove that f has at most linear

growth.

Now we multiply (6.1) by φ(x) and integrate [dt dx] to find (formally, again) that for all

φ ∈ C∞([0 , L]) with φ′(0) = φ′(L) = 0,∫ L

0

u(x , t)φ(x) dx−
∫ L

0

u0(x)φ(x) dx

=

∫ t

0

∫ L

0

∂xxu(x , s)φ(x) dx ds+

∫ t

0

∫ L

0

f (u(x , s))φ(x)W (dx ds).

(6.3)

Certainly we understand the stochastic integral now. But ∂xxu is not well defined. Therefore,

we try and integrate by parts (again formally!): Because φ′(0) = φ′(L) = 0, the boundary-

values of ∂xu [formally speaking] imply that

(6.4)

∫ t

0

∫ L

0

∂xxu(x , s)φ(x) dx ds =

∫ t

0

∫ L

0

u(x , s)φ′′(x) dx ds.

And now we have ourselves a proper stochastic-integral equation: Find u such that for all

φ ∈ C∞([0 , L]) with φ′(0) = φ′(L) = 0,∫ L

0

u(x , t)φ(x) dx−
∫ L

0

u0(x)φ(x) dx

=

∫ t

0

∫ L

0

u(x , s)φ′′(x) dx ds+

∫ t

0

∫ L

0

f (u(x , s))φ(x)W (dx ds).

(6.5)
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Exercise 6.2 (Important). Argue that if u solves (6.5), then for all C∞ functions ψ(x , t)

with ∂xψ(0 , t) = ∂xψ(L , t) = 0,∫ L

0

u(x , t)ψ(x , t) dx−
∫ L

0

u0(x)ψ(x , 0) dx

=

∫ t

0

∫ L

0

u(x , s) [∂xxψ(x , s) + ∂tψ(x , s)] dx ds

+

∫ t

0

∫ L

0

f (u(x , s))ψ(x , s)W (dx ds).

(6.6)

This is formal, but important.

Let Gt(x , y) denote the Green’s function for the semilinear heat equation. [The subscript

t is not a derivative, but a variable.] Then there exists a constant c > 0 such that

(6.7) Gt(x , y) = c
∞∑

n=−∞

[Γ(t ;x− y − 2nL) + Γ(t ;x+ y + 2nL)],

where Γ is the fundamental solution to the linear heat equation (6.1); i.e.,

(6.8) Γ(t ; a) =
1

(4πt)1/2
exp

(
−a

2

4t

)
.

This follows from the method of images.

Define for all smooth φ : [0 , L] → R,

(6.9) Gt(φ , y) :=

∫ L

0

Gt(x , y)φ(x) dx,

if t > 0, and G0(φ , y) := φ(y). We can integrate (6.1)—with f(u , t) ≡ 0—by parts for all

C∞ functions φ : [0 , L] → R such that φ′(0) = φ′(L) = 0, and obtain the following:

(6.10) Gt(φ , y) = φ(y) +

∫ t

0

Gs (φ′′ − φ , y) ds.

Fix t > 0 and define ψ(x , s) := Gt−s(φ , x) to find that ψ solves

(6.11) ∂xxψ(x , s) + ∂sψ(x , s) = 0, ψ(x , t) = φ(x), ψ(x , 0) = Gt(φ , x).

Use this ψ in Exercise 6.2 to find that any solution to (6.1) must satisfy

(6.12)

∫ L

0

u(x , t)φ(x) dx−
∫ L

0

u0(y)Gt(φ , y) dy =

∫ t

0

∫ L

0

f (u(y , s))Gt−s(φ , y)W (dy ds).

This must hold for all smooth φ with φ′(0) = φ′(L) = 0. Therefore, we would expect that

for Lebesgue-almost all (x , t),

(6.13) u(x , t)−
∫ L

0

u0(y)Gt(x , y) dy =

∫ t

0

∫ L

0

f (u(y , s))Gt−s(x , y)W (dy ds).
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If Ẇ were smooth then this reasoning would be rigorous and honest. As things are, it is

still merely a formality. However, we are naturally led to a place where we have an honest

stochastic-integral equation.

Definition 6.3. By a “solution” to the formal stochastic heat equation (6.1) we mean a

solution u to (6.13) that is adapted. Sometimes this is called a mild solution.

With this nomenclature in mind, let us finally prove something.

Theorem 6.4. The stochastic heat equation (6.5) subject to (6.2) has an a.s.-unique solution

u that satisfies the following for all T > 0:

(6.14) sup
0≤x≤L

sup
0≤t≤T

E
[
u2(x , t)

]
<∞.

For its proof we will need the following well-known result whose proof follows from a direct

application of induction.

Lemma 6.5 (Gronwall’s lemma). Suppose φ1, φ2, . . . : [0 , T ] → R+ are measurable and

non-decreasing. Suppose also that there exist a constant A such that for all integers n ≥ 1,

and all t ∈ [0 , T ],

(6.15) φn+1(t) ≤ A

∫ t

0

φn(s) ds.

Then, φn(t) ≤ φ1(T ) (At)n−1 /(n− 1)! for all n ≥ 1 and t ∈ [0 , T ].

Remark 6.6. Thanks to the DeMoivre–Stirling formula, n! ∼
√

2πnn+(1/2)e−n as n → ∞.

Therefore, there exists a constant B such that n! ≥ B(2AT )n for all integers n ≥ 1. Thus, it

follows that φn(t) ≤ φ1(T )B−12−n−1. In particular, any positive power of φn(t) is summable

in n. Also, if φn does not depend on n, then it follows that φn ≡ 0.

Proof of Theorem 6.4: Uniqueness. Suppose u and v both solve (6.13), and both satisfy the

integrability condition (6.14). We wish to prove that u and v are modifications of one

another. Let d(x , t) := u(x , t)− v(x , t). Then,

(6.16) d(x , t) =

∫ t

0

∫ L

0

[
f(u(y , s))− f(v(y , s))

]
Gt−s(x , y)W (dy ds).

According to Theorem 5.26 and (6.2),

(6.17) E
[
d2(x , t)

]
≤ K2

∫ t

0

∫ L

0

E
[
d2(y , s)

]
G2

t−s(x , s) dy ds.
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Let H(t) := sup0≤x≤L sup0≤s≤t E[d2(x , s)]. The preceding implies that

(6.18) H(t) ≤ K2

∫ t

0

H(s)

(∫ L

0

G2
t−s(x , y) dy

)
ds.

Now from (6.7) and the semigroup properties of Γ it follows that

(6.19)

∫ L

0

Gt(x , y)Gs(y , z) dy = Gt+s(x , z), and Gt(x , y) = Gt(y , x).

Consequently,
∫ L

0
G2

t (x , y) dy = G2t(x , x) = Ct−1/2. Hence,

(6.20) H(t) ≤ CK2

∫ t

0

H(s)√
t− s

ds.

Now choose and fix some p ∈ (1 , 2), let q be the conjugate to p [i.e., p−1+q−1 = 1], and apply

Hölder’s inequality to find that there exists A = AT such that uniformly for all t ∈ [0 , T ],

(6.21) H(t) ≤ A

(∫ t

0

H(s)q ds

)1/q

.

Apply Gronwall’s Lemma 6.5 with φ1 = φ2 = · · · = Hq to find that H(t) ≡ 0. �

Proof of Theorem 6.4: Existence. Note from (6.7) that 0 ≤
∫ L

0
Gt(x , y) dy ≤ 1. Because u0

is assumed to be bounded this proves that
∫ L

0
u0(y)Gt(x , y) dy is bounded; this is the first

term in (6.13). Now we proceed with a Picard-type iteration scheme. Let u0(x , t) := u0(x),

and then iteratively define

(6.22) un+1(x , t) =

∫ L

0

u0(y)Gt(x , y) dy +

∫ t

0

∫ L

0

f (un(y , s))Gt−s(x , y)W (dy ds).

Define dn(x , t) := un+1(x , t)− un(x , t) to find that

(6.23) dn(x , t) =

∫ t

0

∫ L

0

[f (un+1(y , s))− f (un(y , s))]Gt−s(x , y)W (dy ds).

Consequently, by (6.2),

(6.24) E
[
d2

n(x , t)
]
≤ K2

∫ t

0

∫ L

0

E
[
d2

n−1(y , s)
]
G2

t−s(x , y) dy ds.

Let H2
n(t) := sup0≤x≤L sup0≤s≤t E[d2

n(x , s)] to find that

(6.25) H2
n(t) ≤ CK2

∫ t

0

H2
n−1(s)√
t− s

ds.
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Choose and fix p ∈ (0 , 2), and let q denote its conjugate so that q−1 + p−1 = 1. Apply

Hölder’s inequality to find that there exists A = AT such that uniformly for all t ∈ [0 , T ],

(6.26) H2
n(t) ≤ A

(∫ t

0

H2q
n−1 ds

)1/q

.

Apply Gronwall’s Lemma 6.5 with φn := H2q
n to find that

∑∞
n=1Hn(t) < ∞. Therefore,

un(t , x) converges in L2(P) to some u(t , x) for each t and x. This proves also that as n tends

to infinity,
∫ t

0

∫ L

0
f(un(y , s))Gt−s(x , y)W (dy ds) converges in L2(P) to the same object but

where un is replaced by u. This proves that u is a solution to (6.13). �

We are finally ready to complete the picture by proving that the solution to (6.1) is

continuous [up to a modification, of course].

Theorem 6.7. There exists a continuous modification u(x , t) of (6.1).

Remark 6.8. In Exercise 6.9 below you will be asked to improve this to the statement that

there exists a Hölder-continuous modification.

Sketch of Proof. We need the following easy-to-check facts about the Green’s function G:

First of all,

(6.27) Gt(x , y) = Γ(t ;x− y) +Ht(x , y),

where Ht(x , y) is smooth in (t , x , y) ∈ R+ ×R ×R, and Γ is the “heat kernel” defined in

(6.8). Define

(6.28) U(x , t) :=

∫ t

0

∫ L

0

f(u(y , s))Γ(t− s ;x− y)W (dy ds).

The critical step is to prove that U has a continuous modification. Because u0 is bounded

it is then not too hard to complete the proof based on this, and the fact that the difference

between Γ and G is smooth and bounded. From here on I prove things honestly.

Let 0 ≤ t ≤ t′ and note that

U(x , t′)− U(x , t) =

∫ t

0

∫ L

0

f(u(y , s)) [Γ(t′ − s ;x− y)− Γ(t− s ;x− y)] W (dy ds)

+

∫ t′

t

∫ L

0

f(u(y , s))Γ(t′ − s ;x− y)W (dy ds).

(6.29)
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By Burkholder’s inequality (Theorem 5.27) and the inequality |a+ b|p ≤ 2p|a|p + 2p|b|p,

E
[
|U(x , t)− U(x , t′)|p

]
≤ 2pcpE

[(∫ t

0

∫ L

0

f 2(u(y , s)) [Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]
2
dy ds

)p/2
]

+ 2pcpE

(∫ t′

t

∫ L

0

f 2(u(y , s))Γ2(t− s ;x− y) dy ds

)p/2
 .

(6.30)

Because of (6.2), sup |f | ≤ K; see (6.2). Therefore,

E
[
|U(x , t)− U(x , t′)|p

]
≤ (2K)pcp

(∫ t

0

∫ ∞

−∞
[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]

2
dy ds

)p/2

+ (2K)pcp

(∫ t′

t

∫ ∞

−∞
Γ2(t− s ;x− y) dy ds

)p/2

.

(6.31)

[Notice the change from
∫ L

0
to
∫∞
−∞.] Because

∫∞
−∞ Γ2(t− s ; a) da = C/

√
|t− s|,

(6.32)

(∫ t′

t

∫ ∞

−∞
Γ2(t− s ;x− y) dy ds

)p/2

= Cp|t′ − t|p/4.

For the other integral we use a method that is motivated by the ideas in Dalang (1999):

Recall Plancherel’s theorem: For all g ∈ L1(R) ∩ L2(R),

(6.33) ‖g‖2
L2(R) =

1

2π
‖Fg‖2

L2(R),

where (Fg)(z) :=
∫∞
−∞ g(x)eixz dx denotes the Fourier transform [in the space variable].

Because (FΓ)(t ; ξ) = exp(−tξ2),∫ ∞

−∞
[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]

2
dy =

1

2π

∫ ∞

−∞

[
e−(t′−s)ξ2 − e−(t−s)ξ2

]2
dξ

=
1

2π

∫ ∞

−∞
e−2(t−s)ξ2

[
1− e−(t′−t)ξ2

]2
dξ.

(6.34)

Therefore, ∫ t

0

∫ ∞

−∞
[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]

2
dy ds

=
1

2π

∫ ∞

−∞

(∫ t

0

e−2(t−s)ξ2

ds

)[
1− e−(t′−t)ξ2

]2
dξ

=
1

4π

∫ ∞

−∞

1− e−2tξ2

ξ2

[
1− e−(t′−t)ξ2

]2
dξ.

(6.35)
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A little thought shows that (1− e−2tξ2
)/ξ2 ≤ CT/(1 + ξ2), uniformly for all 0 ≤ t ≤ T . Also,

[1− e−(t′−t)ξ2
]2 ≤ 2 min[(t′ − t)ξ2 , 1]. Therefore,∫ t

0

∫ ∞

−∞
[Γ(t′ − s ;x− y)− Γ(t− s ;x− y)]

2
dy ds

≤ CT

π

∫ ∞

0

min[(t′ − t)ξ2 , 1]

1 + ξ2
dξ

≤ CT

π

{∫ ∞

1/
√

t′−t

dξ

ξ2
+

∫ 1/
√

t′−t

0

(t′ − t)ξ2

1 + ξ2
dξ

}
.

(6.36)

The first term is equal to A
√
t′ − t, and the second term is also bounded above by

√
t′ − t

because ξ2/(1 + ξ2) ≤ 1. This, (6.31) and (6.32) together prove that

(6.37) E
[
|U(x , t)− U(x , t′)|p

]
≤ Cp|t′ − t|p/4.

Similarly, we prove that for all x, x′ ∈ [0 , L],

E
[
|U(x , t)− U(x′ , t)|p

]
≤ cpK

p

(∫ t

0

∫ ∞

−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy ds)p/2

.
(6.38)

[Do it!] By Plancherel’s theorem, and because the Fourier transform of x 7→ g(x + a) is

e−iξa(Fg)(ξ),

(6.39)

∫ ∞

−∞

∣∣∣Γ(t− s ; y)− Γ(t− s ;x′ − x− y)
∣∣∣2 dy =

1

2π

∫ ∞

−∞
e−2(t−s)ξ2

∣∣∣1− eiξ(x′−x)
∣∣∣2 dξ.

Use the elementary bound, |1 − eiθ|2 ≤ |θ|1−ε, valid for all θ ∈ R and ε ∈ (0 , 1), to deduce

that

(6.40) sup
0≤t≤T

E
[
|U(x , t)− U(x′ , t)|p

]
≤ ap,T |x′ − x|p(1−ε)/2.

For all (x , t) ∈ R2 define |(x , t)| := |x|(1−ε)/2 + |t|1/4. This defines a norm on R2, and is

equivalent to the usual Euclidean norm
√
x2 + t2 in the sense that both generate the same

topology, etc. Moreover, we have by (6.37) and (6.40): For all t, t′ ∈ [0 , T ] and x, x′ ∈ [0 , L],

(6.41) E
(
|U(x , t)− U(x′ , t′)|p

)
≤ A |(x , t)− (x′ , t′)|p .

This and Kolmogorov’s continuity theorem (Theorem 4.3) together prove that U has a modi-

fication which is continuous, in our inhomogeneous norm on (x , t), of any order < 1. Because

our norm is equivalent to the usual Euclidean norm, this proves continuity in the ordinary

sense. �
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Exercise 6.9. Complete the proof. Be certain that you understand why we have derived

Hölder continuity. For example, prove that there is a modification of our solution which is

Hölder continuous in x of any given order < 1/2; and it is Hölder continuous in t of any

given order < 1/4.

Exercise 6.10. Improve (6.40) to the following: There exists Cp such that for all x, x′ ∈
[0 , L] and t ∈ [0 , T ], E[|U(x , t)− U(x′ , t)|p] ≤ Cp|x− x′|p/2.

Exercise 6.11. Consider the constant-coefficient, free-space stochastic heat equation in two

space variables. For instance, here is one formulation: Let Ẇ (x , t) denote white noise on

(x , t) ∈ R2 ×R+, and consider

∂tu = ∆u+ Ẇ , t > 0, x ∈ R2,

u(x , 0) = 0, x ∈ R2.
(6.42)

Here ∆ := ∂x1x1 + ∂x2x2 denotes the Laplacian. Try to interpret this SPDE as the adapted

solution to the following:

(6.43) u(x , t) =

∫ t

0

∫
R2

Γ(t− s ;x− y)W (dy ds),

subject to (t , x) 7→ E[u2(t , x)] being continuous (say!). Here, Γ is the heat kernel on R2;

i.e., Γ(t , x) := (4πt)−1 exp(−‖x‖2/(2t)). Prove that E[u2(x , t)] = ∞ for all x ∈ R2 and

t > 0. Prove also that if u(x , t) were a proper stochastic process then it would have to

be a Gaussian process, but this cannot be because Gaussian processes have finite moments.

Therefore, in general, one cannot hope to find function-valued solutions to the stochastic

heat equation in spatial dimensions ≥ 2.
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