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The general problem is this. Suppose one is given a physical system 

governed by a partial differential equation. Suppose that the system is then 

perturbed randomly, perhaps by some sort of a white noise. How does it 

evolve in time? Think for example of a guitar carelessly left outdoors. If 

u(x,t) is the position of one of the strings at the point x and time t, then 

in calm air u(x,t) would satisfy the wave equation u = u . However, if a 
tt xx 

sandstorm should blow up, the string would be bombarded by a succession of 

sand grains. Let W represent the intensity of the bombardment at the point 
xt 

x and time t. The number of grains hitting the string at a given point and 

time will be largely independent of the number hitting at another point and 

time, so that, after subtracting a mean intensity, W may be approximated by a 

white noise, and the final equation is 

Utt(x,t) = Uxx(X,t) + W(x,t), 

where W is a white noise in both time and space, or, in other words, a 

two-parameter white noise. 

One peculiarity of this equation - not surprising in view of the 

behavior of ordinary stochastic differential equations - is that none of the 

partial derivatives in it exist. However, one may rewrite it as an integral 

equation, and then show that in this form there is a solution which is a 

continuous, though non-differentiable, function. 

In higher dimensions - with a drumhead, say, rather than a string - even 

this fails: the solution turns out to be a distribution, not a function. 

This is one of the technical barriers in the subject: one must deal with 

distribution-valued solutions, and this has generated a number of approaches, 

most involving a fairly extensive use of functional analysis. 
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Our aim is to study a certain number of such stochastic partial 

differential equations, to see how they arise, to see how their solutions 

behave, and to examine some techniques of solution. We shall concentrate 

more on parabolic equations than on hyperbolic or elliptic, and on equations 

in which the perturbation comes from something akin to white noise. 

In particular, one class we shall study in detail arises from systems of 

branching diffusions. These lead to linear parabolic equations whose 

solutions are generalized Ornstein-Uhlenbeck processes, and include those 

studied by Ito, Holley and Stoock, Dawson, and others. Another related class 

of equations comes from certain neurophysiological models. 

Our point of view is more real-variable oriented than the usual theory, 

and, we hope, slightly more intuitive. We regard white noise W as a measure 

on Euclidean space, W(dx, dr), and construct stochastic integrals of the form 

ff(x,t)dW directly, following Ito's original construction. This is a 

two-parameter integral, but it is a particularly simple one, known in 

two-parameter theory as a "weakly-adapted integral". We generalize it to 

include integrals with respect to martingale measures, and solve the 

equations in terms of these integrals. 

We will need a certain amount of machinery: nuclear spaces, some 

elementary Sobolev space theory, and weak convergence of stochastic processes 

with values in Schwartz space. We develop this as we need it. 

For instance, we treat SPDE's in one space dimension in Chapter 3, as 

soon as we have developed the integral, but solutions in higher dimensions 

are generally Schwartz distributions, so we develop some elementary 

distribution theory in Chapter 4 before treating higher dimensional equations 

in Chapter 5. In the same way, we treat weak convergence of S'-valued 
= 

processes in Chapter 6 before treating the limits of infinite particle 

systems and the Brownian density process in Chapter 8. 

After comparing the small part of the subject we can cover with the much 

larger mass we can't, we had a momentary desire to re-title our notes: "An 

Introduction to an Introduction to Stochastic Partial Differential Equations"; 
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which means that the introduction to the notes, which you are now reading, 

would be the introduction to "An Introduction ... ", but no. It is not good 

to begin with an infinite regression. Let's just keep in mind that this is 

an introduction, not a survey. While we will forego much of the recent work 

on the subject, what we do cover is mathematically interesting and, who 

knows? Perhaps even physically useful. 



CHAPTER ONE 

WHITE NOISE AND THE BROWNIAN SHEET 

Let (E,~,v) be a ~-finite measure space. A white noise based on v is a 

random set function W on the sets A e E of finite v-measure such that = 

(i) W(A) is a N(0,v(A)) randc~a variable; 

(ii) if A ~ B = ~, then W(A) and W(B) are independent and 

W(A ~ B) = W(A) + W(B). 

In most cases, E will be a Euclidean space and v will be Lebesgue measure• 

To see that such a process exists, think of it as a Gaussian process indexed by the 

sets of ~ : {W(A), A £ ~, v(A) < ~}. From (i) and (ii) this must be a mean-zero 

Gaussian process with covariance function C given by 

C(A,B) = E{W(A) W(B)} = v(A ~ B). 

By a general theorem on Gaussian processes, if C is positive definite, 

there exists a Gaussian process with mean zero and covariance function C. Now let 

• be in E and let el,. be real numbers. A I , ..,A n = -',a n 

aia j C(Ai,A j) = ~ aia j fI A (x) I A (x)dx 
i,j i,j i j 

= f(~ a i IA.( x))2~ h 0. 
i 

Thus C is a positive definite, so that there exists a probability space (Q,~,P) and a 

mean zero Gaussian process {W(A)} on (Q,~,P) such that W satisfies (i) and (ii) 

above• 

There are other ways of defining white noise• In case E = R and v = 

Lebesgue measure, it is often described informally as the "derivative of Brownian 

motion". Such a description is possible in higher dimensions too, but it involves 

the Brownian sheet rather than Brownian motion. 

Let us specialize to the case E = R n+ = {(tl,...,tn): ti>0 ,_ i=1,...,n} and 

v = Lebesgue measure• If t = (t1,•..,t n) £ R n+ , let (0,t] = (0,tl]×...×(0,tn]. The 

Brownian sheet on R~ is the process {Wt, t £ R~} defined by W t = W{(0,t]}. This is 

a mean-zero Gaussian process. If s = (s1,.o°,s n) and t = (tl,...,tn), its covariance 

function is 
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(1.1) E{WsWt} = (slAtl)'''(Sn Atn ) 

If we regard W(A) as a measure, W t is its distribution function. 

Notice that we can recover the white noise in R n+ from Wt, for if R is a rectangle, 

W(R) is given by the usual formula (if n = 2 and 0 < u < s, 0 < v < t, 

W((u,v),(s,t)] = W - W - W - W ). 
st sv ut uv 

If A is a finite union of rectangles, W(A) 

can be computed by additivity, and a general Borel set A of finite measure can be 

approximated by finite unions of rectangles A in such a way that 
n 

E{(W(A) - W(An)) 2} = v(A - A n) + v(A n - A) + 0 . 

Interestingly, the Brownian sheet was first introduced by a statistician, 

J. Kitagawa, in 1951 in order to do analysis of variance in continuous time. To get 

an idea of what this process looks like, let's consider its behavior along some 

curves in R~ , in the case n = 2, v = Lebesgue measure. 

I). W vanishes on the axes. If s = s > 0 is fixed, {W s t" t>0} is a 
o 

o 

Brownian motion, for it is a mean-zero Gaussian process with covarianoe function 

C(t,t') = s (tat'). 
o 

2). Along the hyperbola st = I, let 

X t = W t -t" 
e ,e 

Then {Xt, -~<t< ~} is an Ornstein-Uhlenbeck process, i.e. a strictly 

stationary Gaussian process with mean zero, variance I, and covariance function 

C(s,t) = E{W s -s W t -t } = e-lS-tl" 
e ,e e ,e 

3). Along the diagonal the process M t = Wtt is a martingale, and even a 

process of independent increments, although it is not a Brownian motion, for these 

increments are not stationary. The same is true if we consider W along increasin@ 

2 
paths in R+ • 

4). Just as in one parameter, there are scaling, inversion, and 

translation transformations which take one Brownian sheet into another. 

I 
Scaling: Ast = ~ Wa2s,b2 t 

Inversion: C s t  = s t  W 1 1 ; D S t  = s W 1 

s t s 

~anslation by (So,to): Est = Wso+S,to+t - Wso+S,t ° - Wso,to+t + Ws t 
oo 
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Then A, C, D, and E are Brownian sheets, and moreover, E is independent of 

F* {Wuv to} = ~ : u < s ° or v < . 
s t -- -- 
o o 

The easiest way to see this in the case of A, C and D is to notice that 

they are all mean zero Gaussian processes with the right covariance function. In the 

case of E, we can go back to white noise, and notice that Est = W((So,S] x (to,t]). 

The result then follows immediately from the properties (i) and (ii). 

= e-S-tw 5). Another interesting transformation is this: let Us, 2s 2t" 
e ~e 

Then {Ust , -=<s, t<=} is an Ornstein-Uhlenbeck sheet. This is a stationary Gaussian 

R2 e-lU-SI-It-vl 
process on with covariance function E{UstUuv} = . If we look at U 

along any line, we get a one-parameter Ornstein-Uhlenbeck process. That is, if 

V s = Us,a+bs, then {Vs,-~<s<=} is an Ornstein-Uhlenbeck process. 

SAMPLE FUNCTION PROPERTIES 

The Brownian sheet has continuous paths, but we would not expect them to he 

differentiable - indeed, nowhere-differentiable processes such as Brownian motion can 

be embedded in the sheet, as we have just seen. We will see just how continuous they 

are. This will give us an excuse to derive several beautiful and useful 

inequalities, beginning with an elegant result of Garsia, Rodemich, and Rumsey. 

Let ~(x) and p(x) be positive continuous functions on (-=,~) such that both 

and p are symmetric about 0, p(x) is increasing for x > 0 and p(0) = 0, and ~ is 

convex with lira T(x) = =. If R is a cube in R n, let e(R) be the length of its edge 

x~ 

and IRI its volume. Let R I be the unit cube. 

THEOREM 1.1. If f is a measurable function on R I such that 

(1.2) fR 1 fR 1 T (p(f!Y)'f(X)ly_xl/'/n))dx dy = B < =, 

then there is a set K of measure zero such that if x,y e R 1 - K 

u 

If f is continuous, (1.3) holds for all x and y. 
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PROOF. If Q C R 1 is a rectangle and x,y e Q, then ly-xl ! ~n e(Q). 

so that (3.2) implies 

tf(y)-f(x)~. 
(1.4) fQfQ ~ L p(e(Q)) jdxay ~ B. 

Let Q0 ~ QI ~ o.o be a sequence of subcubes of R I such that 

1 
p(e(Qj)) = ~ p(e(Qj_1)). 

For any cube Q, let fQ = T ~  fQ f(x)dx. 

Since g is convex 

f -f f -f(x) 

( QJ Q~-I ) :[ 1 f% 1 Q' )dx 
LP(e(Qj-1)) ~ "- ~ (p(~(Qj_l)) 

is increasing, 

By (1.4) this is 

< I - ~(f(y)-f(x) ~dx dy 
-1%_iII%1 f% /%~p(e(Qj_~))-- 

B 
IQj_~]I%I " 

If ~-I is the (positive) inverse of 

! 1"5) IfQj-fQj_11 ! P(e(Qj_I)) ~-I(IQjI~Qj_II)" 

Now p(e(Qj_1)) = 41(p(e(Qj+1)) - p(e(Q9))], so this is 

= 4~ -1 <IQjTIQj_Il l lP(e(Qj+I)) - p(e(Qj))t .  

~-I increases so if e(Qj+1) < u < e(Qj), then IQj_IIIQjl ~ u 2n and 

~-~(1%_111%1 3 ! 

v 0 (I~) i~ sup If%-~%I ! 4 f0 ~-i <~dp(t)u 

By the Vitali theorem, if x is not in some null set K, then fQj ÷ f(x) for any 

sequence Qj of cubes decreasing to {x}. If x and y are in R I - K, and if Q0 is the 

smallest cube containing both, then, since v 0 ~ ly-xl, 

If(x) - fQo I ! 4 f~y-xl~-'  ( -~]dp(u) .  
u 

Set vj = e(Qj). Then from (1.5) 

(~.6) I f%-~% I _< 4 f vj-~v. ~ -~ ( -~n  )dp(u)- 
- 3 u 

Sum this over j: 
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The same inequality holds for y, proving the theorem. 

This is purely a real-variable result - f is deterministic - but it can 

often be used to estimate the modulus of continuity of a stochastic process. One 

usually computes E{B} to show B < ~ a.s. Everything hinges on the choice of T and p. 

If we let • be a power of x, we get a venerable result of Kolmogorov. 

COROLLARY 1.2 (Kolmogorov). Let {Xt, tER1} be a real-valued stochastic process. 

Suppose there are constants k > I, K > 0 and e > 0 such that for all s,t E R I 

~{Ix t - Xs}k} ! Klt-sl n+~ 

Then 

(i) X has a continuous version; 

(ii) there exist constants C and y, depending only on n, k, and E, and a 

random variable Y such that with probability one, for all s, t q R I 

Ix t- xsl ! Y It-sI~/kC1°g~) 2/k 

and 

E{Y k} & cK; 

(iii) if E{Ixt Ik} < for some t, then 

E{sup IXt Ik} < ~. 
t~R I 

PROOF. We will apply Theorem 1.1 to the paths of X. We will use s and t instead of 

x and y, and the function f(x) is replaced by the sample path Xt(~) for a fixed ~0. 

2n+e k 
~) n 

Choose T(x) = Ixl k and p(x) = Ixl k flog 2/k If y = ~n e , p will be 

increasing on (0, ~n). Notice that the quantity B in (1.2) is now random, for it 

depends on ~. Let us take its expectation. By Fubini's Theorem 

n+~ E{IXt-Xs Ik} 

E{B} = n f f it_sl2n+elog2{~)ds~ dt 
RIR I 

n~2 ds dt 
<n Kf f 

R, R, It-slnlog2C~It-sT -' 
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If t is fixed, the integral over R 1 with respect to s is dominated by the 

integral over the ball of radius ~n centered at t, since the ball contains RI, whose 

diameter is ~n. Let c be the area of the unit sphere in R n. Then integrate in 
n 

polar coordinates : 

n~ gn r n-ldr 

< n ~n K ~ rn(log 2~)2 

e 
n+1+ ~- cJ n 

= n - - K .  
k 

If we integrate by parts twice in (1.3), we get 

£ 2 

2 n } ]  Ix t - Xsl <_ sB1/k[ It-sTk(log yTt-sl-1 b(1 + 

2_i e_ It-sl Z -I 
+ , n  f log < lu k du 

ke 
0 

The integral is dominated by It-sle/k(log 71t-sI-1) 2/k for small enough values of 

I t-el - and for all It-el < /n if k >__ n - so that for a suitable constant A, we have 

<_ 8~ I/k It_sle/k(1og 71t-sl-1) 2/k 

Then we take Y = 8AB I/k, proving (i) and (ii). 

To see (iii), just note that if s, t e RI, then It-s I <__/n so that 

sup Ixtl <_ IXto I + Y nE/2k(log ~__~2/k 
t ~n 

Since Xt0 and Y are in L k, so is sup IXtl. 
t 

Q.E.D. 

The great flexibility in the choice of T and p is useful, but it has its 

disadvantages: one always suspects he could have gotten a ~tter result had he chosen 

th~ more cleverly. For example, if we take p(x) to be 

2n+~ ~ 1~ ~ )2/k, 
x k (io ) (log log we can ~prove the modulus of continuity of X 

to Ylt-sl~/k(log ylt-sl-1)1~(log log Tit-el-l) 2/k, and so on. 
If we apply Theorem 1.1 to Gaussian processes, we get the following 

result. 

COROLLARY 1 • 3 • Let {xt, tERI} be a mean zero Gaussian process, and set 

p(u) = max E{ IXt-XsI 2} 1/2 

Is-t l<luICZ 
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f~ 1 1/2dp(u ) If (log ~ ) < =, then X has a continuous version whose modulus of 

continuity A(6) satisfies 

(1.8) 4(6) < C /~(log !)I/2dp(u) + Yp(6) 
-- -u u 

where C is a universal constant and Y is a random variable such that 

E(exp (Y2/256)} ! /~" 

PROOF. Let T(x) = e x2/4. 

and variance ~2(s,t) < I. 

that 

Note that Ust 
def X t - X s 

p(It-sllVn) 
is Gaussian with mean zero 

We can use the Gaussian density to calculate directly 

Thus B < ~ a.s. 

I 

E{B} = fRlJR1 E{exp(~ Ust)}ds dt ~ /~. 

NOW ~-I(u) = ~ S O  Theorem 1.1 implies that if Is-tl ~ 6, and 

if s,t are not in some exceptional null-set, 

1 ll/2dp(u). 
(1.9) IXt-Xsl ~ 161log BI1/2p(6) + 16~2n f~ flog 

It now follows easily that X has a continuous version and that 4(6) is 

bounded by the right hand side of (1.9), proving (1.8), with C = 16/2n and 

y = 161log B1 I/2 Q.E.D. 

This theorem usually gives the right order of magnitude for A(6), but it 

does not always give the best constants. 

To apply this to the Brownian sheet, note that if s = (Sl,...,Sn), 

t = (t I ..... tn) , then E{(Wt-Ws )2} <__ ~ Iti-sil <__ ~'n It-Sl. Thus p(u) = /n-~. 
i=1 

:611og u I- 1/2 
p(6) = 16~2 )01---~-- u au then Corollary 1.3 gives 

If 

PROPOSITION 1.4. W has a continuous version with modulus of continuity 

(1.10) A(6) ! np(6) + Y¢~ 

where Y is a random variable with E{e Y2/16) < ®. Moreover, with probability one, for 

all t £ R I simultaneously: 
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(1.11) 

as h ÷ 

lim sup Wt+h - wh < 16/2n 

lhl+O t21hl log v l h l  -- 
Here (1.11) follows from (1.10) on noticing that p(lhl) . 16v~ 

/2b log 1/I'~"I 
0. The constants are not best possible. Orey and Pruitt have shown that the 

right-hand side of (1.11) is ~. 

This gives the modulus of continuity of Wto There is also a law of the 

iterated logarithm. 

THEOREM 1.5. 
Wst 

(i) lim sup = I a.s. 

s,t~= /4st log log st 
w 
st 

(ii) lim sup = 1 a.s.. 

s,t+0 /4st log log I__ 
st 

We will not prove this except to remark that (ii) is a direct consequence 

of (i) and the fact that st W I 
I 

s t 

is a Brownian sheet. 

SOME REMARKS ON THE MARKOV PROPERTY 

In order to keep our notation simple, let us consider only the case n = 2, 

so that the Brownian sheet becomes a two-parameter process Wst. We first would like 

to examine the analogue of the strong Markov property of Brownian motion: that 

Brownian motion restarts after each stopping time. We don't have stopping times in 

our set-up, but we can define stopping points. Let (~,F,P) be a probability space. 

Recall that F t = ~ {W s : s i <__ t i for at least one i=I,2.} A random variable 

T = (T I ,T 2) with values in R 2+ is a weak stopping point if the set 

{T 1 < t I, T 2 < t 2} e F t o 

The main example we have in mind is this. let F I = ~{Wsls2 =t I : Sl<__tl} . If 

T 2 is a stopping time relative to the filtration (F 2 ) and if S 1 >__ 0 is measurable 
2 

relative to F 2 __T2, then ($I,T2) is a weak stopping point. 

For a weak stopping point T, set 

= {A ~ ~ • An (T 1 < t I, T 2 < t 2} E £t }. 
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This is clearly a o-field . Set 

, R 2 W T = W((T,T+t]) t e , 
t + 

where the mass of the (random) rectangle (T,T+t] is computed from W 
s 

formula. 

by the usual 

THEOREM ~.6. Let T be a finite weak stopping point. 

{W~, t E R~} is a Brownies sheet, independent of F*. 
=T 

Then the process 

PROOF. We approximate T from above as follows: 

Write T = (T I ..... T n) and define T m = (T I, .... T~) by Tim = j 2-m if 

(j-I)2 -m ~ T i < j 2 -m. Let {ri} be any enumeration of the lattice points 

-m .,Jn2-m), * (j12_ ,.. and note that {T = r.} e F for all i. Now for each t, 
m 1 =r 

1 

_-4 W(T,T+t] = lim W(Tm,Tm+t], by continuity of W. For any set A e ~T ~ , and any 
m 

Borel set B 

= F* But A 6 {T m ri} £ =r. 
1 

= [ P{W(ri,ri+t] £ B} P{A ~ {T m = ri} } 
i 

= P{w t ~ B}P{A}. 

Thus, for each m, {W(Tm,Tm+t]} is a Brownian sheet, independent of ~. 

therefore true of {W(T,T+t]} in the limit. 

P{W(Tm,T ~t] ~ ~; A} 

= [ P {W(ri,ri+t] e B; A ~ {T m = ri} }. 
i 

SO, by the independence property of white noise this is 

The same is 

Q.E.D. 

Notice that this is merely a random version of the translation property 

given at the beginning of this chapter. 

A second, quite different type of Markov property is this. For any set 

D ~ R 2 let ~D = O{Wt" teD}, and let G~ = /% G where D E is an open e-neighborhood 
+ e>0 D e 

of D. We say W satisfies L6vy's Markov property for D if ~D and ~D c are 

conditionally independent given ~SD' where 5D is the boundary of D. We say W 

satisfies LSvy's sharp Markov property if ~D and G are conditionally independent 
=D c 

given ~D" 
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It is rather easy to show W satisfies L~vy's sharp Markov property relative 

to a rectangle; this follows from the independence property of white noise. With 

slightly more work, one can show this also holds for finite unions of rectangles. It 

is more surprising to learn that it does not hold for all sets D. Indeed, consider 

the following example. 

EXAMPLE. 

vanishes on the axes, GaD = {Ws,1_ s, 0<s<1}. 

with respect to both =G D and GDC. 

Let D be the triangle with corners at (0,0), (1,0) and (0,1). Since W t 

Let us notice that W(D) is measurable 

Call the above union of rectangles D . The mass of each rectangle is given in terms 
n 

of the Wt , where the t~ J are the corners of the rectangles, and hence is 

3 

G -measurable. Since W(D ) ÷ W(D), W(D) £ _GD c. A similar argument shows W(D) £ ~D" 
=D c n 

(Moreover  i f  V e i s  an e - n e i g h b o r h o ~ l  of  D, W(D n) £ ~V e f o r  l a r g e  n ,  hence  

W(D) e ~D too). On the other hand, we claim WlD) is no__~t measurable with respect to 

the s h a r p  bounda ry  f i e l d ,  and I .~vy ' s  s h a r p  ~ r k o v  p r o p e r t y  does  n o t  h o l d .  We need 

def  
only show ~ = E{W(D)IG__~D} is not equal to W(D). 

Since all the random variables are Gaussian, ~ will be a linear combination 

of the Ws,1_s, determined by 

E{(W(D)-~) Ws,1_ s} = 0, 

Let 

Then 

all 0 < s < I. 

I 
5 = 2 f0Wu,1_udU. 

^ 10 E{(W(D)-D)Ws,I_ s} = S(1-S)-2 (1-S)U du - 2 s(1-u)du 

=0. 

But ~ # W(D). Indeed, E{~ W(D)} = 2 f u(1-u)du = 1 while E{W(D) 2} = IDI = ~ • 
3' 
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Thus W does not satisfy Levy's sharp Markov property relative to D. It is 

not hard to see that it satisfies L~vy's Markov property, i.e. that the germ field 

~;D is a splitting field. In fact this is always the case: W t satisfies L~vy's 

Markov property relative to all Borel sets D, but we will not prove it here. 

THE PROPAGATION OF SINGULARITIES 

The Brownian sheet is far from rotation invariant, even far away from the 

axes. Any unusual event has a tendency to propagate parallel to the axes. Let us 

look at an example of this. 

We need two facts about ordinary Brownian motion. Let {Bt,t~0} be a 

standard Brownian motion. 

Bt+h-B t 
I.) For any fixed t, lim sup = I a.s. 

h~0 J2h log log I/h 

2.) For a.e. ~, there exist uncountably many t for which 

Bt+h(~)-Bt(~) 
lim sup 

h+0 /2h log log 1/h 

The first fact is well-known, and the second a consequence of the fact that the exact 

modulus of continuity of Brownian motion is /2h log I/h, not ~2h log log I/h. 

Indeed, L~vy showed that if d(h) = (2h log I/h) 1/2, then for any s > 0 and 

a < b, there exist a < s < t < b for which IBt-Bsl > (l-e) d(t-s). Thus we can 

IBtI_BsI 1 choose s I < t I in (a,b) such that I > ~ d(tl-sl)- Having chosen Sl,...,s n 

and tl,...,tn, choose S'n such that S'n £ (Sn'tn)" sA _< Sn + 2-n and such that 

n 
IB t -Bsl > n--~d(tn-S) for all s £ (Sn,S~), which we can do by continuity. 

n 
n+1 

choose Sn+ I < tn+ I in (Sn,S ~) for which IB t -Bsn+11 > ~ d(tn+1-Sn+1). 
n+1 

n 
s 0 £ A [Sn,tn]. If h n = tn-S0, IBs0+hn-Bs01 > ~ d(hn)- 

n 

dense set of points s for which 

IBs+h-Bs 1 
lim sup = I, 

h~0 /2h log I/h 

Next, 

Now let 

this shows that there is 

which is more than we claimed. 
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One can see there are uncountably many such s by modifying the construction 

slightly. In the induction step, just break each interval (Sn,S ~) into three parts, 

throw away the middle third, and operate with each of the two remaining parts as 

above. See Orey and Taylor's article for a detailed study of these singular points. 

PROPOSITION 1.7. Fix s O . Then, with probability one, 

WSo+h,t- Wsot 
(1.12) lim sup = /~, 

h~0 ~2h log log I/h 

simultaneously for all t > 0. 

PROOF. (1.12) holds a.s. for each fixed t by the law of the iterated logarithm, 

hence it holds for a.e. t by Fubini. We must show it holds for all t. Set 

Ws0+h,t- Ws0t 

L t = lim sup 
h~0 ~2h log log I/h 

It is easy to see that L t is well-measurable relative to the fields 

2 which, being continuous ~t = ~(0,~)x(0,t] for it is a measurable function of W , t 

and adapted to (~), is itself well-measurable. By Meyer's section theorem, if 

P{@t ~ L t # ~} > 0, there exists a finite stopping time T (relative to the ~) such 

that P{L T # /T} > 0. 

But now let Bst = Ws,T+ t - WsT. B is again a Brownian sheet (apply Theorem 

1.5 to the weak stopping point (0,T)) so that if 6 > 0 we have 

IBs0+h,6 - Bs0,61 
ILT+ 6 - LTI ! l~ sup = ¢6. 

/2h log log I/h 

It follows that if LT(~) # ~T, then LT+ 6 # ~T+6 for small enough 6, i.e. L t # ~[ for 

a set of positive Lebesgue measure, a contradiction. 

2 
PROPOSITION 1.8. Fix t 0 > 0 and let S >__ 0 be a random variable which is Ft0 

measurable. Suppose that 

(1.13) lim sup Ws+h't - WS't = ~ a.s. 

h~0 ~2h log log I/h 
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for t = t O . Then (1.13) also holds for all t ~ t O . 

measurable, then (1.13) holds for all t > 0. 

If S is G{Wst0, s > 0} - 

PROOF. We can assume without loss of generality that t 0 = 1. Set 

Bst = W((S,I),(S+s, 1+t)]. Note that (S,I) is a weak stopping point, so Bst is a 

Brownian sheet. By Proposition 1.7, it satisfies the log log law for all t > 0. 

Thus, if t' = I + t 

WS+h,t,-Ws, t , 
lim sup 

h+ 0 /2h log log I/h 

WS+h,I-Ws, I 
> lira sup 

h~0 ~2h log log I/h 

Bht - B0t 
- lim sup 

h~0 /2h log log I/h 

This proves (1.13) for all t ~ I. Suppose S ~ ~{Wsl, s ~ 0}o To see that (I.13) 

follows for t < I as well, set Wst = tW I Then Wst is a Brownian sheet, and 
s -- 

t 
A ^ 
Wsl = WslfOr all s. Clearly S e O{Wsl, S ~ 0}. Thus W satisfies (1.13) for all 

I 
t > 1, w h i c h  i m p l i e s  t h a t  W s a t i s f i e s  ( 1 . 1 3 )  a t  ~ f o r  a l l  t > 1. Q . E . D .  

REMARKS. If we call a point at which the law of the iterated logarithm fails a 

singular point, the above proposition tells us that such singularities propagate 

vertically. By symmetry, there are singularities of the same type propagating 

horizontally. One can visualize these propagating singularities as wrinkles in the 

sheet. 

THE BROWNIAN SHEET AND THE VIBRATING STRING 

It is time to connect the Brownian sheet with our main topic, stochastic 

partial differential equations: the Brownian sheet gives the solution to a vibrating 

string problem. 

Let us first modify the sheet as follows. Let D be the half plane 

{(s,t) : s + t ~ 0} and put Rst = D ~ (-~,s] × (-~,t]. If W is a white noise, define 

Wst = W(Rst)" 
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\ 

Rst / 

(s,t) 

Then W is not a Brownian sheet: instead of vanishing on the coordinate 

axes, it vanishes on {s + t = 0}. However, it is easily seen that 

def 

Wst = ~Wst - Wso - Wot'~ s,t _> 0 is a Brownian sheet, and that the processes s + Wso 

and t ÷ Wot are independent continuous processes of independent increments. We can 

use this to read off many of the properties of W from those of W. In particular, the 

singularities of ~ propagate exactly like those of W. 

Now let us put the sheet back in the closet for the moment and let us 

consider a vibrating string driven by white noise. One can imagine a guitar left 

outdoors during a sandstorm. The grains of sand hit the strings continually but 

irregularly. The number of grains hitting a portion dx of the string during a time 

ds will be essentially independent of those hitting a different portion dy during a 

time dt. Let W(dx,dt) be the (random) measure of the number hitting in (dx,dt), 

centered by subtracting the mean. Then W will be essentially a white noise, and we 

expect the position V(t,x) of the string to satisfy the inhomogeneous wave equation 

driven by a white noise. In order to avoid worrying about boundary conditions, we 

will assume that the string is infinite, and that it is initially at rest. Thus V 

should satisfy 

(1.14) 

I ~2V (x,t) =~2V 

~t 2 ~x 2 
(x,t) + w(dx,dt), 

~V 
V(x,0) = ~ (x,0) = 0, -~ < x < =. 

t > 0, -~ < x < ~ 

Putting aside questions of the existence and uniqueness of solutions to 

(1.14), let us recall how to solve it when the driving term is a smooth function. 

f(t,x) is smooth and bounded, then the solution to 

If 
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I ~2 v ~2 v + f 

5t 2 5x 2 

~V 
v(x,0) = ~ (x,0) = 0 

is given by 

( 1 . 1 5 )  1 t rx+t-S f(y,s)dy ds, 
v ( x , t )  = ~ fo " x + s - t  

which can be checked by differentiating. Now let us rotate coordinates by 45 ° . 

u = (s-y)//~, and v = (s+y)/~, and set V(u,v) = V(y,s), ~(u,v) = f(y,s). Then 

(1.15) implies that 

l f v  f u  A ~(U,V) = ~ 0 -V f(u',v')du'dv', 

or 

( 1 . 1 6 )  O ( u , v )  = 1 / ~  ^ f f(u',v')du'dv'. 
uv 

By a slight act of faith, we see that the solution of (1.14) should be given by 

Let 

(1.15), with f dy ds replaced by W(dy,ds), or, in the form (1.16), that 

1 
vcu,v) = ~ f f dW 

D~ R 
UV 

or, finally, that 

^ I ^ 
v(u,v) = ~Wuv , u,v >_ 0, 

where W is the modified Brownian sheet defined above. 

We can conclude that the shape of the vibrating string at time t is just 

the cross-section of the sheet ~ W along the -45 ° line u + v = 2/~. 

V 

This gives us a complete representation of the solution of (1.14), and it 

also gives us an interpretation of the propagating singularities. Like W, the sheet 

has singularities propagating parallel to the axes of the uv-plane. In the 
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xt-plane these propagate along the lines x = c + t and x = c - t respectively. Thus 

these propagating singularities correspond to travelling waves which move along the 

string with velocity one, the speed of propagation in the equation (1.14). In 

general, the tendency of unusual events to propagate parallel to the axes of the 

Brownian sheet can be understood as the propagation of waves in our vibrating 

string. 

It also explains the rather puzzling failure of the Brownian sheet to 

satisfy the sharp Markov property. In fact, the initial conditions for the vibrating 

5v 
string involve not only the position V, but also the velocity ~ , and in order to 

calculate the velocity, one must know V in some neighborhood. This is exactly why we 

e 
needed the germ field ~SD for the Markov property in the above example. A more 

delicate analysis of the Markov property would show that the minimal splitting field 

is in fact made up of the values of V and its derivative on the boundary. 

Exercise 1.1. For each fixed x, show that there exists a standard Brownian motion 

1 
{B s, s ~ 0} such that V(x,t) = ~ B(t2), all t ~ 0. Show that with probability one, 

t 
I I 

lim ~ V(x,t) does not exist, while lim f ~ V(x,s)ds = 0. 
t~0 t~0 0 

5V 
Discuss the initial condition rr-(x,0) = 0. 

0t 

WHITE NOISE AS A DISTRIBUTION 

One thinks of white noise on R as the derivative of Brownian motion. In 

two or more parameters, white noise can be thought of as the derivative of the 

Brownian sheet, and this can be made rigorous. 

The Brownian sheet Wst is nowhere-differentiable in the ordinary sense, but 

its derivatives will exist in the sense of Schwartz distributions. Thus define 

= ~2Ws___!_t ; 
st aS at 

that is, if ~(s,t) is a test function with compact support in R~, W is the 

distribution 

~c~=; jWuv 
R+ 

~2(~) (u,v) dudv. 
5u~v 

If we may anticipate 
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the introduction of stochastic integrals, let us note that this is almost surely 

= ff~ dW. 

Formally, if ~(u,v) = I{0<u<s ' 0<v<b} then 

S t 52W 

~(,)=f f ~ dudV=Wst-ff*dW, 
0 0 

but it takes some work to make it rigorous. We leave it as an exercise. 

If we regard the "measure" W as a distribution, then certainly 

W(~) = ff~dW. In other words W(~) = W(~) so that W and W are the same distribution. 

Note that in R n, W would be the n th mixed partial: 

~n 

w 
~t1"''~t n t1"''t n 



CHAPTER TWO 

MARTINGALE MEASURES 

We will develop a theory of integration with respect to martingale 

measures. We think of them as white noises, but we treat them differently. 

Instead of considering set functions on R d+1 with all coordinates treated 

symmetrically, we break off one coordinate to play the role of "time" and 

think of the remaining coordinates as "space". 

Let us begin with some remarks on random set functions and vector-valued 

measures. Let (E,E) be a Lusin space, i.e. a measurable space homeomorphic 

to a Borel subset of the line. (This includes all Euclidean spaces and, more 

generally, all Polish spaces.) 

Suppose U(A,~) is a function defined on A x Q, where ACE is an 

algebras and such that E{U(A) 2} < ~, A & A. Suppose that U is finitely 

additive: if A ~ B = #, A, B e A, then U(A U B) = U(A) + U(B) a.s. 

In most interesting cases U will not be countably additive if we 

consider it as a real-valued set function. However, it may become countably 

additive if we consider it as a set function with values in, say, L2(Q,[,P). 

This is the case, for instance, with white noise. Let 

IIU(A) II 2 = E{U2(A)} t /2  be the L2-noz%~ of  U(A).  

We say U is ~-finite if there exists an increasing sequence (E) ~ E 
n 

whose union is E, such that for all n 

(i) En~ A,= where ~n = =E ~ , 
n 

(ii) sup{ IIU(A)112: A 6 ~n } < ". 

Define a set function ~ by 

2 ~(A) = linch)112- 
A ~-finite additive set function U is countably additive on E=n 

L2-valued set function) iff 

(as an 

(2.1) A E E n, ~n, Aj ~ # => lim ~(Aj) = 0 
3 j~ 

If U is countably additive on En,~n, we can make a trivial further 

extension: if A E E, set U(A) = lim U(A .~ E ) if the limit exists in L 2, and 
-~ n 
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let U(A) be undefined otherwise. This leaves U unchanged on each E , but may 
=n 

change its value on some sets A ~ E which are not in any ~n" We will assume 

below that all our countably additive set functions have been extended in 

this way. We will say that such a U is a ~-finite L2-valued measure. 

DEFINITION. Let (~t) be a right continuous filtration. 

~t" t k 0, A ~ ~} is a martingale measure if 

(i) M (A) = 0; 
o 

(ii) if t > 0, M t is a ~-finite L2-valued measure; 

(iii) {Mr(A), ~t' t k 0} is a martingale. 

A process {Mt(A), 

Exercise 2.1. Let 9t(A) = sup{E{Mt(B)2}: B C A, B E =E}" Show that t ÷ vt(A) 

is increasing. Conclude that for each T, the same family (E n) works for all 

Mt, t ~ T. 

It is not necessary to verify the countable additivity for all t; one t 

will do, as the following exercise shows. 

Exercise 2.2. If N is a ~-finite L2-valued measure and (~t) a filtration, 

show that 

Mt(A) = E{NCA)I~ t} - E{NCA) I~ 0} 
is a martingale measure. 

Note: One commonly gets such an M by first defining it for a small class of 
t 

sets and then oonstructing the L2-valued measure from these. This is, in 

fact, exactly what one does when constructing a stochastic integral, although 

the fact that the result is a vector-valued measure is usually not 

emphasized. In the interest of a speedy development, we will assume that the 

L2-measure has already been constructed. Thus we know how to integrate over 

dx for fixed t - this is the Bochner integral - and over dt for fixed sets A 

- this is the Ito integral. The problem facing us now is to integrate over 

dx and dt at the same time. 
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There are two rather different classes of martingale measures which have 

been popular, orthogonal martingale measures and martingale measures with a 

nuclear covariance. 

DEFINITION. A martingale measure M is ortho~onal if, for any two disjoint 

sets A and B in ~, the martingales {Mt(A) , t ~ 0} and {M t 

orthogonal. 

(B), t ~ 0} are 

Equivalently, M is orthogonal if the product Mt(A)Mt(B) is a martingale 

for any two disjoint sets A and B. This is in turn equivalent to having 

<M(A), M(B)>t, the predictable process of bounded variation, vanish. 

DEFINITION. A martingale measure M has nuclear covariance if there exists a 

finite measure ~ on (E,E)_ and a complete ortho-normal system (#k) in 

L2(E,E,D) such that ~(A) = 0 => ~(A) = 0 for all A E E and 

[ E{Mt(~k)2} < ®, 
k 

where Mt(~k) = f #k(X)Mt(dx ) is a Bochner integral. 

The canonical example of an orthogonal martingale measure is a white 

noise. If W is a white noise on E × R+, let Mt(A) = W(A × [0,t]). This is 

clearly a martingale measure, and if A ~ B = #, Mt(A) and Mt(B) are 

independent, hence orthogonal. Any martingale measure derived from a white 

noise this way will also be called a white noise. 

2 
If (E,~,D) is a finite measure space, if f 6 L (E,E,D) and if 

{Bt, t ~ 0} is a standard (one-dimensional ~) Brownian motion, then the measure 

defined by 

Mr(A) = B t f f(x)~(dx) 
A 

has nuclear covariance, since for any CONS (~k), ~ E{M~(~k)} = llf 11 2 . More 

generally, if B 1 B 2 ,  a r e  i i d  s t a n d a r d  B r o w n i a n  m o t i o n s  a n d  i f  a 1 a 2 , .  
• " ' "  t , -  

2 
are real numbers such that ~ a k < ~, then 

Mt(A) = k ~ akB~ ~ ~k(X)~(dx) 

has nuclear covariance. 
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Note that it is only in exceptional cases, such as when E is a finite 

set, that a white noise will have nuclear covariance. 

WORTHY MEASURES 

Unfortunately, it is not possible to construct a stochastic integral 

with respect to all martingale measures - we will give a counter-example at 

the end of the chapter - so we will need to add some conditions. These are 

rather strong, and, though sufficient, are doubtless not necessary. However, 

they are satisfied for both orthogonal martingale measures and those with a 

nuclear covariance. 

Let M be a o-finite martingale measure. By restricting ourselves to one 

of the E , if necessary, we can assume that M is finite. We shall also 
n 

restrict ourselves to a fixed time interval [0,T]. The extension to infinite 

measures and the interval [0,~] is routine. 

DEFINITION. The covariance functional of M is 

Qt(A,B) = <M(A), M(B)> t. 

Note that Qt is symmetric in A and B and biadditive: for fixed A, 

Qt(A, o) and Qt(.,A) are additive set functions. Indeed, if B C = ~, 

Qt(A, B C) = (M(A), M(B) + M(C)> t 

= <M(A), M(B)> t + <M(A), M(C)> t 

= %(A,B)+ %(A,C). 

Moreover, by the general theory, 

IQt(A,B)I ! Qt (A,A) I/2 et (B,B)I/2" 

A set A x B x (s,t] C E x E x R+ will be called a rectangle. Define a 

set function Q on rectangles by 

e(A x H × (s,t]) = Qt(A,B~ - QsCA,B~, 

and extend Q by additivity to finite disjoint unions of rectangles, i.e. if 

Ai x Bi x (si,ti] are disjoint, i = 1,...,n, set 
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(2.2) 
n n 

Q( U A i x Bi x (si,ti]) = [ IQtl(Ai,Bi) - Qs (Ai'Bi))" 
i=1 i=1 " i 

Exercise 2.3. Verify that Q is well-defined, i.e. if 

n m 

A = i=IU Ai× B i x (si,ti ] = jU__.=I A" x3 B' x3 (s3't3]' each representation gives 

the same value for Q(A) i n  ( 2 . 5 ) .  ( H i n t :  u s e  b i a d d i t i v i t y . )  

If a 1,...,a e R and if A I,...,A 6 E are disjoint, then for any s < t 
n n ~- 

n n 
(2.3) [ 7 aia j Q(A i × Aj ×(s,t]) > 0, 

9=I 9=I 

for the sum is 

= [ aiajI<M(Ai), M(Aj)> t - <M(Ai) , M(Aj)> s) 
i,j 

= < [ ai(Mt(Ai) - Ss(Ai)) , [ ai(St(Ai) - Ms(Ai))> ~ 0. 
i 1 

DEFINITION. A signed measure K(dx dy ds) on E x E × B is positive definite 

if for each bounded measurable function f for which the integral makes 

sense, 

(2.4) f f(x,s)f(y,s)K(dxdyds) ~ 0 
EXEXR + 

For such a positive definite signed measure K, define 

(f'g)K = f f(x,s)g(y,s)K(dxdyds). 
EXExR + 

Note that (f'f)K ~ 0 by (2.4). 

Exercise 2.4. 

Minkowski's inequalities 

and 

_,I/2, ,I/2 
(f'g)K ~ (f'r;K ~g'g;K 

• ,I/2 _,I/2 I/2 
(f+g' ftg;K ~ (f'z;K + (g'g)K 

It is not always possible to extend Q to a measure on E x E × B, where 

R+, as the example at the end of the chapter shows. We 

are led to the following definition, 

Suppose K is symmetric in x and y. Prove Schwartz' and 

B = Borel sets on 
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DEFINITION. A martingale measure M is worthy if there exists a random 

o-finite measure K(A,~), A ~ E x E x B, ~ E Q, such that 

(i) K is positive definite and symmetric in x and y; 

(ii) for fixed A, B, {K(A x B x (0,t]), t > 0} is predictable; 

(iii) for all n, E{K(E x E x [0,T])} < ~; 
n n 

(iv) for any rectangle A, IQ(A)I ! K(A). 

We call K the dominating measure of M. 

The requirement that K be symmetric is no restriction. If not, we 

simply replace it by K(dx dy ds) + K(dy dx ds). Apart from this, however it 

is a strong condition on M. We will show below that it holds for the two 

important special cases mentioned above: both orthogonal martingale measures 

and those with nuclear covariance are worthy. In fact, we can state with 

confidence that we will have no dealings with unworthy measures in these 

notes. 

If M is worthy with covariation Q and dominating measure K, then K + Q 

is a positive set function. The o-field E is separable, so that we can first 

restrict ourselves to a countable subalgebra of E x E x B upon which Q(-,~) 

is finitely additive for a.e. ~. Then K + Q is a positive finitely additive 

set function dominated by the measure 2K, and hence can be extended to a 

measure. In particular, for a.e. ~ Q(o,~) can be extended to a signed 

measure on E x E x ~, and the total variation of Q satisfies IQI(A) ! K(A) 

for all A E E x E x B. By (2.3), Q will be positive definite. 

Orthogonal measures and white noises are easily characterized. Let 

d(E) = {(x,x): x ~ E}, be the diagonal of E. 

PROPOSITION 2.1. A worthy martingale measure is orthogonal iff Q is 

supported by A(E) x R + 

PROOF. Q(A x B × [0,t]) = <M(A), M(B)> t- 

If M is orthogonal and A ~ B = ~, this vanishes hence 

IQI[ E x E - A(E)) x R+] = 0, i.e. supp Q c d(E) x R+ . Conversely, if this 

vanishes for all disjoint A and B, M is evidently orthogonal. Q.E.D. 
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STOCHASTIC INTEGRALS 

We are only going to do the L2-theory here - the bare bones, so to 

speak. It is possible to extend our integrals further, but since we won't 

need the extensions in this course, we will leave them to our readers. 

Let M be a worthy martingale measure on the Lusin space (E,E), and let 

QM and K M be its covariation and dominating measures respectively. Our 

definition of the stochastic integral may look unfamiliar at first, but we 

are merely following Ito's construction in a different setting. 

In the classical case, one constructs the stochastic integral as a 

process rather than as a random variable. That is, one constructs 

t 
{f f dB, t ~ 0} simultaneously for all t; one can then say that the integral 
0 

is a martingale, for instance. The analogue of "martingale" in our setting 

is "martingale measure". Accordingly, we will define our stochastic integral 

as a martingale measure. 

Recall that we are restricting ourselves to a finite time interval {0,T] 

and to one of the En, so that M is finite. As usual, we will first define 

the integral for elementary functions, then for simple functions, and then 

for all functions in a certain class by a functional completion argument. 

DEFINITION. A function f(x,s,~) is elementar~ if it is of the form 

(2.5) f(x,s,~) = X(~)I(a,b](S) IA(X), 

where 0 _< a < t, X is bounded and ~a-measurable, and A 6 =E" f is sim~le ' if 

it is a finite sum of elementary functions, we denote the class of simple 

functions by S. 

DEFINITION. The ~redictable G-field P on Q x E × R+ is the G-field generated 

by S. A function is predictabl e if it is P-measurable. 

We define a norm II II M on the predictable functions by 

llf IIM = E{~Ifl, Ifl~K} I/2 
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Note that we have used the absolute value of f to define I}f IIM, so that 

Let ~M be the class of all predictable f for which llf II M < ~. 

PROPOSITION 2.2. Let f E ~M and let A = {(x,s):If(x,s) I > £}. 

Then 

I E{K(E x E x [0,T])} E{K(A× E × [0,T]>} iT }{f{{M 

PROF. ~ E<K(A × E × [0,T]]} __< E{f {f(x,t){~(~ dy dt)} 

= E<({fl, I~ K} 

Ifl)~/2~(E x E x [0,T])} < E{(If 1 , 

_< { I f l l  M E<~(E × E × [0,T])} v2 

where we have used Schwartz' inequality in two forms (see Exercise 2.4). 

Q.E.D. 

Exercise 2.5. Use Proposition 2.2 to show ~M is complete, and hence a Banach 

space. 

PROPOSITION 2.3. ~ is dense in ~M" 

PROOF. If f ~ ~M' let fN(x,s) = ~f(x's)0 otherwise if If(x,s) I < N 

Then llf-f N II~ = E{f If(x,s) - fN(x,s)l If(y,s) - fN(Y,s)IK(dxdyds)} 

which goes to zero by monotone convergence. Thus the bounded functions are 

dense. If f is a bounded step function, i.e. if there exist 

0 ~ t o < t I < ...< t n such that t + f(x,t) is constant on each (tj, tj+1], 

then f can be uniformly approximated by simple functions. Thus the simple 

functions are dense in the step functions. It remains to show that the step 

functions are dense in the bounded functions. 

TO simplify our notation, let us suppose that K(E x E x ds) is 

absolutely continuous with respect to Lebesgue measure. [We can always make 

a preliminary time change to assure this.] If f(x,s,~) is bounded and 

predictable, set 
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k2 -n 

fn(X,S,~) = 2 -n f f(x,u,~)du if k2 -n < s < (k+I)2 -n. 
(k_1)2-n 

Fix ~ and x. Then fn(X,S,~) ÷ f(x,s,~) for a.e. s by either the martingale 

convergence theorem or Lebesgue's differentiation theorem, take your choice. 

It follows easily that llf - fn NM + 0. Q.E.D. 

We can now construct the integral with a minimum of interruption. 

f(x,s,~) = X(~) I(a,b](S) IA(X) is an elementary function, define a 

martingale measure foM by 

(2.6) f°St(B) = X(~)(Mt^b(A ~ B) - Mt^a(A ~ B)). 

If 

LEMMA 2.4. f.M is a worthy martingale measure. 

dominating measures Qf.M and Kf. M are given by 

(2.7) Qf.M(dX dy ds) = f(x,s) f(y,s) ~(dx dy ds) 

(2.8) Kf.M(~ dy dx) = If(x,s)f(y,s)I~(~ dy ds). 

Moreover 

(2.9) E{f'Mt(B) 2} ~ NfH~ 

Its covariance and 

for all B E _E, t < T. 

PROOF. f'Mt(B) is adapted since X E ~a; it is square integrable, and a 

martingale. B ÷ f.Mt(B) is countably additive (in L2), which is clear from 

(2.6). Moreover 

f'Mt(B)f°Mt(C) - f f(x,s)f(y,s)Qs(dX dy ds) 
BxCX [ 0, t] 

= X2[(Mt^b(A ~ B) - MtAa(A n B)(MtAb(AmC ) - MtAa(A ~ C)) 

- < M(A ~ B), M(A ~ C)>t^b+ < M(A ~ B), M(A ~ C)>t~a] 

which is a martingale. This proves (2.7), and (2.8) follows immediately 

since Kf. M is positive and positive definite. (2.9) then follows easily. 

Q.E.D. 

We now define f.M for f ~ S by linearity. 

Exercise 2.6. Show that (2.7)-(2.9) hold for f ~ S. 

Suppose  now t h a t  f ~ ~:No By P r o p .  2 .6  t h e r e  e x i s t  fn  E =S such  t h a t  
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llf-fn I I ~  o. By ( 2 . 9 ) ,  if A E E and t < T ,  

E{(f m. Mt(A) - fn'Mt (A))2} ! llfm - fn IIM ÷ 0 

as m, n + ®. It follows that (f~Mt(A)) is Cauchy in L2(Q,[,P),_ so that it 

converges in L 2 to a martingale which we shall call f.Mt(A). The limit is 

independent of the sequence (f). 
n 

THEOREM 2.5. If f & ~, then f.M is a worthy martingale measure. It is 

~rthogonal if M is. Its covariance and dominating measures respectively are 

given by 

(2.10) Qf.M((~ dy ds) = f(x,s)f(y,s) ~(dx dy ds); 

(2.11) Kf°M(dX dy ~) = If(x,s) f(y,s)IK(dx dy ds). 

Moreover, if g e ~ and A, B 6 =E' then 

(2.12) <f'M(A), g'M(B)> t = ~ f(x,s)f(y,S)QM(dX dy ds); 
AXBX[0,t] 

(2.13) E{(f'Mt(A))2} I l l  I1~. 

PROOF. f-M(A) is the L 2 limit of the martingales f .M(A), and is hence a 
n 

square-integrable martingale. For each n 

(2.14) fn'Mt (A) fn'Mt (B) - f fn(X'S)fn(Y'S) ~(dx dy ds) 
AXBX[0,t] 

is a martingale, f .M(A) and f .M(B) each converge in L 2, hence their 
n n 

product converges in L 1 . Moreover 

E{I I (fn(X,S)fn(Y,S) - f(x,s)f(y,s))QM(dX dy ds) I } 
AXBX[0,t] 

E{ f Ifn(X) llfn(y)-f(y)l~(dx dy ds)} 
EXE×[0,T] 

+ E{ / )fs(X)-f(x)l If(y)l%(  dy 
EXEX[0,T] 

E{(Ifnl, If-fnl) K + (If-fn1')fl)K} 

By Schwartz: 

(Ilfn llM + l)f llM)llf n- f li M ÷ 0 • 

Thus the expression (2.14) converges in L I to 

f'Mt(A) f'Mt(B) - f f(x,s)f(y,s) QM(~ dy ds) 
AXB×[0,t] 

which is therefore a martingale. The latter integral, being predictable, 
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must therefore equal <f-M(A), f'M(B)>t, which verifies (2.10), and (2.11) 

follows. 

This proves (2.12) in case g = f, and the general case follows by 

polarization. (2.13) then follows from (2.11). 

To see that f.M t is a martingale measure, we must check countable 

additivity. If A C E, A % ~, then 
n n 

E{f'Mt(An )2} ! E{ f If(x,s)f(y,s)IK(dx dy+ds)} 
A XA x [O,t] 
n n 

which goes to zero by monotone convergence. 

If M is orthogonal, ~ sits on d(E) × [0,T], hence, by (2.10), so does 

Qf,M" By Proposition 2.4, f'M is orthogonal. Q.E.D. 

Now that the stochastic integral is defined as a martingale measure, we 

define the usual stochastic integrals by 

f f dM = f-Mt(A) 
Ax [O,t] 

and f f dM = f+Mt(E). 
EX [0,t] 

while f f dM = lim f+Mt(E). 
t+~ 

When it is necessary we will indicate the variables of integration. For 

instance 

t 
f(x,s)M(dx ds) and ~ ~ f(x,s)dM 

xs 
A×[0,t] 0 A 

both denote f'Mt(A). 

It is frequently necessary to change the order of integration in 

iterated stochastic integrals. Here is a form of stochastic Fubini's theorem 

which will be useful. 

Let (G, ~, ~) be a finite measure space and let M be a martingale with 

dominating measure K. 

THEOREM 2.6. Let f(x,s,~,k), x 6 E, s > 0, ~ ~ Q, k ~ G be a 

P × G-measurable function. Suppose that 

(2.15) E{ f If(x,s,~,k) f(y,s,~,k)IK(dx dy ds)~(d~)} < =. 
ExEx [0,T]xG 

Then 
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(~ .16,  / [ S f c x , s , x l  ~(~<ds)]~<dX) : / [ S f ( : , s ,X l~ (dX) ]~ (dxds~ .  
G E× [0,t] E× [0,t] G 

PROOF. If f(x,s,~,k) = X(~) I(a,b](S ) IA(x)g(k) , then both sides of (2.16) 

equal 

X(%^bCA> - ~ t~a(A ' )  S g<X)~(dX). 

Both sides of (2.16) are additive in f, so this also holds for finite sums of 

such f. If f is P × G - measurable and satisfies (2.16), we can apply an 

argument similar to the proof of Proposition 2.6 to show that there exists a 

sequence (f) of such functions such that 
n 

E( ~ I f ( x , s ,X )  - f n ( X , S , x ) l l f ( y , s , X )  - f n ( Y , S , X ) l K ( ~  dy as) ~(dX)} 

: S I l l (x )  - fn<X) ll~ ~<dX) + o . 

We see that the integral in brackets on the right hand side of (2.16) is 

I-measurable, (Fubini) so that the integral makes sense, providing that 

11 S f ( x )  ~(dk)tIM < = 

On the left-hand side we can take a subsequence if necessary to have 

llf(k) - fn(k)II M + 0 for ~ - a.e.k. This implies that for a.e.~ 

f fn(k)dM + f f(k)dM in L 2, hence in measure. Using Fubini's theorem again 

we see that S fn(W, k)dM ÷ S f(~,k)dM in P × ~-measure, hence the latter 

integral is measurable in the pair (w,k). It follows that Sf(k)dM is 

w-measurable for fixed ~, so that the integral on the left-hand side of 

(2.16) makes sense. 

We must show that both sides converge as n + ~. Set gn = f - fn" 

ll S gn(k)~ (dk) lIM = E{ S S gn(X,S,~)~(d~)K(dxdy ds) fgn(Y,S,~')~( dk')} 
E×EX[O,T]  G G 

= S E{(gn(k), gn(k'))K}~(dX)~(dk'); 
G×G 

by Schwartz, this is 

G×G 
lgn(X)l  ) K} V2E{ ( Ign (X '  ~1, Ign~X' ~1 )K} ' / 2 ~ C d x ~ < ~ '  ) 

: ( S l lgnCX) I I~ (dX) )  2 
G 

_< ~ G )  S Ilfcx~ - fn(X) l t ~  
G 

which tends to zero by (2.15). 
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This implies that the right-hand side of (2.16) converges. On the 

left, 

E{ ] ~ f gn(X,S,k)M(dxds)J2~(dk)} 
G 

= I E{( f gn(X,S,X)M(dxds)J2}~(dk) 
G 

f figs(k)II~ ~(dk) + O. 
G 

By choosing a subsequence if necessary, we see that for a.e. ~, 

f ! f gn(X,S,k)M(dxds))2~(dk) + 0, hence f ( ff - fn)dM)d~ + 0, and the left 
G G 

hand side of (2.16) converges too. Q.E.D. 

ORTHOGONAL MEASURES 

The remainder of this chapter concerns special properties of measures 

which are orthogonal or have nuclear covariance. We must certify their 

worthiness, so that the foregoing integration theory applies. 

We should admit here that although we are handling a wide class of 

martingale measures in this chapter, our main interest is really in 

orthogonal measures. This is not because the theory is simpler - it is only 

simpler at the beginning - but because the problems which motivated this 

study involved white noises and related orthogonal measures. 

The theory of integration does simplify, at least initially, if the 

integrator is orthogonal. For instance, the covariance measure Q sits on the 

diagonal and is positive, so that Q = K° Instead of having two measures on 

E x E x R+, we need only concern ourselves with a single measure v on E x R+ 

where v(A × [0,t]) = Q(A x A × [0,t]), and this leads to several rather 

pleasant consequences which we will detail below. 

The proof that an orthogonal measure M is worthy comes down to finding a 

good version of the increasing process <M(A)>t, one which is a measure in A 

and is right continuous in t. 

We will fix our attention on a fixed time interval 0 < t < T, and we 

continue to assume that E = En, so that M is finite. Define 
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~(A) = E{MT(A) 2} = E{<M(A)>T). 

I ° <M(')> t is an additive set function, 

i.e. A ~ B = ~ => <M(A)> t + <M(B)> t = <M(A U B)>ta.s. 

Indeed, <M(A U B)> t = <M(A) + M(B)> t 

= <M(A)> t + <M(B)> t + 2<M(A), M(B)> t, 

and the last term vanishes since M is orthogonal. 

2 ° A C B => <M(A)> t ~ <M(B)> t 

S < t => <M(A)> < <M(B)> 
-- s -- S 

3 ° ~ is a G-finite measure: it must be Q-finite since M T is, and 

additivity follows by taking expectations in I". 

The increasing process <M(A)> t is finitely additive for each t by I °, 

but it is better than that. It is possible to construct a version which is a 

measure in A for each t. 

THEOREM 2.7. Let {Mt(A) , ~t' 0 < t < T, A E =E} be an orthogonal martingale 

measure. Then there exists a family {vt(.), 0 < t < T} of random Q-finite 

measures on (E,E) such that 

(i) {vt, 0 < t < T} is predictable; 

(ii) for all A 6 ~, t ÷ vt(A) is right-continuous and increasing; 

(iii) P{vt(A) = <M(A)> t} = I all t ~ 0, A ~ ~. 

PROOF. we can reduce this to the case E C R, for E is homeomorphic to a 

Borel set F C R. Let h: E + F be the homeomorphism, and define 

Mt(h-I(A)), Mt(A) = ~(A) = ~(h-1(A)). If we find a ~t satisfying the 

conclusions of the theorem and if ~t(R - F) = 0, then v t = vt° h satisfies 

the theorem. Thus we may assume E is a Borel subset of R. 

Since M is Q-finite, there exist E n + E for which ~(En ) < ~" Then there 

are compact KnC E n such that u(E n- K n) < 2 -n. We may also assume KnC Kn+ I 

all n. It is then enough to prove the theorem for each K . Thus we may 
n 

assume E is compact in R and ~(E) < ~. 

Define Ft(x) = <M(-~,x] >t' -~ < x < ~. 
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Then 

a) x <_ x' => Ft(x) _< Pt(x'); 

t _<< t' => Ft(x') - Ft(x) < Ft,(x') - Ft,(x) 

b) E{ sup ]Ft(x) - Pt(xl)l} _< ~((Xl,X2]) 
t<T 

x1<x<x 2 
x~Q 

Indeed (a) follows from 2 °. To see (b), note that for fixed t _<< T, 

Ft(x) - Ft(x I) < <M(xl,x2]> t < <M(Xl,X2]> T a.s. by 2 °. By right continuity 

this holds simultaneously for all t < T and all rational x in (x I ,x 2] . But 

then (b) follows since E{<M(Xl,X2]>T} = ~((xl,x2]). 

Define ~t(x) = inf{Ft,(x'):x' > x, t' > t, x', t'~ Q}. This will be the 

"good" version of F. We claim that F is the distribution function of a 
t 

measure. 

-- Ft2 (x2 c) t I <__ t 2 and x I <__ x 2 => Ft1(xl) <__ ); 

d) ~t(x) is right continuous in the pair (x,t); 

e) for fixed x, P{Ft(x) = Ft(x), all t < T} = I. 

Indeed, (c) is clear and (d) and (e) follow from the uniform convergence 

guaranteed by (b). To see (e), for instance, choose rational t and x which 
n n 

strictly decrease to t and x respectively. Then 

Ft(x) < Ft(x)< F t (x n) = F t (x) + <F t (x n) -F t (x)). 
n n n n 

But F t (x) ÷ Ft(x) by right continuity and the term in square brackets tends 
n 

to zero in probability by (b). 

Let v t be the distribution on R generated by the distribution function 

~t" Note that v t does not charge R-E, for E is compact; and if 

(a,b]cR - E, vt(a,b] = Ft(b) - ~t(a) = Ft(b ) - Ft(a ) < FT(b ) - FT(a ) by (e). 

This is true simultaneously for all rational t. Since F is right continuous 

we have a.s. 

0 ~ sup vt(a,b] ~ FT(b) - FT(a) 
t<T 

and the latter has expectation ~{(a,b]} = 0. 

Note that {~t: 0 < t < T} is predictable, for it is determined by Ft(x), 

x ~ Q, hence by Ft(x) , x e Q by (e), and the F t are predictable. 
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If t < t', Ft,(x) - ~t(x) is a distribution function, so t ÷ vt(A) is 

increasing for each A. It is right continuous in t if A = (0,x], some x, or 

if A = R (for E C R is compact). Then right continuity for all Borel A 

follows by a monotone class argument. 

To show (iii), note that if A = (-~,x], 

(2.17) M~(A) - vt(A) is a martingale, 

for then vt(A) = Ft(x) = <M(A)> t. Let _G be the class of A for which (2.17) 

holds. ~ must contain finite unions of intervals of the form (a,b], and it 

contains R, for vt(-~,x] = vt(R) for large x. 

It is closed under complementation, for 

° )  - c )  = c , )  - - - - 

and each of the terms on the right hand side is a martingale if A ~ G. G is 

also closed under monotone convergence. If A ÷ A, for instance, Mt(A n) 
n 

converges in L 2 to Mt(A), and vt(A n) increases to vt(A), hence the martingale 

M~(A n) - vt(A n) converges in L I to Mt2(A) - vt(A). The latter must therefore 

be a martingale. The case where A $ A follows by complementation. Thus G 
n 

contains all Borel sets. Q.E.D. 

Now t ÷ vt(A) is increasing, so that we can define a measure v on E × R+ 

by defining v(A × (0,t]) = vt(A) and extending it to E x B, where =B is the 

class of Borel subsets of R . This gives us the following. + 

COROLLARY 2.8. Let M be an orthogonal martingale measure. Then there exists 

a random ~-finite measure v(dxds) on E × R+ such that vt(A) = v(A x [0,t]) 

for all A ~ ~, t > 0. 

We can get the covariance measure Q of M directly from v. Set 

A = A(E) × R+ where A(E) is the diagonal of E x E and let ~: d ÷ E × R+ be 

defined by ~(x,x,t) = (x,t). Then we define Q by 

Q(A) = v(~(A ~ 4), A 6 E x E x B. 

Then Q(A × B × [0,t]) = v(A ~ B x [0,t]) 

= <M(A ~ B)> t 

= <M(A), M(B)> t, 



302 

so Q is indeed the covariance measure of M. Since Q is positive and positive 

definite, we can set K = Q and we have: 

COROLLARY 2.9. An orthogonal martingale measure is worthy. 

We noted above that a white noise gives rise to an orthogonal martingale 

measure. It is easy to characterize white noises among martingale measures. 

PROPOSITION 2.10. Let M be an orthogonal martingale measure, and suppose 

that for each A ~ ~, t ÷ Mt(A) is continuous. Then M is a white noise if and 

only if its covariance measure is deterministic. 

PROOF. Rather than use Q, let us use the measure v of Corollary 2.8, which 

is equivalent. 

If M is a white noise on E x 

that v = ~, so v is deterministic. 

R based on a measure ~, it is easy to see + 

Conversely, if M is orthogonal and if v is deterministic, then for 

B ~ 2' both Mr(B) and M~(B) - v(B x[0,t]) are martingales. 

To show M is a white noise, we must show it gives disjoint sets 

independent Gaussian values. One can see it is sufficient to show the 

following: if BI'''''Bn are disjoint sets, then {Mt(BI), t _> 0},..., 

{Mt(Bn), t ~ 0} are independent mean zero Gaussian processes with independent 

increments. This reduces to the following calculation. 

Let 

By Ito's formula 

N = 1 + 
S 

N s = e~{i ~ kj(Mt+s(B j ) - Ms(Bj))} • 
9=I 

I i X N dMu(Bj ) - I X2 t+s 
9=1 t j U ~ j NuV(BjX du) 

j=1 

where we have used the fact that d < M(B. ), M(Bk)> t vanishes by orthogonality 
3 

if j # k. Let f(x) = E{NslFt} and note that 

t+s 
I k 2 f f(u)dv(Bj × du). f(s) = 1 - ~ j 

j=1 t 

This has the unique solution 
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n - ~ kl ~v(Bjx(s,t]) 

f(s) = H e 
j=l 

from which we see that the increments Mt+s(B3 ) -Mt(Bj ) are independent of =-F t 

and of each other, and are Gaussian with mean zero and variance 

v(Bj x (s,t]). Thus M is a white noise based on V. Q.E.D. 

NUCLEAR COVARIANCE 

We will develop some of the particular properties of martingale measures 

with nuclear covariance. In particular, we will show they are worthy. 

Suppose M is a martingale measure on (E,E) with nuclear covariance. 

Then there is a measure D and a CONS (~n) in L2(E,E,D)_ such that 

(2.18) ~ E{MT(~n)2} < ". 
n 

We continue to assume E = E for some n, so that M is finite, not just 

G-finite. 

PROPOSITION 2.11. 

{Mt(x), t ~ 0} such that for a.e. ~, x ÷ Mr(X) L2( E, --~' D). 

(i) Mt(A ) = f Mt(x)~(dx) , A C E; 
A 

(ii) QM(A x B × [0,t]) = f <M(x), M(y)> t ~(dx)D(dy)- 
A×B 

Furthermore, there exists a predictable increasing process C t 

T 
predictable function G(x,t) such that E{ f ~2(x,s)dCs~(dx)} < 

0 

(iii) KM(A x B × [0,t]) = ~ ~(x,s)~(y,s)~(dx)~(dy)dC s. 
A×BX[0,t] 

Finally 

(iv) ~ E{Mt(#n )2} = E{ I Mt(x)2n(dx)}. 
n E 

For each x there exists a square-integrable martingale 

Moreover 

and a positive 

and 

PROOF. We will be rather cavalier in handling null-sets and measurable 

versions below. We leave it to the reader to supply the details. 

The map ~ ÷ S (~) is linear, and since [ M~(~ n)_ < ~ a.s., it is a 
t 
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bounded linear functional on L2(E, E, ~). It thus corresponds to a function 

2 
which we denote Mt(x) , such that for ~ E L , 

St(~) = f Mt(x)~(x)~(dx)- 

In fact Mt(x,~) = ~ St(~n)~n(X). 

This series converges in L 2 for a.e. ~ hence, taking a subsequence if 

necessary, it converges in L2(Q,F,P) for ~-a.e.x. For each such x, Mr(X) 

must be a martingale, being the L2-1imit of martingales. By modifying Mt(x) 

on a set of ~-measure zero, we can assume Mt(x) is a martingale for all x. 

Mt(A)Mt(B) = I Mt(x)Mt(Y) D(dx)~(dY) 
AXB 

Now 

so that 

<M(A), M(B)> t = ] 
AXB 

This proves (i) and (ii). 

<M(x), M(y)> t ~(dx)D(dy). 

E is separable, so it is generated by a countable sub-algebra A. Let M 

be the smallest class of martingales which contains Mt(A), all A G =A' and 

2 
which is closed under L -convergence. Then one can show that there exists an 

increasing process C t s u c h  t h a t  f o r  a l l  N ~ ~ ,  d<N> t << dC t -  C o n s e q u e n t l y ,  

t 
by Motoo's theorem, <N> t = f h(s)dC s for some predictable h. This holds in 

0 

particular for all the Mt(~k), for these are in ~, and hence for the Mt(x). 

Furthermore, one can see by polarization that there exists a function 

h(x,y,s) such that 

t 

<M(x), M(y)> t = f h(x,y,s)dC s. 
0 

But since <M(x), M(y)> < <M(x)> I/2 <M(y)> I/2, we see that 

112 I/2 
lh(x,y,s)l ! h(x,x,s) h(y,y,s) Set ~2(x,s) = h(x,x,s) ~. Then 

QM(A x B × [0,t]) ~ f o(x,s)~(y,s)~(dx)~(dy)dC s 
E×E×[0,t] 

which identifies K(dx dy ds) = O(x,s)~(y,s)D(dx)D(dy)dC • This is clearly 
s 

positive and positive definite. To see that it is finite, write 

T 
E{K(E × E × [0,TI)) = ~{ f [ f ~(x,s)~(dx)]2dCs } 

0 E 

T 

E 0  
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= D(E) E{ I Mt(x) 2 ~(dx)} < ~. 
E 

Finally, to see (iv), note that 

[ E{Mt(~n )2} = [ E{< f Mt(X)~n(X)D(dx)l 2} 

= E{ ~ M~(t)} 
n 

where Mn(t) = I Mt(X)~n(X)D(dx)" By the Plancharel theorem, this is: 

= E{ I Mt(x)2D (dx) } • 

Q.E.D. 

REMARK. Note from (iv) of the proposition that the sum in (2.18) does not 

depend on the particular CONS (~n) • 

Exercise 2.7. Suppose M has nuclear covariance on L2(E, E, ~). Let f be 

predictable and set 

T 
k2(x) = E{ f f2(x,s) d < N(X)>s} 

0 
Show that if I k2(x) D(dx) < ~, then 

(i) llf NM < ~ (so foM is defined); 

t 
(ii) f°Mt(x) d~f f f(x,s)dMs(X) exists as an Ito integral for D-a.e. 

0 

x; 

(iii) f'Mt(A) = f f.Mt(x) D(dx); 
A 

(iv) for any CONS (~n) in L2(E, ~, D) and t ~ T, 

[ E{f'Mt(*n )21 ! I k2(x)~ (dx)" 
n E 

so that foM has nuclear covariance. 

AN EXAMPLE 

We will construct D. Bakry's example of a martingale measure which is 

not an integrator. 

Let U be a random variable, uniformly distributed on [0,1]. Let s = 1 
n 

- I/n, n = 1,2,... and define a filtration (Ft) as follows. 
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and define 

F 
=s 

n 

= O{ [2nu] } ( [n] = greatest integer < n) 

= F if s < t < ~t =s n -- Sn+1 
n 

Mt(A) = P{U 6 Al~t} , A C [0,1], t ~ 0. 

If K = [2nu], let J = [K 2 -n, (K+I)2 -n) and put H = [K2 -n, (K+I/2)2 -n) 
n n 

and Ln = [(K+I/2)2 -n, (K+1)2-n). Then Jn = H n U L n and all three are 

F -measurable. Note that U 6 J for all n. 
=s n 

n 

Then M is a martingale measure and 

(i) if t < 1, then Mt(dx) = 2nIj (x)dx; 
n 

(ii) if t ~ I, then Mt(A) = IA(U). 

If t < 1 and s < t < then J n -- Sn+1' n is F -measurable and the 
=s 

n 

conditional distribution of U given ~t = ~s is uniform on Jn' which implies 
n 

(i), while if t ~ I, U is ~t measurable, which implies (ii). 

Thus Mr(-) is a (real-valued) measure of total mass one, not just an 

L2-measure. However there exist bounded predictable f for which I f(x,s)dM 

does not exist. 

Set 

~i if x E H and s < t n n Sn+1 

f(x,t) 2 if x ~ L n and s n < t ~ Sn+ I 

otherwise 

Then f is adapted and t ÷ f(x,t) is left continuous, so f is predictable. 

t ÷ M t is constant on each [Sn,Sn+1), and it jumps at each s n. f is a sum of 

simple functions so, if f,M exists, we can compute it directly. 

f(x,t)dM = 2(M (H) - M (H)) - 2(M (L) - M (L)) . 
[0,1]X(Sn,Sn+1 ] Sn+ I n Sn n Sn+ I n Sn n 

Now by (i) this is 

= I{Jn+1= H n} - I{Jn+1= Ln}" 

Since Jn+1 is either H n or Ln, with probability I/2 each, the above is either 

I or -I, with probability I/2 each. But now if f f dM exists, it 
[ 0 , 1 ] x ( 0 ,  I )  

must equal ~ f f dM which diverges since each term has absolute 

n [0,1]X(Sn,Sn+1] 
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value 1. 

Evidently the dominating measure K does not exist. To see why, let us 

calculate the covariance measure Q. 

Q(dx, dy, {Sn+1}) = A<M(dx), M(dy)> = N - E{Nsn+11~Sn } 
Sn+ 1 Sn+ I 

= r - 4n+Ip{x,y & Jn+IIFs }]dxdy- -4nI{x'Y ~ Jn+1 } - n 

If x and y are both in Hn or both in Ln, P{x,y 6 Jn+11~s- } = I/2 by (i). If 
n 

one is in H n and one in Ln, they can't both be Jn+1' (which equals Hn or Ln ) 

and the conditional expectation vanishes. Thus it is 

= 4n[I{x,y e Jn+1 }- 21{x,y e Hn}- 2I{xty £ Ln}]dxdy" 

The term in brackets is ±I on the set {x,y E Jn } and zero off. Thus 

Let N t = Mt(dx)Mt(dY). For t = Sn+ I, 

and hence 

IQ(dx dy ×{Sn+1}) I = 4nI{x,y ~ j }dxdy 
n 

1 

I Q ( [ 0 , 1 ]  x [ 0 , 1 ]  x { S n + 1 } ) !  = 4 n f 
0 

= I 

1 
f Ij (x)Ij (y)dxdy • 
0 n n 

Thus, if K exists, it must dominate Q and 

K ( [ 0 , 1 ]  x [ 0 , 1 ]  x ( 0 , 1 ) )  _> ~ 1 = = .  
n 



CHAPTER THREE 

EQUATIONS IN ONE SPACE DIMENSION 

We are going to look at stochastic partial differential equations driven by 

white noise and similar processes. The solutions will be functions of the variables 

x and t, where t is the time variable and x is the space variable. There turns out 

to be a big difference between t~e case where x is one-dimensional and the case where 

x C R d, d ~ 2. In the former case the solutions are typically, though not 

invariably, real-valued functions. They will be non-differentiable, but are usually 

continuous. On the other hand, in R d, the solutions are no longer functions, but 

are only generalized functions. 

We will need some knowledge of Schwartz distributions to handle the case 

d ~ 2, but we can treat some ex~ples in one dimension by hand, so to speak. We will 

do that in this chapter, and give a somewhat more general treatment later, when we 

treat the case d > 2. 

TH~ wA~ EQUATION 

(3.1) 

Let us return to the wave equation of Chapter one: 

I ~2V ~2V + W t > 0, x E R; 
~t 2 ~x 2 " 

V(x,0) = 0, x e R 

~(x,0) = 0, x E R .  

White noise is so rough that (3.1) has no solution: any candidate for a 

solution will not be differentiable. However, we can rewrite it as an integral 

equation which will be solvable. This is called a weak form of the equation. 

We first multiply by a C ~ function ~(x,t) of compact support and integrate 

over R × 

V ~ C (2) . 

[0,T], where T > 0 is fixed. Assume for the sake of argument that 

T T 

f f [Vtt(x,t)-V(x,t)]~(x,t)~dt = I I ~(x,t)W(x,t)~dt. 
O R  O R  
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Integrate by parts twice on the left-hand side. Now # is of compact support in x, 

but it may not vanish at t = 0 and t = T, so we will get some boundary terms: 

T 

f f vcx,t)c%t(x,t)-~=cx,t)1~dt + f t~(x,')vt(x,')10-%cx,')vcx,')l~1~ 
0 R R 

T 

= I f ,(x,t)~Cx,t)~dt 
0 R 

If ~(x,T) = ~t(x,T) = 0, the boundary terms will drop out because of the 

initial conditions. This leads us to the following. 

DEFINITION. We say that V is a weak solution of (3.1) providing that V(x,t) is 

locally integrable and that for all T > 0 and all C ~ functions ~(x,t) of compact 

support for which ~(x,T) = ~t(x,T) = 0, Vx, we have 

T T 

(3.2) f ~ V(x,t)[~tt(x,t) - ~xx(X,t)]dxdt = ~ f ~dW. 
0 R 0 R 

The above argument is a little unsatisfying; it indicates that if V 

satisfies (3.1) in some sense, it should satisfy (3.2), while it is really the 

converse we want. We leave it as an exercise to verify that if we replace W by a 

smooth function f in (3.1) and (3.2), and if V satisfies (3.2) and is in C (2), then 

it does in fact satisfy (3.1). 

THEOREM 3.1. There exists a unique continuous solution to (3.2), namely 

I ^ (t-x, t+x) 
V(x,t) = ~W ...... , where W is the modified Brownian sheet of Chapter One. 

PROOF. Uniqueness: if V I and V 2 are both continuous and satisfy (3.2), then their 

difference U = V 2 - V I satisfies 

ffU(x,t)[~tt(x,t) - ~xx(X,t)]dxdt = 0 

Let f(x,t) be a ~ function of compact support in R x (0,T). Notice that there 

exists a ~ E ~ with #(x,T) = ~t(x,T) = 0 such that ~tt - ~xx = f" Indeed, if 

C(x,t; Xo,to) is the indicator function of the cone 

{(x,t): t<to,Xo+t-to< x < Xo+to-t} , then 

T 

#(Xo,t O) = f I f(x,t)C(x,t; Xo,to)dXdt. 
R0 
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Thus 

ffU(x,t) f(x,t) dxdt = 0, 

SO U = 0 a.e., hence U -= 0 a.e. 

To show existence, let us rotate coordinates by 45 a. Let u = (t-x)//2, 

v = (t+x)//2 and set ~(u,v) = ~(x,t) and W(dudv) = w(dxdt). Note that 

~tt - ¢xx = 2~uv" Define R(u,V;Uo,V o) = I{u<u ,v<v }" The proposed solution is 
-- o -- o 

vcu,v~ = ~ [ f ~¢u',v';u,v~W(du'dv'}. 
{ u'+v' >0} 

Now V satisfies (3.2) iff the following vanishes: 

(33~ /f [ ff ½~u,v;u,v>~Cdudv~]~$uv(U',v~du'dv- ff $Cu,v,~(dudv~ 
{u'+v'>0} { u+v>0} { u+v>0} 

We can interchange the order of integration by the stochastic Fubini's theorem of 

Chapter Two : 

= ff  If f ~ ( u ° , v ° ) d u ' d v  ' - ~ ( u , v )  ( dudv ) .  
u v  

{ u + v > o }  v u 

But the term in brackets vanishes identically, for ~ has compact support. 

QED 

The literature of two-parameter processes contains studies of stochastic 

differential equations of the form 

(3.4) dV(u,v) = f(V)dW(u,v) + g(V)dudv 

where V and W are two parameter processes, and dV and dW represent two-dimensional 

increments, which we would write V(dudv) and W(dudv). These equations rotate into 

the non-linear wave equation 

(x,t) + f(V)W(x,t) + g(V) Vtt(x,t) = Vxx 

in the region {(x,t): t > 0, -t<x<t}. One specifies Dirichlet boundary conditions. 

Because of the special nature of the region, it is enough to give V on the boundary; 

one does not have to give V t as well. 

We have of course just finished solving the linear case (f~1, gS0). We 

will not pursue this any further here but we will treat a non-linear parabolic 

equation in the next section. 
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AN EXAMPLE ARISING IN NEUROPHYSIOLOGY 

Let us look at a particular parabolic SPDE. The general type of equation 

has many applications, but this particular example came up in connection with a study 

of neurons. These nerve cells are the building blocks of the nervous system, and 

operate by a mixture of chemical, biological and electrical properties, but in this 

particular mathematical oversimplifcation they'are regarded as long, thin cylinders, 

which act much like electrical cables. If such a cylinder extends from 0 to L, and 

if we only keep track to the x coordinate, we let V(x,t) be the electrical potential 

at the point x and time t. This potential is governed by a system of non-linear 

PDE's, called the Hodgkin-Huxley equations, but in certain ranges of values of V, 

they are well-approximated by the cable equation V t = Vxx - V. (The variables have 

been scaled to make the coefficients all equal to one.) 

The surface of the neuron is covered with synapses, thru which it receives 

impulses of current. If the current arriving at (x,t) is F(x,t), the system will 

satisfy the inhomogeneous PDE 

V =V -V+F. 
t xx 

Even if the system is at rest, the odd random impulse will arrive, so that 

F will have a random component. The different synapses are more-or-less independent, 

and there are an immense number of them, so that one would expect the impulses to 

arrive according to a Poisson process. The impulses may be of different amplitudes 

and even of different signs (impulses can be either "excitatory" or "inhibitory"). 

We thus expect that F can be written as F = ~ + ~, where ~ is 

deterministic and ~ is a compound Poisson process, centered so that it has mean zero. 

Since the equation is linear, its solution will be the sum of the solutions of the 

PDE V t = Vxx - V + ~ , and of the SPDE V t = Vxx - V + ~. We can study the two 

separately, and, since the first is familiar, we will concentrate on the latter. 

The impulses are generally small, and there are many of them, so that in 

fact ~ is very nearly a white noise W. This leads us to study the SPDE 

V =V -V+W. 
t xx 
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One final remark. The response of the neuron to a current impulse may 

depend on the local potential, so that instead of W, we have a term f(V)W in the 

above equation. 

constant. 

f is often assumed to have the form f(V) = V-V , where V 
o o 

is a 

independent of ~t" 

Let W be a white noise on a probability space (Q,~,P), let (~t) be a 

filtration such that W t is adapted and such that, if A~ [t,m) × R, W(A) is 

Consider 

I ~V ~2V 
5--~= --- v + f(V,t)W, t > 0, 0 < x < L; 

(3.5) ~V ~x2 ~V 
~x (0,t) = ~xx (L,t) = 0, t > 0; 

V(X,0) = V (x) t > 0. 
o 

We assume that Vo is =oF -measurable and that E{Vo(X) 2} is bounded, and that f 

satisfies a uniform Lipschitz condition, so that there exists a constant K such that 

(3.5a) 
If(y,t ) - f(x,t) l ~ KIy-xl, 

If(Y,t)l ~ K(I+t)(I+IYl) 

for all x,y ~ [0,L] and t > 0. 

The homogeneous form of (3.5) is called the cable equation. We have 

specified reflecting boundaries for the sake of concreteness, but there is no great 

difficulty in treating other boundary conditions. 

The Green's function for the cable equation can be gotten by the method of 

images. It is given by 

-t 
Gt(x,y ) = e [ [expi_ (y-x-2nL) 2 (+x-2nL) 2 

We won't need to use this explicitly. We will just need the following facts, which 

can be seen directly: 

L 

(3.6) f Gs(x,y)Gt(Y,z)dy = Gs+t(x,z), and Gt(x,y) = Gt(Y,X); 
0 

for each T > 0 there is a constant C such that 
T 

C T 2 
(3.~) GtCx,y~ < --exp(- ly-xl - t). 

--~ 4t 

L 
Define Gt(#,y) = j Gt(x,y)~(x)dx for any function ~ on [0,L] for which the 

0 

integral exists. Then Gt(x,y ) satisfies the homogeneous cable equation (i.e. it 
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satisfies (3.5) with f - 0) except at t = 0, and Go(~,y) = ~(y). After integrating 

by parts, we have 

t 

(3.8) Gt(~,y) = ~(y) + f Gs(~"-#;N)dS 
0 

for all test functions ~ for which ~'(0) = ~'(L) = 0. 

Once again we pose the problem in a weak form. 

Let ~ £ C~(R), with #'(0) = ~'(L) = 0. Multiply (3.5) by ~(x) and 

integrate over both variables: 

L L t L~2 V 

f 0v(x't)*(x)~ = f0VoCX),¢x)~ + Y0f0 (-~ v) (x,s), (x)asax 

t L 

+ f f f(V(x,s),s)~(x)W(dxds). 
0 0 

Integrate by parts over x and use the boundary conditions on V and ~ to get the 

following weak form of (3.5): 

For each ~ E C~(R n) of compact support such that ~'(0) = ~'(L) = 0, 

L t L t L 
(3.9) f(V(x,t)-Vo(X))~(x)dx = f f V(x,s)(#"(x)-~(x))dxds+f f f(V(x,s),s)~(x)W(dxds) 

0 0 0 O0 

Exercise 3.1. (3.9) can be extended to smooth functions ~(x,t) of two variables 

which satisfy ~ x (0,t) = ~xx (L,t) = 0 for each t. Show that (3.9) implies that 

(3.10) 

L 
f [VCx,t) ¢(x,t) - Vo(X)¢(x,01]dx 
0 

t L ~2~ ~ )(x,s) dxds = f ; vcx,s)( - , +  
0 0 5x 2 

t L 
+ f ff(V(x,s),s)Q(x,s)W(dx as) . 

0 0 

Exercise 3.2. Show that (3.5) and (3.9) are equivalent if things are smooth, i.e. 

show that if V 0 and W are smooth functions and if V ~ C (2), then (3.9) implies 

(3.5). 

THEOREM 3.2. There exists a unique process V = {V(x,t), t>__0, 0<x<L} which is 

L2-bounded on [0,L] × [0,T] for any T and which satisfies (3.9) for all t > 0. If 
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Vo(X) is bounded in L p for some p ~ 2, then V(x,t) is LP-bounded on [0,L]×[0,T] for 

any T. 

PROOF. We will suppress the dependence of f on s, and write f(x) rather than 

f(x,s). 

Uniqueness: a solution of (3.9) must satisfy (3.10), so fix t and let 

~(y,s) = G (#,y) ~ Then ~(y,t) = #(y) and, by (3.8), 42x x - ~ + ~s = 0. Thus 
t-s 

(3.10) becomes 

L L t L 

f V(x,t)~(x)dx = f Vo(Y)Gt(~,y)dy + f f f(V(y,S))Gt_s(~,y)W(dyds). 
0 0 0 0 

Let us refine this. E{V2(x,t)} is bounded in [0,L], so for a.e. co 

V2(x,t) will be integrable with respect to x (Fubini's theorem). Let ~ approach a 

delta function, e.g. take ~ of the form (2~n)-l/2exp( - (~2n x)2) and let n + ~. The 

above equation will tend to 

L t L 

(3.11) V(x,t) = f Vo(Y)Gt(x,y)dy + f f f(V(y,s))Gt_s(X,y)W(dyds) 
0 0 0 

a.s. for a.e. pair (t,x). (To see this, apply Lebesgue's differentiation theorem to 

the left hand side, and note that Gt(%,y) + Gt(x,y) on the right.) 

If V I and V 2 both satisfy (3.11), let U = V 2 - V I, and define 

F(x,t) = E{U2(x,t)} and H(t) = sup F(x,t), which is finite by hypothesis. 
x 

( 3 . 1 t )  

by (3.5a). 

by (3.7). 

t L 
F(x,t) = ~ ~ E{(f(V2(Y,S)) - f(V1(Y,S))2}G2t_s(X,y)dy ds 

0 0 

t L 
_< 2 f f F(y,s)G2_s(X,y)dy d~ 

0 0 

Thus 

H(t) < 
t L 

~ f .(s) f ~ _ s ( . , ~ ) ~  ds 
0 0 

t 
< K2Cf H(S) ds 

0 ~ 
Iterate this: 

t s 
< (K2C) 2] f H(u) 

0 0 

duds 

/(s-u)(t-s) 

Then from 
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Interchange the order in the integral~ noting that if t - u = b, 

t b b/2~_ 
f ds f dv < 2 f dv : 4 
u /(t-s)(s-u) 0 /~v(b-v) 0 b /~v 

so that 

t 
Hot) <_ 4~4c 2 f 

0 
H(s) ds. 

Iterating this, we see it is 

which tends to zero. 

(4K4C 2 ) n+1 t 
! n! ~ H(s)(t-s)nds 

0 

Thus H 0, so with probability one, V I V 2 = = a.e. 

To prove existence, we take a hint from (3.1) and define 

L 
I vO(x,t ) = f V0(Y)Gt(x,y)dy 

(3.12) 0 
t L 

vn+1(x,t) = V°(x,t) + f f f(vn(y,sI)~t_s(X,y)W(dy ds) 
0 0 

Let p >_ 2 and suppose that {V0(Y), 0<_y<L} is L p bounded. We will show that V n 

converges in L p to a solution V. Define 

and 

Fn(X,t) = E{ Ivn+1(x,t) - V~(x,t)I p} 

From (3.12) 

H (t) = sup F (x,t). 
n n 

x 

t L 
Fn(X,t) = E{I f f (f(vn(y,s)) - f(vn-1(y,s)))Gt_s(X,y)W(dyds)IP}. 

0 0 

We are trying to find the pth moment of a stochastic integral. We can 

bound this in terms of the associated increasing pr,cess by Burkholder's inequality. 

t L f(V n+1 (y,s))I 2G2_s(X'y)dyds)P/2} < CpE{(I f If(vn(y,s)) - 

0 0 

t L 
< CpK E{ If f (vn(y,s) - vn-I(Y ,s))2G2 s(X,y)dydsl p/2} 

0 0 =- 

where we have used (3.5a), the Lipschitz condition )n f. We can bound this 

using ~61ders inequality. To see how to choose the exponents, note from (3.7) that 

if 0 < r < 3, 
2 ry  1-r 

L r -trt-r/2 ~ - 2t - 2 
(3.13) f Gt(x,y)dy ~ Ca f e dy ~ C'e tr t , 

0 -~ 
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which is integrable in t over the interval (0,~). Thus we must keep the exponent 

of G under 3. Set q = ~ and choose 0 < e < 1 to be strictly between 1 - P 3 and 

3 3 
2 p ( £ = 0 if p = 2 and e = I if p > 6). Then 

t L ftfL 
• F (x,t) < c(f0f0Gs2eq(x,y~? p/2q ~{l~(y,s)-vn-1(y,s)IP}G(1-e)e(~,~) ayas 

-- 0 0 t-s 

In this case 2eq < 3, so the first factor is bounded; by (3.13) the expression is 

t 

< C/ Hn_1(s) (t-s}ads, 
0 

1 
where a = ~ (1+ep-p) > -I, and C is a constant. 

Thus 

t 

(3.14) Hn(t) < Cf Hn_1(s)(t-S)ads, t >__ 0 
0 

for some a > -I and C > 0. Notice that if Hn_ I is bounded on an interval [0,T], so 

is H . 
n 

t 
Ho(t) <_ sup CpE{ Ff f(V°(x,s))2Gt_s(X,Y)aydslP/2} 

x 0 

But V°(x,s) is LP-bounded since V0(y) is, hence so is f(V°(x,s)) by (3.5a). An 

argument similar to the above shows H0(t) is bounded on [0,T]0 

Thus the H are all finite. We must show they tend to zero quickly. This 
n 

follows from: 

LEMMA 3.3. Let {hn(t) , n=0,1,...} be a sequence of positive functions such that h 0 

is bounded on [0,T] and, for some a > I and constant CI, 

t 

hn(t) ~ Clf0hn_1(s)(t-s)ads, n = 1,2, .... 

Then there is a constant C and an integer k ) I such that for each n ~ I and 

t e [0,T], 

(3.15) 
t 

(t-s) 
hn+mk(t) ~ cmf hn(S) ~las, m = 1,2 ..... 

0 

Let us accept the lemma for the moment. It applies to the Hn, and implies 

that for each n, ~ (Hn+mk(t)) 1/p converges uniformly on compacts, and therefore so 
m=0 

does ~ (Hn(t)) I/i) Thus vn(x,t) converges in L p, and the convergence is uniform 
n=0 
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in [0,L] x [0,T] for any T > 0. 

vn(x,t). 

In particular, V n converges in L 2. Let V(x,t) = lim 

It remains to show that V satisfies (3.9). (Note that it is easy to show 

that V satisfies (3.11) - this follows from (3.12). However, we would still have to 

show that (3.11) implies (3.9), so we may as well show (3.9) directly.) 

(3.16) 

Consider 

L t L 
f (vn(x,t)-V0(x))~(x)dx - f f vn(x,s)[~"(x)-~(x)]dx ds 
0 00 

t L n 
- f f f(V -1(y,s))~(y)W(dyds). 

00 

(x,y)W(dyds) % (x)dx 

By (3.12) this is 

L t L 
= f f / f(vn-1(y,s))Gt_s 

000 

L L 

+ I ( ] Gt(x,y)Vo(Y)dY - Vo(X)]4)(x)dx 
0 0 

t L L u L 

I ~ [] Gs(X,y)V0(y)dy + f I f(vn-1(y,s))Gu_s(X,y)W(dyds)](*"(x)-*(x))dxdu 
0 0 0 0 0 

- ftfLf(vn-1 (y,s))~ (y)W(dyds). 

00 

Integrate first over x and collect terms: 

t L t 

= f f f(vn-1(y,s))[Gt_s(~,y) - f Gu_s(~"-~,y)ds - ~(y)]W(dyds) 
00 s 

L t 

- f [Gt(4),Y) - *(y) - I Gu(*"-*,y)du]V0(Y)dY. 
0 0 

But this equals zero since both terms in square brackets vanish by (3.8). 

(3.16) vanishes for each n. We claim it vanishes in the limit too. 

Thus 

Let n ÷ ~ in (3.16). vn(x,s) +V(x,s) in L 2, ~ifo~ly in [0,L]x[0,T] for 

each T > 0, and, thanks to the Lipschitz conditions, f(vn-1(y,s)) also converges 

~ifo~ly in L 2 to f(V(y,s)). 

It follows that the first two integrals in (3.16) conver~ as n ÷ ~. So 

does the stochastic inte~al, for 

tL 
E{(f f (f(V(y,s)) - f(vn-1(y,s))~(y)W(dyds))2} 

00 

t L 
< I< / ~ E{(V(y,s) - vn-1(y,s)) 2} ~(y)dyds 

0 0 
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which tends to zero. It follows that (3.16) still vanishes if we replace V n and V n-1 

by V. This gives us (3.9). 

Q.E.D. 

We must now prove the lemma. 

PROOF (of Lemma 3.3). If a > 0 take k = I and C = C I. If -I < a < 0, 

2 t ' t 
hn(t) < Clf0hn_2(u)(~ ('t-s)a(s-u)ads)du • 

u 

If a = -I + E, the inner integral is bounded above by 

so 

I/2(t-u) 
, 2 ~1-e dv < 4 

2[t---~) [ 1-e -- ? (t-u)2E-1 
0 v 

t t 

hn(t ) < C1f0hn_1(s ) ds 4 2 fohn 2(s) ds 
_ (t_s)1_ £ ! ~ C I _ (t_s)l_2£ 

4 2 Otherwise we continue If 2e ~ I we stop and take k = 2 and C = ~ C I. 

t 
16 4 ds 

< -~ C I f hn_4 (s) 
-- E 0 (t-s) I-4£ 

until we get (t-s) to a positive power. When this happens, we have 

t 

hn(t) ~ C f hn_k(S)ds. 
0 

But now (3.151 follows from this by induction. Q.E.D. 

In many cases the initial value V0(x) is deterministic, in which case 

V(x,t) will be bounded in L p for all p. We can then show that V is actually a 

continuous process, and, even better, estimate its modulus of continuity. 

COROLLARY 3.4. Suppose that V0(x) is LP-bounded for all p > 0. Then for a.e. ~, 

(x,t) ÷ V(x,t) is a Holder continuous function with exponent ~ - e, for any E > 0. 

PROOF. A glance at the series expansion of G t shows that it can be written 

Gt(x,y) = gt(x,y) + Ht(x,y) 

2 
- (y-x) - t 

where gt(x,y ) = (4~t)-I/2e 4t • 

Ht(x,y) is a smooth function of (t,x,y) on (0,L) x (0,L) x (-~, =), and H vanishes if 

t < 0. By (3.11) 
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L t L 

V(x,t) = f Vo(Y)Gt(x,y)dy + ~ f f(V(y,s))Ht_s(X,y)W(dyds) 
0 0 0 

t L 

+ f f f(V(y,s))gt_s(X,y)W(dyds)" 
0 0 

The first term on the right hand side is easily seen to be a smooth function of (x,t) 

on (0,L) x (0,~). The second term is basically a convolution of W with a smooth 

function H. It can also be shown to be smooth; we leave the details to the reader. 

Denote the third term by U(x,t)° We will show that U is ~61der continuous 

by estimating the moments of its increments and using Corollary 1.4. Now 

E{IU(x+h, t+k) - U(x,t)In} I/n ~ E{IU(x+h , t+k) - U(x, t+k) In} I/n 

+ E{IU(x,t+k) - U(x,t)In} I/n. 

We will estimate the two terms separately. The basic idea is to use 

Burkholder's inequality to bound the moments of each of the stochastic integrals. 

Replacing t+k by t, we see that 

t 
E{l~Cx+h,t) - ~(x,t~l n} _<c E{I f 

0 

n 
L 

f f2(V(y,s))(gt_s(X+h,Y) - gt_s(X,y))2dydsI2}. 
0 

Apply Holders inequality with p = n/2, q = n-2" 

n 
t L t L -- 

_< c n E{ f f f(v(y,s))2ayds} [ f f l%Cx+h,y)-gs(x,y)12qayas] 2q 
0 0 0 0 

T h e  e x p e c t a t i o n  i s  f i n i t e  f o r  a n y  n by  ( 3 . 5 a )  a n d  T h e o r e m  3 . 2 .  L e t t i n g  C be  a 

constant whose value many change from line to line we have 

2 
( y+h ) 2 Y 2q n___ 

t f-- -2qs 4s 4s ds] 2q. 
_< C [ ; e I e - e I dy 

0 -~ (4~s) q 

If we let y hz and s h 2 = = v, we can see this is 

2 (z+1) 2 z n 

--< C[h3-2qi'i ~ v-ql e 4v - e 4v 12q dv]2q 

0 0 

The integral converges if q < 3/2, i.e. if n > 6, so that this is 

n_ I 

= C h  2 

I I 

The first term of (3.157 is thus bounded by C h 2 n 

Similarly, 
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n 1 
t L 2 ---- 

E{IU(x,t+k) -U(x,t)In}I/n < Cn E{I f f f(V(y,s)) Igt+k(x,y)- gt(x,y)12dydsl 2}n 
0 0 

n I 
t+k L --- 2 2 n 

+ CnE{I f I f(V(y,s))21gt+k(x,Y)l dydsl } " 
t 0 

The first expectation on the right is bounded by 

2 2 
y _ y~_ I 

t L t ~ -- 
C E{ I I f(V(y,s))ndy ds}I/n[ i f l(s+k)-I/2e 4(s+k) - s-I/2e 4s I ],2q 2q 

0 0 0 =~ 

The expectation above is finite. If we set s = ku, y = ~ z, this becomes 

2 2 2q 
-z z 

7 ° 4(o+) 4u I < C[ k3/2-q I I e e dzdu] I/2q 

-- 0 -~ ~u+l {~ 

The integral converges if q < 3/2, i.e. if n > 6, so the expansion is 

I 2 

= C k 4 n 

Finally, the second expectation on the right is bounded by 

t+k L k L 
CnE { f f fn(v(y,s))dyds}I/n[ i ~ gs(X,y)2dyds]I/2q 

t 0 0 0 

We have seen that E{fn(v(y,s))} is bounded so this is 

2 
k ~ _ qY 

< C kl/n[ f f s -q e s dy ds] I/2q. 

0 -~ 

We can do the integral explicitly to get 

I 2 
4 n 

=C k 

Putting these bounds together in (3.16) we see that 

I I I 2 

E{IU(x+h, t+k) - U(x,t)In} I/n ~ C[h 4 n + 2k 4 n ] 

I 4 
4 n 

÷ k 2) 

We can choose n as large as we please, so that the result follows from Kolmogorov's 

Theorem (Corollary 1.4). 

Q.E.D. 

The uniqueness theorem gives us the Markov property of the solution, 

exactly as it does in the classical case. We omit the proof. 
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THEOREM 3.5. The process {V(.,t), t>__0}, considered as a process taking values in 

C[0,L], is a diffusion process. 

Consider the more general equation 

(3.5b) 

i 5V 52V + g(V,t) + f(V,t)W, t > 0, 0 < x < L; 
at ~x 2 

5v 5v 
~x (0,t) =Tx (L,t) = 0, t > 0; 

V(x,0) = V0(x) , 0 < x < L. 

Exercise 3.3. Find the weak form of (3.5b). 

Exercise 3.4. Show that if both f and g satisfy the Lipschitz condition (3.5a) then 

Theorem 3.2 holds. In particular, (3.5b) has a unique weak solution. 

-t 
(Hint. The Green's function is as before except that there is no factor e , and the 

Picard iteration formula (3.12) becomes 

vn+1(x,t) = V0(x,t) + 
t L 

f f Gt_s(X,y)[g(vn(y,s))dY ds + f(vn(y,s))W(dyds)]. 
0 0 

The proof of Theorem 3.2 then needs only a little modification. For instance, for 

uniqueness, let 

t L 
F(x,t) = 2f f G2_s(X,y)[(f(V2(Y,S)) - f(V1(y,s))) 2+ nt(g(V2(Y,S) - g(V1(Y,S)))2]dy ds, 

0 0 

show that E{IV2(x,t) - V1(x,t)l 2} < F(x,t), 

t 
and conclude that H(t) < K2C f H(s) d ~  

- o ~ 

In order to prove existence, define F and H as in the proof and note 
n n 

that, once (3.14) is established, the rest of the proof follows nearly word by word. 

In order to prove (3.14), first show that 

t L 
- V (y,s)IGt_s(X,y)dyds I } Fn(X,t) _< 2PK E{I I I Ivn(y, s) n-1 P 

0 0 
t L 

+ ~C K E{ I f f Ivn(y,s) - vn-I(y,s)I2Gt_s(X,y)dydsl p/2}, 
P 0 0 

and then apply H'older's inequality to each term as in the proof to deduce (3.14).) 
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Exercise 3.5. Show that Corollary 3.5 also holds for solutions of (3.5b), so that 

the weak solution of (3.5) is Holder continuous. 

In case f is constant, there is a direct relation between the solutions of 

(3.5) and (3.5b). 

Exercise 3.6. Let f(x,t) = ~ be constant, and let U and V be solutions of (3.5) and 

(3.5b) respectively. 

Thus write V explicitly 

Show that V = U + u, where u(x,t) is the solution of the PDE 

~u ~2u 

5t ~x 2 + g(U(x,t) + u(x,t),t); 

u(0,t) = u(L,t) = 0; 

u(x,0) = 0. 

in terms of U. 

(The point is that once U is known, one can fix ~ and solve this as a classical 

non-stochastic PDE; the solution u can be written in terms of the Green's function.) 

The technique of Picard iteration works for the non-linear wave equation, 

too. Consider 

(3.1a) 

I 2V = ~2V + g(V,t) + f(V,t)W, t > 0, x 6 R; 
~t 2 ~x 2 

V(x,0) = V0(x), x ~ R; 

5V 
(x,0) = U0(x), x ~ R. 

In this case we let V0(x,t) be the classical solution of the homogeneous 

wave equation with initial position V0(x) and velocity U0(x) - which we can write 

explicitly - and define 

t 
vn+1(x,t) = V0(x,t) + f f C(x,t;y,s)[g(vn-l(y,s))dyds 

0 R 

+ f (vn-l(y,s))W(dyds) ] 

[1 if s < t and ly-xl < t-s, 
where C(x,t; y,s) 

0 otherwise . 

Then C is the indicator function of the light cone. 

The Picard iteration is in fact easier than it was for the cable equation 

since C is bounded. We leave it as an exercise for iteration enthusiasts to carry 

OU t 
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Exercise 3.7. (a) Write (3.1a) in a weak form analogous to (3.2). 

(b) Show that if both f and g satisfy the Lipschitz conditions (3.5a), then (3.1a) 

has a unique weak solution, which has a H~Ider continuous version. 

T,HE LINEAR EQUATION 

Let us now consider the linear equation (f~constant). This is relatively 

easy to analyze because the solution is Gaussian and most questions can be answered 

by computing covarianoes. (The case f(x) = ax + b is linear too, but the solution, 

which now involves a product ~ , is no longer Gaussian. This case is often referred 

to as semi-linear). 

The solution can be expanded in eigenfunctions. Assume L = ~, so that 

(3.5) becomes 

(3.17) 

I - V + W 0 < x < ~, t > 0, V t = Vxx 

Vx(0,t) = Vx(~,t) = 0, t > 0; 

V(x,0) = 0, 0 < x < ~. 

The eigenfunctions and eigenvalues of (3.17) are 

2 coskx k = 1,2, • #0 ~ I//%, ¢k(X) = / ~ . .  

k k = k 2 + I, k = 0,1,2, .... 

The Green's function can be expanded in the ~k: 

-kkt 
Gt(x,y) = [ #k(X)#k(Y) e 

k=0 

For each fixed x, this converges in L210,~]×[0,T] as a function of (y,t). 

Thus the unique solution of (3.17) is, by (3.11) 

t~ 

v t = f0f0~t_s(X,y)W(dyds) 

(3.17a) t ~ ~ -kk(t-s) 
= f ~ [ ~k(x)~k(y)e W(dyds). 

0 0 k=0 
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2 
We can interchange order since the series converges in L : 

t ~ -kk(t-s) 
(f f *k(y)e w(dyds))*k(x). 

k=0 0 0 

t 

k f f0~k(y)W(dyds Exercise 3.8. Define Bt = 0 

t ~ -kk (t-s) 
k ] Io~k(Y)e W(dyds) . and At = 0 

I 2 
(i) Show that B ,B ,... are iid standard Brownian motions, and that 

k t -kk(t-s) dB k 
At= ~ e s" 

0 

k k lkAkdt. (ii) Show that A k satisfies dA t = dB t - 

The processes A k are familiar, for they are Ornstein-Uhlenbeck processes 

with parameter k k - abbreviated OU(A k) - which are mean zero Gaussian Markov 

processes. They are independent. 

Thus we have 

(3,17b) V(x,t) = ~ A~*k(X) 
k=0 

where A k i s  an  (Td(k k )  p r o c e s s  a n d  A 0 , A 1 , A 2 , . . .  a r e  i n d e p e n d e n t .  

well-known facts about Ornstein-Uhlenback processes. 

Recall the following 

PROPOSITION 3.6. Let {At, t>__0} be an OU(k) process with A 0 = 0. 

Gaussian process with covariance function 

-As 
= e e-2kt]; 

(i) E{As+tAt} --~--[I - 

I I -2kt(1_e-kS)2 (ii) E{(As+t-At )2} = ~ (1-e -ks) - ~ e 

A is a mean zero 

PROPOSITION 3.7. If 0 < s < t and 0 ~ x, y ~ ~, 

(i) E{(V(y,t) - V(x,t)) 2} ! 41y-xl; 

(ii) E{(V(x,t) - V(y,s)) 2} < ~ t/~-~-s. 

Before proving this, let us see what we can learn from it. From (i) and 

(ii), 

max{~{(vcx,t) - v(y,s)) 2} : tt-sl 2 + ly-xl 2 ! 2-V2u} ! ~I/4 

Thus, let p(u) = Cu I/4 in Corollary 1.3 to get 
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THEOREM 3.8. V has a version which is continuous in the pair (x,t). For T > 0 there 

is a constant C and random variable Y such that the modulus of continuity A(6) of 

{V(x,t), t<T)} satisfies 

A(6) < Y61/4 + C61/4 l~og 1>6, 0 < 8 < 1. 

When we compare Theorem 3.8 with Corollary 3.4, we see that the moduli of 

continuity are substantially the same in the linear and non-linear cases. The paths 

are essentially ~61der (I/4). 

We will need the following lemma. 

LEMMA 3.9. (i) [ (~k(Y)-~k(X)]2 

(ii) [ 1-e-kkt < la ~=. 

k = l  2k  k - -  

PROOF. %k(X) = /~ coskx so 

(~k(y) - ~k(X)) 2 _< 2(4Ak2(y-x) 2) . 

Since k k > k 2, (~k(Y)-~k (x)12 
k=1 2kk 

i f  4 ^  
1 u 

21yxi-I 
s f  

1 

(y-x)2du 

(y-x)2du + 4 

-kkt 
The second series is handled the same way, using I - e 

the details to the reader. 

f d u 
2 

21y_xl-1 u 

< I A (l+k2)t. We leave 

PROOF (of Proposition 3.7). We prove (i), for (ii) is similar. By (3.17b) and 

Propositon 3.6, 

E { ( V ( y , t )  - V ( x , t ) )  2} = E { [  

k=O 

< I )2 [ ~ (%Cy) - %(x) 
k=0 

<_ 41y-~l 

by the Lemma. Q. E. D. 
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When we compare Theorem 3.8 with Corollary 3.4, we see that the moduli of 

continuity are substantially the same in the linear and non-linear cases. The paths 

are essentially HDlder (I/4). 

Note that V is rougher than either Brownian motion or the Brownian sheet. 

Both of the latter are ~dlder continuous of exponent I/2, while V has exponent I/4. 

We can ask if this is due to bad behavior in t, or in x, or in combination. The 

following exercises eliminate x as a suspect. 

Exercise 3.9. Expand Brownian motion B t in the eigenfunctions #k to see 

I 
(3.18) Bt =_! ~0 + [ ~k*k(t), 0 < t < ~, 

/3 k=1 

where the ~k are iid N(0,1). 

Exercise 3.10. 

Conclude that 

~2k k ~(t) 
Write V(x,t) = I__ Z 

g2 k=0 /k k 

~k(X) and compare with 

I 
V(x,t) = --B + R 

/2 x x 

where {Bx, 0<x<x} is a Brownian ~otion and R is twice-differentiable. 

Evidently x ÷ V(x,t) will have the same local behavior as Brownian 

3.18). 

motion 

so that t must be the culprit responsible for the bad behavior of the paths. One 

striking exhibit of this is the following, according to which t ÷ V(x,t) has 

non-trivial quartic (i.e. fourth power) variation, whereas Brownian motion has 

quadratic variation but zero quartic variation. Define 

[nt] 
Qn(t) = (V(0,t) - v(0,[2nt]2-n)) 4 + [ 

j=1 

(V(0,j2-n)-v(0,(j-1)2-n)) 4 

THEOREM 3.10. For a.e. ~, Qn(t,~) converges uniformly on compacts to a limit Qt, 

where Q > 0 is a constant. 

THE BARRIER PROBLEM 

There is one open problem which deserves mention here, because it is an 
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important question for the neuron, which this equation is meant to describe. That 

is the problem of finding the distribution of the first hitting time of a given 

level. 

The neuron collects electrical impulses, and when the potential at a 

certain spot - called the soma and represented here as x = 0 - passes a fixed level, 

called the barrier, the neuron fires and transmits an impulse, the action potential, 

through the nervous system. The generation of the action potential comes from 

non-linearities not present in the cable equation, so the cable equation is valid 

only until the first time • that V(0,t) exceeds the barrier. However, it can still 

be used up to ~, and we can ask the qlestion, "what is the distribution of T?" 

We will describe the problem in a bit more detail and show how it is 

connected with a first-hitting problem for infinite-dimensional diffusions. 

Set k > 0 and put 

= inf{t > 0 : V(0,t) > k}. 

One can show • < ~ a.s. and that its moments are finite, and that it even 

has some exponential moments. Write 

= __I A o + ~ A k 
V(0,t) /~ t ~ k=1 t " 

Now V(',t) is a Markov process, but v(0,t) is not, so that the method of studying 

by reducing the problem to a question in differential equations can't be applied 

A ° directly. However, note that { t" t>0} is a diffusion, and, moreover, if 

01 
A (t) = (At,A t ..... ) 

and 

o 
~(t) = (A t ..... ANt ) , 

is a diffusion in R N+I, and 2~ is a diffusion in ~. Define then 

N 
o+/~ [ k>/~f} 

~N = i n f { t :  A t A t 
k= l  

for N = 0,1,..., ~ ~ (~ = ~). 

Let ~ be the half space 

: x 0 + ¢2 [ x k > /~f}. 
I 

Then • is the first hitting time of H k by the infinite-dimensional diffusion A. 

Since the components of A are independent ou(k k) processes, we can write down its 
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infinitesimal generator and recast the problem in terms of PDE's, at least formally. 

Let us see how we would find the expected value of ~, for instance. 

Suppose F is a smooth function on ~ depending on only finitely many coordinates. 

Then A has the generator G: 

I ~2F ~F 

GF(x) = k=0 ~ (~ ~X2k Xk ~Xk 
)(x). 

Let us proceed purely formally - which means that we will ignore questions about the 

domain of G and won't look too closely at the boundary values - and set 

F(x) = E{~IA(0) = x}, x £ ~ 

Then F should satisfy 

(i) GF = -I 

(3.19) (ii) F = 0 

in ~ - H A 

on ~H k 

(iii) F is the smallest positive function satisfying (i) and (ii). 

Then F(0) is the solution to our problem. 

Now (3.19) would hold rigorously for a diffusion in R N, and in particular, 

it does hold for each of the ~(t). But, rigor aside, we can not solve (3.19). We 

can solve the finite-dimensional analogue. For N = 0 we can solve it in closed form 

and for small N, we can solve it numerically, but even this becomes harder and harder 

as N increases. (In this context, N = I is a large number, N = 2 is immense, and N = 

3 is nearly infinite.) 

We have the following: 

THEOREM 3.11. lim E{~ N} = ~{~}. 
N+~ 

This might appear to solve the problem, but, in view of the difficulty of 

finding E{~N} , one must regard the problem of finding E{~} as open, and the problem 

of finding the exact distribution of • as essentially unattempted. 

HIGHER DIMENSIONS 

Let us very briefly pose the analogous problem in 

methods fail. 

Consider 

R 2 and see why the above 
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¢2v 
(x,y;t) .......... + -- -V)(x,y;t) + Wxy t 

~X 2 ~y2 

( 3.20 ) ~V ~V ~V ~V 
~x (0,y,t) = ~x (~,y,t:) = ~y (x,0;t) = ~y (x,~;t) = 0 

V(x,y,0) = 0 

The problem separates, and the eigenfunctions are 

~jk(x,y) = ~j(X)~k(y) 

where the ~ are the eigenfunctions of (3.17), and the eigenvalues are 
3 

kjk = 1 + j 2 + k 2. 

Proceeding as before, set 

t L -kjk(t-s) 
AJk = I I e ,j(X),k(y) W(dxdyds). 

0 0 

The A jk are independent OU(kjk) processes, as before, and the solution of (3.19) 

should be 

(3.21) V(x,y, t) = [ AJk(t)~j (X)~k(y). 
j ,k=0 

The only problem is that the series on the right hand side does not 

converge. Indeed, choose, say, x = y = 0 and note that for t = I and large j and k, 

that ~ AJk(t) is essentially a N(0, ,.~ ) random variable by Proposition 3.6. Thus 
jk 

(3.21) converges iff ~ I_/_ < ~. But [ I diverges! 
j,k kjk j,k 1+j2+k 2 

One can check that the representation of V as a stochastic integral 

analogous to (3.17a) also diverges. 

However - and there is a however, or else this course would finish right 

here - we can make sense of (3.21) as a Schwartz distribution. Let ~ be a C ~ 

function of compact support in (0,K) x (0,K), and write 

V(~,t) = ]f~(x,y) V(x,y,t)dxdy 

= [ Ajk(t) ^ 
j,k= 0 ~jk 

where ~jk = f I ~jk (x'y)~(x'y)dxdy- 
00 

^ 
Now the first integral makes no sense, but the sum does, since ~jk tends to 

zero faster than j2 + k 2 as j and k go to ~ - a well-known fact of Fourier series - 

$2 
SO ~ ~k < ~. Thus V(~,t) makes sense for any test function ~, and we can use 

1+j2+k 2 

this to define V as a Schwartz distribution rather than as a function. 
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DISTRIBUTION-VALUED PROCESSES 

If M t is a martingale measure and ~ a test function, put 

Lt 

Mt(,)  = f f ¢dM. 
O 0  

Then M is clearly additive: 

Mt(a~ + b~) = aMt(~) + bMt(~) a.s. 

The exceptional set may depend on a,b,~, and ~ however. We cannot say a priori that 

÷ Mt(#) is a continuous linear functional, or even that it is a linear functional. 

In short, M t is not yet a distribution. However, it is possible to construct a 

regular version of M which is. This depends on the fact that spaces of distributions 

are nuclear spaces. 

Let us recall some things about nuclear spaces; we will consider only the 

simplest setting, which is already sufficient for our purposes. 

A norm H li on a vector space E is Hilbertian if 

nx+yU 2 + nx-yn 2 = 21x~2+ 211yll 2, x,y ~ E. The associated inner product is 

I 
<x,y> = ~ (Ix+y, - flx-yH), 

so that (E,I I) is a pre-Hilbert space. 

If I 11 and II ~2 are Hilbertian norms, we say II I I is HS weaker than I li2, 

and write , I < II II if 
1 2' 

HS 

(4.1) sup{ [ lekl ~ : (ek) is 1 12-ortho-normal } < 
k 

(HS stands for Hilbert-Schmidt, for (4.1) is equivalent to the injection map of 

(E,II 1 2 ) ÷ (E,il 111 ) being Hilbert-Schmidt.) 

If E is separable relative to I 12, we can use the Gram-Schmidt procedure 

to construct a complete ortho-normal basis (fk) for (E, Ii I12). In this case (4.1) is 

equivalent to ~ flfk1~ < -. 
k 

Let E be a vector space and let U U 0 4 M ~I 4 U ~2 ( "'° be a sequence of 

Hilbertian norms on E such that 

(i) E is separable with respect to I In, all n; 

(ii) for each m, there exists n > m such that ~ , < H I . 
m n 

HS 
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(E, fl 11 ). 
n 

(4.2) 

For each n let enl,en2 , ... be a complete ortho-normal system (CONS) in 

Let E' be the dual of (E,N II ) with dual norm n n defined by 
n n -n 

nfll2-n = ~ f(enk )2' f E E'.n 
k=1 

It will be clear shortly why we use -n as an index. Meanwhile, note that 

E~C E'n if m < n for, since Jf llm < J1 il n, any linear functional on E which is 

c o n t i n u o u s  r e l a t i v e  t o  II fl i s  a l s o  c o n t i n u o u s  r e l a t i v e  t o  t h e  l a r g e r  n o r m  Jl IJ • 
m n 

Note also that E' is a Hilbert space; denote H = E'. For n = 0,1,2,... let H be 
n -n n n 

t h e  c o m p l e t i o n  o f  E r e l a t i v e  t o  I1 II . 
n 

Then H_n is the dual of Hn. (We identify H 0 with its dual H 0, but we do 

not identify H and H_n. In fact we have: 
- -  n 

• ''3 H_2-~ H_ I ~ H 0 ~ HI~ H2~ "'" 

Let us give E the toplogy determined by the ]t 11 . A neighborhood basis of 
n 

0 is {x : nxl] < £}, n = 0,I,2,..., c > 0. 
n 

Let E '  b e  t h e  d u a l  o f  E .  T h e n  E '  = U H . T o  s e e  t h i s ,  s u p p o s e  f e E ' .  
- n  

n 

Then there is a neighborhood G of zero such that If(y)I < I if y e G. Thus there is 

a member of the basis such that {x : 11x11 < £} C_ G. For 6 > 0, if ~xll < £6, then 
n n 

If(x) I < 6. This implies that HfII_n ~ I/e, i.e. f e H_n. Conversely, if 

f ~ H , it is a linear functional on E, and it is continuous relative to H ~ , and 
-n n 

hence continuous in the topology of E. 

Note: The argument above also proves the following more general statement: Let F be 

a linear map of E into a metric space. Then F is continuous iff it is continuous in 

one of the norms , II . 
n 

We give E' the strong topology: a set A G E is bounded if it is bounded in 

each norm il l]n, i.e. if {rlxiln, xeA} is a bounded set for each n. Define a semi-norm 

pA(f) = sup{If(x) I : xeA}. 

The strong topology is generated by the semi-norms {PA : A ~ E is bounded}. Now E is 

not in g e n e r a l  n o r r ~ b l e ,  b u t  i t s  t o p o l o g y  i s  c o m p a t i b l e  w i t h  t h e  m e t r i c  

d(x,y) = ~ 2-n(I + fly-Xlln)-IIy-XXn , 
n 

and we can speak of the completeness of E. If E is complete, then E =~ H . 
n 

n 
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(Clearly E C /'% H n, and if x e ~ Hn, then for each n there is x n e E such that 

n n 

~IX-Xnfl < 2 -n => Ilx-x II < 2 -n m < n. Thus d(X,Xn) < 2 -n+1. ) 
n n m 

where H 
n 

If E is complete, it is called a nuclear s~ace, and we have 

E' = ~ H_n~ ...3 H_I~ H0~ HI~ H2~ ...D N Hn = E 
n n 

is a Hilbert space relative to the norm fl II , -~ < n < ~, E is dense in Hn, 
n 

H is dual to H , and for all m there exists n > m such that II II < fln . 
-n n m n 

HS 

We may not often use the following explicitly in the sequel, but it is one 

of the fundamental properties of the spaces H . 
n 

Exercise 4.1. Suppose I] H < fl II Then the closed unit ball in H is compact 
m n n 

HS 

in H (Hint: show it is totally bounded.) 
m 

REGULARIZATION 

Let E be a nuclear space as above. A stochastic process {X(x), xeE} is a 

random linear functional if, for each x,y e E and a,b, E R, 

X(ax + by) = aX(x) + bX(y) a.s. 

THEOREM 4.1. Let X be a random linear functional on E which is continuous in 

probability in , I~ for some m. If 11 II < H ~i , then X has a version which is in 
m m n 

HS 

H a.s° In particular, X has a version with values in E'. 
-n 

Convergence in probability is metrizable, being compatible with the metric 

def 

lu x(x)nl = E{JX(x}I^I}. 

If X is continuous in probability on E, it is continuous in probability in II 11 
m 

some m by our note. There exists n such that ~ II < ~ H . Thus we have 
m n 
HS 

for 

COROLLARY 4.2. Let X be a random linear functional which is continuous in 

probability on E. Then X has a version with values in E'. 
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PROOF (of Theorem 4.1). Let (e k) be a CONS in (E,, ITn). 

~X(ek)2 < ~. 

For E > 0 there exists 6 > 0 such that III X(x)lll 

claim that 

Re E{e ix(x)} > I - 2E - 2E6--2flX" 2 • 
-- m 

We will first show that 

< e whenever llxU < 6. We 
m 

I ; ~  and if < 6, Indeed, the left-hand side is greater than 1 - ~ EtX2(x)a41, llxll m _ 

E{X2(x)A4} ! 4E{IX(x)IAI} ~ 4e, 

while if nxn > 6, 
m 

E{X2(x)A4} < llxl126-2E{X2(6x/NXltm)~4} < 4 E 6-2nxll 2. 
-- m -- m 

Let us continue the trickery by letting YI,Y2,... be iid N(0,O 2) r.v. 

N 

of X, and set x = ~ Ykek . Then independent 
k=l 

N 
Re E{e iX(x)} = E{ReE{exp[i [ YkX(ek )]Ix}}. 

I 

But if X is given, [YkX(ek ) is conditionally a mean zero Gaussian r.v. with variance 

~2~X2(ek) , and the above expectation is its characteristic function: 

2N 
- ~2 { [ X2(ek)} 

= E{e k=1 }° 

Thus 

On the other hand, it also equals 

iT Ykx~ek) _ 26-2~E{,x, 2} 
E{Re E{e IY}} > I 2e - 

N 
= I- 2e - 26-2E [ E{YjY k} < ej,ek> m 

j ,k=1 

N 
2 2 

= 1 - 2e - 26 -2 e ~ 7 "ekllm" 
k=1 

2 N 
_ ~_ ~ X2(ek ) 

2 N 
E{e k=l } > I - 2e - 26-2£C 2 7 "ek H2 

_ m ° 

k=1 

Let N ÷ ~ and note that the last stun is bounded since ~ " < n " . m n 
HS 

to to see that 

P{ ~ X2(ek ) < ~} h I - 2e. 
k=1 

Let QI = {~: ~ X2(~k '~) < "}" Then P{QI} = I. Define 
k 

Next let 2 ÷ 0 
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Y(x,~) = 

i ~ <x,ek>nX(ek ) if ~ £ QI" 

0 if ~ e ~ - QI" 

The sum is finite by the Schwartz inequality, so Y is well-defined. Moreover, 

Y E H with norm 
-n 

,YII_n = [ y2(e k) = ~ X2(ek ) < 
k k 

N 

Finally, P{Y(x) = X(x)} = I, x ~ E. Indeed, let ~ = [ <x,ek>nek • 
k=1 

X(x N) = Y(x N) on QI' and nX-XNll m ~ HX-XNll n ÷ 0. Thus 

Y(x) = lim Y(x N) 

= lim X(x N) = X(x). 

Note: 

Clearly 

We have followed some notes of Ito in this proof. The tricks are due to 

Sazanov and Yamazaki. 

EXAMPLES 

Let us see what the spaces E and H n are in some special cases. 

EXAMPLE I. Let G C R d be a bounded domain and let E 0 = ~(G) be the set of C ~ 

functions of compact support in G. Let H U 0 be the usual L2-norm on G and set 

0 n° <I!L<° 
where ~ is a multi-index of length l ul, and D ~ is the associated partial derivative 

operator. Let E be the completion of E in the topology induced by the norms n g • 
n 

In this case H 0 L2(G) and H n = is the classical Sobolev space (often 

W~'2(G))'v By Maurin's theorem, II H m < n n n if n > m + d/2. H n consists of denoted 

HS 

all L2-functions whose partials of order n or less are all in L 2. (These are 

derivatives in the sense of distributions. However, if n > d/2 the functions will be 

continuous; for larger n, they will be differentiable in the usual sense, and 

n 

will consist of C ~ functions. 

H 
n 

The spaces H - duals to the H - consist of derivatives: f £ H iff 
-n n -n 

there exist f ~ L 2 such that 
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f = i~ n D~f~ " 

EXAMPLE la. If we let G = R d in Example I, we can use the Fourier transform to 

define the H n in a rather neat way. Let E = ~(Rd). If u ( E, define the Fourier 

transform ~ of u by 

u(~) = ~d e-2~iX'~u(x)dx" 

If u is a tempered distribution, i.e. if u E S'(R d ), we can define u - as a = 

distribution - by u(#) = u($), ~ & E. 

Define a norm on E by 

(4.2) Hullt = ~d (I + I~12) t lu(~)12d~ 

and let H t be the completion of E in the norm II 11 t. 

If u is a distribution whose Fourier transform u is a function, then u e H 
t 

2 
iff (4.2) is finite. The space H 0 = L by Plancharel's theorem. For t > 0 the 

elements of H are functions. For t < 0 they are in general distributions. It can 
n 

be shown that if t is an integer, say t = n, the norms 11 11 defined here and in 
n 

Example I are equivalent, and the spaces H in the two examples are identical. Note 
n 

that (4.2) makes sense for all real t, positive or negative, integer or not, and 

n II s ~S il II t if t > s + d/2. 

EXAMPLE 2. Let E = ~(Rd), the Schwartz space of rapidly decreasing functions. Let 

and set 

d k -x2 
gk(x) = (_l)ke x2 -- e 

dx k 

hk(X) = (~I/22kk!)-I/2 gk(x) e- x2/2 

Then g0,gl,.., are the Hermite polynomials, and h0,hl,.., are the Hermite functions. 

The latter are a CONS in L2(Rd). 

Let q = (ql,...,qd) where the qi are non-negative integers, and for 

x = (Xl,...,Xd) £ R d, set 

hq(X) = hq1(Xl)-°,hqd(Xd). 
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Then hq E =S(R-)'~ and they form a CONS in L2(R-)."I If ~ £ =s(Rd)" let ^¢q = <#,hq> and 

write 

Define 

where lqI2° + + 

completion of E in 11 li . 
n 

real n - and 

q 

li~li2 n = ~ (21ql+d)nSq 2 
q 

One can show llCn n < ~ if # E =s(Rd). Let H n be the 

Note that this makes sense for negative n - in fact for all 

° (21ql + 
q 

H is dual to H under the inner product 
-n n 

= [ ;qSq 
q 

The Hilbert-Schmidt ordering is easily verified in this example, since the 

functions e = (21qi+d)-n/2h are a CONS under li 11 , and if m < n 
q q n 

[ lie 11 = [ ( 2 1 q l + d )  ( n - m )  
q m  

q q 
d 

< li ~ if n > m +-~ . which is finite if n > m + d/2. Thus li lim 
n 

HS 

EXAMPLE 3. Let us look at an example which is specifically linked to a differential 

operator. 

Let M be a smooth compact d-dimensional differentiable manifold with a 

smooth (possibly empty) boundary. Let dx be the element of area, and let L be a 

self-adjoint uniformly strongly elliptic second order differential operator with 

smooth coefficients, and smooth homogeneous boundary conditions. 

-L has a CONS of smooth eigenfunctions {~n } with eigenvalues {kn}. The 

(1+kj)- p d eigenvalues satisfy [ < ~ if p > ~. 

3 
N 

Let E 0 be the set of f of the form f(x) = [ fj~j(x), where the f. are 
j:1 J 

constants. For each i n t e g e r  n ,  p o s i t i v e  o r  n e g a t i v e ,  d e f i n e  

n ~ 2 
flfn = ~ (1 + k.) f.. 

n ~ 3 3 

Note that li lim < II li if n > m + d/2. Indeed, set e. = (I + k.)-n/2$j. The e. form 
n 3 3 3 

HS 
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a CONS relative to n tin, and 

ne.n 2 = ~ (I + k.) m-n < ~. 
j 3 m j J 

Let H be the completion of (E0, ]I II ). 
n n 

the formal series 

n^2 
where ~.(I + k.) f. = llfT~ 

3 3 n 
A A 

<f,g> = ~ fjgj" 
3 

<~. 

If f6 H , we can represent f by 
n 

f = ; ;j%, 
3 

Then H n and H are dual under the inner product 
--n 

Finally, let E be the completion of E 0 

H n n. The %j are smooth, so that the elements of H n 

n. Since E = 6AHn, E will consist of C ~ functions. 
n 

since Lf = ! kj ~j ~j. 

3 

The similarity of Examples 2 and 3 is more than superficial. 

Example 2 corresponds to the operator L = -A + Ixl 2. 

in the topology determined by the 

will be differentiable for large 

Note that if f ~ Hn, Lf £ Hn_ 2 

In fact 

EXAMPLE 4. At the start of the chapter we raised the question of whether or not a 

martingale measure could be regarded as a distribution. Let us consider this in the 

setting of, say, Example I. Let G be a bounded open set in R d with a smooth 

boundary, let ~(G) be the space of test functions on G, and let M be a worthy 

martingale measure on G with dominating measure K and let ~t(A×B) = E{K(A×BX[0,t]}. 

Assume ~t is finite. 

If ~ ÷ 0 in ~(G), supI~(x) ÷ 0, hence E{M~(#)} = f~(x)~(y)~t(dxdy) + 0. 

(Careful[ This is not trivial; we have used Sobolev's Theorem.) It follows that 

÷ Mt(~) is continuous in probability on ~(G)'. By Corollary 4.2, M t has a version 

with values in ~(G). 

M actually lives in a Sobolev space of negative index. To see why, note 

that if n > d/2, H embeds in Cb(G) by the Sobolev embedding theorem and , Pi < If 11 
n n 

HS 

by Maurin's theorem. By Theorem 4.1, M t has a version with values in H_2 n. In 

particular, M t e H_d_2 , and if d is odd, we have Mte H_d_1. (A more delicate 

analysis here would show that, locally at least, M t 6 H n for any n > d/2.) 

2n 
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Exercise 4.2. Show that under the usual hypotheses (i.e. right continuous 

filtration, etc.) that the process Mt, considered as a process with values in ~(G), 

has a right continuous version. Show that it is also right continuous in the 

appropriate Sobolev space. 

Even pathology has its degrees. The martingale measure M t will certainly 

not be a differentiable or even continuous function, but it is not infinitely bad. 

According to the above, it is at worst a derivative of order d + 2 of an L 2 function 

3 
or, using the embedding theorem again, a derivative of order ~ d + 3 of a continuous 

function. Thus a distribution in H is "more differentiable" than a distribution in 
-n 

H_n_1 , and the statement that M does indeed take values in a certain H can be 
-n 

regarded as a regularity property of M. 

In the future we will discuss most processes as having values in ~(G)' or 

another relevant nuclear space, and put off the task of deciding which H is 
-n 

appropriate until we discuss the regularity of the process. As a practical matter, 

it is usually easier to do it this way; for it is often much simpler to verify that a 

process is distribution-valued than to verify it lives in a given Sobolov space...and 

as an even more practical matter, we shall usually leave even that to the reader. 



CHAPTER FIVE 

PA~OLIC ~UATIONS iN£d 

Let {Mt, ~t' t ~ 0} be a worthy martingale measure on R d with covariation 

measure Q(dx dy ds) = d<M(dx), M(dy)> s and dominating measure K. 

Assume that for some p > 0 and all T > 0 

I ~(dx dy ds) < ~. 
(1÷IxlP,~1÷lylP~ RdX[0,T] 

~(x)M(dx ds) exists for each ~ ~ ~(Rd). Then Mr(#) = dx[0,T ] 

Let R(A) = E{K(A)}. 

Let L be a uniformly elliptic self-adjoint second order differential 

operator with bounded smooth coefficients. Let T be a differential operator on 
d 

R 

of finite order with bounded smooth coefficients. 

not on t). 

(5.1) 

Consider the SPDE 

V(x,0) = 0 

(Note that T and L operate on x, 

We will clearly need to let V and M have distribution values, if only to 

make sense of the term TM. We will suppose they have values in the Schwartz 

space ~'(Rd). 

We want to cover two situations: the first is the case in which (5.1) 

holds in R d . Although there are no boundary conditions as such, the fact that 

V t e ~'(R d) implies a boundedness condition at infinity. 

The second is the case in which D is a bounded domain in R d, and 

homogeneous boundary conditions are imposed on 5D. 

(There is a third situation which is covered - formally at least - by 

(5.1), and that is the case where T is an integral operator rather than a 

differential operator. Suppose, for instance, that Tf(x) = g(x) f f(y)h(y)dy for 

suitable functions g and h. In that case, TMt(x) = g(x)Mt(h). Now Mt(h) is a 

real-valued martingale, so that (5.1) can be rewritten 

i dV t = LV dt + gdMt(h) 

V(x,0) = 0 

This differs from (5.1) in that the driving term is a one-parameter 
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martingale rather than a martingale measure. Its solutions have a radically 

different behavior from those of (5.1) and it deserves to be treated separately.) 

Suppose (5.1) holds on R d. Integrate it against ~e ~(Rd), and then 

integrate by parts. Let T* be the formal adjoint of T. The weak form of (5.1) is 

then 

(5.2) 
t t 

Vt( ~ ) = f Vs(L~)ds + f IdT*#(x)M(dxds), ~ E s(Rd). 
0 0 R 

Notice that when we integrate by parts, (5.2) follows easily for # of 

compact support, but in order to pass to rapidly decreasing #, we must use the fact 

that V and TM do not grow too quickly at infinity. 

In case D is a bounded region with a smooth boundary, let B be the operator 

B = d(x)D N + e(x), where D N is the normal derivative on ~D, and d and e are in 

C~(SD). Consider the initial-boundary-value problem 

I 
= LV + TM on D x [0,~); 

(5.3) BV = 0 on 5D × [0,~); 

V(x,0) = 0 on D. 

Let C~(D) and C0(D) be respectively the set of smooth functions on D and the 

set of smooth functions with compact support in D. Let C~(D) be the set of functions 

in C~(D) whose derivatives all extend to continuous functions on D. Finally, let 

~B = {¢ 6 C~(~): B~ = 0 on ~D}. 

The weak form of (5.3) is 

t t 

(5.4) Vt(~) = f Vs(L~)ds + f f T #(x)M(dxds), ~ £ {B" 
0 0D 

This needs a word of explanation. To derive (5.4) from (5.3), multiply by 

# and integrate formally over D x [0,t] - i.e. treat TM as if it were a 

differentiable function - and then use a form of Green's theorem to throw the 

derivatives over on #. This works on the first integral if both V and ~ satisfy the 

boundary condition. Unless T is of zeroth order, it may not work for the second, for 

M may not satisfy the boundary conditions. (It does work if ~ has compact support in 

D, however.) Nevertheless, the equation we wish to solve is (5.4), not (5.3). 

The requirement that (5.4) hold for all ~ satisfying the boundary 

conditions is essentially a boundary condition on V. 



The above situation, in which we regard the integral, rather than the 

differential equation as fundamental, is analogous to many situations in which 

physical reasoning leads one directly to an integral equation, and then mathematics 

takes over to extract the partial differential equation. See the physicists' 

derivations of the heat equation, Navier-Stokes equation, and Maxwell's equation, 

for instance. 

As in the one-variable case, it is possible to treat test functions ~(x,t) 

of two variables. 

Exercise 5.1. Show that if V satisfies (5.4) and if ~(x,t) is a smooth function such 

that for each t, ~(.,t) E ~B' then 

t t 
(5.5) Vt(~(t)) = ~ V (L~(s) + ~ (s))ds + ~ ~ T ~(x,s)S(dxds). 

o s ~--; O D  

Let Gt(x,y) be the Green's function for the homogeneous differential 

I 
equation. If L = ~ 4, D = R d, then 

lyxl 2 

Gt(x,y) = (2~t) -d/2 e- 2t 

For a general L, Gt(x,y) will still be smooth except at t = 0, x = y, and its 

smoothness even extends to the boundary: if t > 0, Gt(x,o) 6 C~(~). It is positive, 

and for • > 0, 

lyxl 2 

(5.6) Gt(x,y) ~ Ct- d/2 e- 6t , x, y 6 D, 0 < t < ~, 

where C > 0 and 6 > 0. (C may depend on ~). This holds both for D = R d and for 

bounded D. If D = R d, Gt(x,.) is rapidly decreasing at infinity by (5.6), so it is 

in ~(Rd). Moreover, for fixed y, (x,t) + Gt(x,y) satisfies the homogeneous 

differential equation plus boundary conditions. Define Gt(~,y) = fDGt(x,y)~(x)dx- 

Then if # is smooth, Go# = ~. This can be summarized in the integral 

equation: 

(5.7) 
t 

Gt-s(#'Y) = ~(Y) + f Gu-s(L~'y)du' ~ ~ ~B 
s 
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The smoothness of G then implies that if ~ 6 C (D), then Gt(~,.) 6 LB- In 

case D = R d,, then ~ 6 =S(R d) implies that Gt(~,,) ~_ =s(Rd)" 

THEOREM 5.1. There exists a unique process {Vt, t)0} with values in ~'(R d) which 

satisfies (5.4). 

(5.8) 

It is given by 

t 

Vt(~) = f f T*Gt_s($,Y)M(dyds)- 
0 d 

R 

The result for a bounded region is similar except for the uniqueness 

statement. 

THEOREM 5.2 There exists a process {Vt, t ~ 0} with values in ~'(R d) which 

satisfies (5.5). V can be extended to a stochastic process {Vt(#), t >__ 0, ~ ~ SB}; 

this process is unique. It is given by 

t 

(5.9) Vt(~) = f f T*St_s(~,y)M(dy as), ~ 6 s B. 
0 D 

PROOF. Let us first show uniqueness, which we do by deriving (5.9). 

Choose ~(x,s) = Gt_s(~,x) , and suppose that U is a solution of (5.4). 

Consider Us(~(s)). Note that U0(~(0)) = 0 and Ut(~(t)) = Ut(~). Now Gt_s(~,.) 6 ~B' 

so we can apply (5.5) to see that 

t t 
Ut(~) = Ut(~(t)) = f Us(L~(s) + ~ (s))ds + f f T*~(x,s)M(dx ds). 

0 0 D 

But I~ + ~ = 0 by (5.7) so this is 

Existence: 

t 

f fT* = ~(X,S) M(dx ds) 
0 D 
t 

= f f T*Gt_s(~,x)M(dx as) = vt(¢). 
0 D 

Let ¢ ~ S B and plug (5.9) into the right hand side of (5.4): 

t s t 

f [ f f T*Ss_u(L*,y) M(dy au)Jds + f f T**(y)S(dy,du) 
0 0 D 0 D 
t t 

= f f [ ; T'Gs_uCL*,y)ds ÷ T**(~)]M(dy d~). 
0 D u 
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Note that T* Gs_u(L~,y) and T*~(y) are bounded, so the integrals exist. 

this is 

By (5.7) 

t 

= f ~ T*Gt_u(~,y)M(dy du) 
0 D 

= vt(~)- 

by (5.9). This holds for any ~ 6 S B, but (5.9) also makes sense for % which are not 

in S B. In particular, it makes sense for ~ £ S(R d) and one can show using Corollary 

4.2 that V t has a version which is a random tempered distribution. 

This proves Theorem 5.2. The proof of Theorem 5.1 is nearly identical; just 

replace D by R d and S by s(Rd). Q.E.D. 
--B = 

AN EIGENFUNCTION EXPANSION 

We can learn a lot from an examination of the of the case T ~ I. 

is a bounded domain with a smooth boundary. The operator -L (plus boundary 

conditions) admits a CONS {~j} of smooth eigenfunctions with eigenvalues kj. 

satisfy 

(5.10) 

(5.11) 

(1+kj) -p < ~ if p > d/2. 

J 

"~j"~(1+kj) - p _  < ~ if p > d/2. sup 
J 

Let us proceed formally for the moment. We can expand the Green's 

function: 

If ~ is a test function 

^ f~(x)~.(x)dx, where ~j= D 3 

Let 

- k  . t  
Gt(x,y) = ~ ~j(x)#j(y)e 3 

3 

-k t 
Gt(~,y) = [$ j~ j (y )e  J 

3 

so by (5.9) 

t -k(t-s) 
v t ( , )  = f f ~ %j , j ( y )~  J MCdyds). 

0 D j 

t -k,(t-s) 

Aj(t) = f0fD~j(y)e 3 M(dyds). 

Suppose D 

These 
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Then 

(5.12) 

spaces H 
n 

vt($) = [ SjAj(t). 

This will converge for ~ e ~B' but we will show more. Let us recall the 

introduced in Ch. 4, Example 3. H is isomorphic to the set of formal 
n 

eigenfunction series 

for which 

f = j=~laj~j 

We see from (5.12) that V t ~ [, A j ( t ) ~ b j .  
3 

PROPOSITION 5.3. Let V be defined by (5.12). If n > d, V t is a right continuous 

process in H n; it is continuous if t + M t is. Moreover, V is the solution of (5.4) 

with T 5 I. If M is a white noise based on Lebesgue measure then V is a continuous 

process in H for any n > d/2. 
-n 

PROOF. We first bound E{sup A2(t)}. 
t<~ 3 

in Exercise 3.3, 

t 
Let Xj(t) = 10fD ~j(x) M(dxds) and note that, as 

t -k(t-s) 
A(t) = f e 3 dX(s). 
3 0 3 

t -A(t-s) 
- { k e 3 X.(s)ds 

= Xt 3 3 

where we have integrated by parts in the stochastic integral. 

t -k(t-s) 
suplAj(t) I < sup IXj(t)l(1+f k.e 3 
t<~ -- t<~ 0 3 

! 2 sup IXj(t)I. 
t<_~ 

Thus 

E{sup A2(t)} < 4E{sup x~(t)} 
t<~ 3 -- 

! 16E{X~(~)} 

Thus 

ds ) 

by Doob's inequality. This is 
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(5.13) = 16 f ~j(x)#j(y)~(dx dy ds) 
D×D×[0,T] 

2 
! 16 ~(DXD×[0,T])II#j, 

! C(I+A)P 
3 

for some constant C and p > d/2 by (5.11). 

Thus 

E{~ sup A~(t)(1+kj) -n} < C~(1+k ) -n+p 
j t<~ -- j 3 

By (5.10) this is finite if n - p > d/2 or, remembering that p > d/2, if n > d. 

Then, clearly, 

llvtll2n = [A2j (t)(1+k')-n3 

is a.s. finite, hence V t £ H_n. Moreover, if s > 0, 

1+k )--n. nVt÷s-VtH2n = ~(Aj(t+s)-Aj(t))2( j 

The summands are right continuous, and they are continuous if M is. The sum is 

dominated by 

41 sup A2(t)(1+kJ ) - n 3  < ~ 
j t<~ 

for a.e.0~. Now A (s) ÷ A (t) as s ~ t, hence llV -V [I + 0 as s + t. If M is 
3 3 s t -n 

continuous, so is A+, and we can let s + t to see V is also left continuous, hence 
3 

continuous. 

If M is a white noise the integral in (5.13) reduces to f ~2j(x)dxds. Since 

the @j are orthonormal this is just I:;. This means we can take p = 0 and n > d/2 in 

the remainder of the argument. 

REMARKS. The conditions on the Sobolev spaces in Proposition 2.3 can be improved. 

For instance, if M is a white noise based on Lebesgue measure, V will be continuous 

in H for every n > d/2 - I, not just for n > d/2. The same proof shows it, once 
-n 

one improves the estimate of E( sup A~(t)}.3 In this case, A+ is an OU(Aj) process 
t<_~ 3 

and one can show that this quantity is bounded by a constant times k[11og k • 
3 3 

Once we know that V t is actually a solution of (5.4), the uniqueness result 

implies that V also satisfies (5.9). 
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Exercise 5.2. Verify that V (defined by (5.12)) satisfies (5.4). 

d 
Exercise 5.3. Treat the case D = R using the Hermite expansion of Example 2, Ch.4. 

The spaces H above are analogous to the classical Sobolev spaces, but they 
n 

don't explicitly involve derivatives. Here is a result which relates the regularity 

of the solution directly to differentiability. 

THEOREM 5.4. Suppose M is a white noise based on Lebesgue measure. Then there 

exists a real-valued process U = {U(x,t): xED, t>__0} which is HDlder continuous with 

exFonent I/4 - £ for any E > 0 such that if D d-1 ~d-1 
~x2,...,~Xd, then 

V t = Dd-Iut . 

Note. This is of course a derivative in the weak sense. A distribution Q is the 

weak =th derivative of a function f if for each test function #, 

Q(~) = (-1)l~Iff(x)D~#(x)dx. 

If we let H n denote the classical Sobolev space of Example I Ch.4, this 
o 

-d+1 
implies that V t can be regarded as a continuous process in H ° 

Note. One must be careful in comparing the classical Sobolev spaces H~ with related 

n for the but not identical spaces Hn of Example 3 in Chapter 4. Call the latter H 3 

moment. Theorem 5.4 might lead one to guess that V is in H3 d+1, but in fact, it is a 

continuous process in H3 n- 

result if d > 3. 

for any n > d/2 by Proposition 5.3. This is a much sharper 

This gives us an idea of the behavior of the solution of the equation 

~--v = Lv + ~. 
5t 

.Suppose now that T is a differential operator and suppose both T and L have constant 

coefficients, so TL = LT. Apply T to both sides of the SPDE: 

~-~ (TV) = LTV + 

OU 
i.e. U = TV satisfies ~ = LU + TM. Of course, this argument is purely formal, but 

the following exercise makes it rigorous. 
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Exercise 5.4. Suppose T and L commute. Let U be the solution of (5.4) for a general 

T with bounded smooth coefficients and let V be the solution for T --- I. Verify that 

if we restrict U and V to the space D(D) of C ~ functions of compact support in D, 

that U = TV. 

Exercise 5.5. Let V solve 

I -- = -- ~ W 0 < x < ~, t > 0; 
~V 52V - V + ~x ' 
5t 5x 2 

~V 5V 
~x (0,t) = ~x (~,t) = 0, t > 0; 

V(x,0) = 0 , 0 < x < ~. 

Describe v(.,t) for fixed t. (Hint: use Exercises 5.4 and 3.5.) 

REMARKS. I. Theorem 5.2 lacks symmetry compared to Theorem 5.1. V t exists as a 

process in ~(R d) but must be extended slightly to get uniqueness, and this extension 

doesn't take values in ~'(Rd). It would be nicer to have a more symmetric statement, 

on the order of "There exists a unique process with values in such and such a space 

such that ...". One can get such a statement, though it requires a litle more 

Sobolev space theory and a little more analysis to do it. Here is how. 

Let ~ n n be the norm of Example I, Chapter 4. Let H; be the completion of 

~B in this norm. If n is large enough, one can show that V t is an element of 

(H;)' def -n 
= H B . Theorem 5.2 can then be stated in the form: there exists a unique 

-n which satisfies (5.4) for all ~ 6 H n- process V with values in H B B 

2. Suppose that T is the identity and consider (5.4). Extend V to be a distribution 

on D x R+ as follows. If ~ = ~(x,t) is in C0(D x (0,~)), let 

V(~) = f Vs($(s))ds and TM(~) = f ~ T* $(x,s) M(dxds). 
0 0D 

Then Corollary 4.2 implies that for a.e. ~, V and ~ define distributions on 

D × (0,~). Now consider (5.5). For large t, the left-hand side vanishes, for ~ has 

compact support. The right-hand side then tells us that V(L~ + ~) + TM(~) = 0 a.s. 

In other words, for a.e. ~, the distribution V(-,~) is a distribution solution of the 

(non-stochastic) PDE 

~-~- ~ = 

5t 
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Thus Theorem 5.1 follows from known non-stochastic theorems on PDE's. If T is the 

identity, the same holds for Theorem 5.2. In general, the translation of (5.4) or 

(5.5) into a PDE will introduce boundary terms. Still, we should keep in mind that 

the theory of distribution solutions of deterministic PDE's has something to say 

about SPDE's. 



CHAPTER SIX 

WEAK CONVERGENCE 

Suppose E is a metric space with metric p. Let ~ be the class of Borel 

sets on E, and let (P) be a sequence of probability measures on E. What do we 
n = 

really mean by "P ÷ P "? This is a non-mathematical question, of course. It is 
n o 

asking us to make an intuitive idea precise. Since our intuition will depend on the 

context, it has no unique answer. Still, we might begin with a reasonable first 

approximation, see how it might be improved, and hope that our intuition agrees with 

our mathematics at the end. 

Suppose we say: 

"p + P 
n o 

This looks promising, but it is too strong. 

don't. For instance, consider 

if Pn(A) + Po(A), all A e ~." 

Some sequences which should converge, 

PROBLEM I. Let Pn = 61/n, the unit mass at l/n, and let Po = 6o. Certainly Pn 

to converge to Po' but it doesn't. Indeed 0 = lim P {0} # P {0} = I. Similar 
n o 

things happen with sets like (-~,0] and (0,1). 

ought 

CURE. The trouble occurs at the boundary of the sets, so let us smooth them out. 

Identify a set A with its indicator function I A. Then P(A) = fIAdP. We "smooth out 

the boundary of A" by replacing I A by a continuous function f which approximates it, 

and ask that ~fdPn+ IfdP. We may as well require this for all f, not just those 

which approximate indicator functions. 

This leads us to the following. Let C(E) be the set of bounded real valued 

continuous functions on E. 

DEFINITION. We say Pn converges weakl[ to P, and write Pn 

f £ C(E), 

ffdP n ÷ ffdP. 

=> P, if, for all 
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PROBLEM 2. Our notion of convergence seems unconnected with a topology. 

CURE. We prescribe two definitions: 

def 

~(E) = {P: P is a probability measure on ~}. 

A fundamental system of neighborhoods is given by sets of the form 

{P £ ~(E): IIfidP - ffidPo I < e, i=I ..... n}, fi E C(E), i = I ..... n. 

This notion of convergence may not appear to fill our needs - for we shall 

be discussing convergence of processes, rather than of random variables - but it is 

in fact exactly what we need. The reason why it is sufficient is itself extremely 

interesting, and we shall go into it shortly, but let us first establish some facts. 

The first, which gives a number of equivalent characterizations of weak 

convergence, is sometimes called the Portmanteau Theorem. 

THEOREM 6. I. 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

The following are equivalent 

P => P ; 
n 

ffdP n ÷ fdP, all bounded uniformly continous f; 

ffdP n ÷ ffdP, all bounded functions which are continuous, P-a.e.; 

lim sup P (F) < P(F), all closed F; 
n 

lim inf P (G) > P(G), all open G; 
n 

lim Pn(A) = P(A), all A ~ E such that P(~A) = 0. 

Let E and F be metric spaces and h : E + F a measurable map. If P is a 

probability measure on E, then Ph -I is a probability measure on F, where 

ph-1(A) = p(h-1(A)). 

THEOREM 6.2 If h : E + F is continuous (or just continuous P-a.e.) and if P => P on 
n 

E, then P h -I => Ph -1 on F. 
n 

Let PI,P2,... be a sequence in P(E). When does such a sequence converge? 

Here is one answer. Say that a set K C ~(E) is [e!atively compact if every sequence 

in A has a weakly convergent subsequence. (This should be "relatively sequentially 

compact," but we follow the common usage.) 
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Then (P) converges weakly if 
n 

(i) there exists a relatively compact set K C ~(E) such that Pn e K for 

all n. 

(ii) the sequence has at most one limit point in ~(E). 

Since (i) guarantees at least one limit point, (i) and (ii) together imply 

convergence. 

If this condition is to be useful - and it is - we will need an effective 

criterion for relative compactness. This is supplied by Prohorov's Theorem. 

DEFINITION. A set A C ~(E) is tight if for each E > 0 there exists a compact set 

KC E such that for each P e A, P{K} > I - E. 

THEOREM 6.3. If A is tight, it is relatively compact. Conversely, if E is separable 

and complete, then if A is relatively compact, it is tight. 

Let us return to the question of the suitability of our definition of weak 

convergence. 

PROBLEM 3. We are interested in the behavior of processes, not random variables, so 

this all seems irrelevant. 

CURE. We already know the solution to this. We just have to stand back far enough 

to recognize it. We often define a process canonically on a function space: if Q is 

a space of, say, right continuous functions on [0,~), then a process {Xt: t>0} can be 

defined on Q by Xt(~) = (~(t), ~ E Q, for ~, being an element of Q, is itself a 

function. X is then determined by its distribution P, which is a measure on Q. But 

this means that we are regarding the whole process as a single random variable. The 

random variable simply ~ikes its values in a space of functions. 

With this remark, the outline of the theory becomes clear. We must first 

put a metric on the function space Q in some convenient way. The above definition 

will then apply to measures on Q. 

The Skorokhod space D = D([0,1],E) is a convenient function space to use. 

It is the space of all functions f : [0,1] ÷ E which are right-continuous and have 
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left limits at each t £ (0,1]. We will metrize D. The metric is a bit tricky. It = 

is much like a sup-norm, but the presence of jump discontinuities forces a 

modification. 

First, let A be the class of strictly increasing, continuous maps of 

[0,1] onto itself. If k e A, then k(0) = 0 and k(1) = I. Define 

(We may have Iikii = ~. 

llkll = sup 11og k(t)-k(s) I, 
t-s 

0<s<t<1 

We don't worry about that.) 

k eA. 

If ilkfl is small, k must be close 

to the identity. 

Next we define a distance on D by = 

d (f,g) = inf{llkll + supp(f(t),g(k(t))) : k £ A}. 
o 

t 

The functions k should be considered as time-changes. The reason we need 

them can be seen by considering f(t) = I[0,i/2+£] (t) and g(t) = I[0,1/2 ] t). Both 

have a single jump of size one, and if e is small, the jumps nearly coincide, and we 

would like d(f,g) to be small. Note that suplf(t)-g(t) I = I however. The 

t 

time-change allows us to move the jump of g to coincide with that of f. After doing 

this, we see that suplf(t)-g(k(t)) i vanishes. (For an exercise, let 

t 

k(t) = (1+4e)t - 4et 2 and show that d(f,g) ~ 4e/I-4~.) 

Let us collect a few miscellaneous facts. 

THEOREM 6.4. (i) d is a metric on D. If E is a complete separable metric space, so 
o = 

is D. 
= 

(ii) do(fn,f) ÷ 0 iff there exist An £ A such that llkn(t)-tfl~ ÷ 0 and 

sup p(f(t), f (k (t))) + 0. 
nn 

t 

(iii) C([0,1],E) is a closed subspace of D. = 

We have to be able to characterize compact sets in ~ if we want to apply 

Prohorov's Theorem. Remembering the Arzela-Ascoli Theorem, this should have 

something to do with equicontinuity. Let us introduce a "modulus of continuity" 

which is tailored for right continuous processes. 
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DEFINITION. For f e ~, let 

(6.1) w(6,f) = inf max sup p(f(s),f(t)), 

{t i) i ti!s<t<ti+ I 

where the infimum is over all finite partitions 0 = t0<t I <°°o< t n = I such that 

t i - ti_ I ~ 8, for all i ~ n-1. 

This discounts the large jumps of f, for one can place the partition points 

there. The effect is to find the modulus of continuity between the jumps. If f is 

continuous, however, this reduces to the ordinary modulus of continuity. 

The counterpart of the Arz~la-Ascoli theorem is: 

THEOREM 6.5. (Arz~la-Ascoli theorem for ~). 

space. A set A has compact closure in D iff = 

(i) 

Let E be a complete separable metric 

for each rational t e [0,1] there is a compact set Kt ~E such that 

if f e A, then f(t) £ Kt, all t e Q ~ [0,1]; 

(ii) lim sup w(f,6) = 0. 
6+0 feA 

Note: If E is locally compact, the compact sets K t of (i) can be chosen to be 

independent of t. 

Let (P) C P(D) be weakly convergent. In order to identify its limit, one 
n = 

often checks the convergence of the finite-dimensional distributions. If 

h(x1,...,x n) is a bounded continuous function on E ×-.,× E, and if 

< I, define a function H on D by 0 ~ t 0 <.-.< t n -- = 

H(~) = h(~(tl) , .... ~(t )), ~ £ D. 
n = 

We say that the finite dimensional distributions conver~e if, for each n and each 

0 ~ t I <o--< t n ~ I, there exists a measure ~t1"''tn on E x°--x E such that for each 

such h and H 

fHdP n + fhd~t1.o.t n 

PROPOSITION 6.6. A sequence (Pn) ~ ~(D) converges weakly iff 

(i) (P) is tight; 
n 

(ii) the finite-dimensional distributions converge. 
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All of this is convenient to describe in the language of processes. If 

Xn = {Xn(t), 0<t<1} is a sequence of processes, we say that (X n) conver~es ..... weakl~ if 

the corresponding distributions (P) on D converge weakly. Similarly, (X) is tight 
n = n 

if the (P) are. 
n 

To show the weak convergence of (X), we must show (Prop. 6.5) that 
n 

(a) (X n) is tight; 

(b) the finite-dimensional distributions of the X converge weakly. 
n 

Of the two, tightness is often the most difficult to show. It is useful to 

have easily-checkable criteria. The following theorem, due primarily to Aldous, 

gives two criteria which are useful in case there are martingales present. 

ALDOUS' THEOREM 

Let E be a complete separable metric space and let ~ = ~([0,1],E). Let p 

be a bounded metric on E. Let (~t) be the canonical filtration on ~, i.e. 

~t = ~{~(s), s<__t, ~E~}. Let ~ be the class of finite-valued stopping times T such 

that T < I. 

If X is a process defined canonically on ~, let 

~(6,X) = sup E{Q(XT+6,XT)} 
T£T = 

v(6,X) = sup ~(~,X). 

Results such as Prohorov's Theorem can be extended to some non-metrizable 

spaces. Here is one such extension due to Le Cam. 

THEOREM 6.7. Let E be a competely regular topological space such that all compact 

sets are metrizable. If (pn) is a sequence of probability measures on E which is 

tight, then there exists a subsequence (n k) and a probability measure Q such that 

n k 
P => Q. 

THEOREM 6.8. Let (X) be a sequence of processes with paths in D. Suppose that for 
n = 

each rational t £ [0,1] the family of random variables {X (t), n=I,2,...} is tight. 
n 



355  

Then either of the following conditions implies that (X) is tight in D. 
n = 

such that 

(a) (Aldous). For every sequence (Tn,6 n) where T n e ~ and 6 n ÷ 0, 6 n > 0, 

O(Xn(Tn+6n), Xn(Tn)) ÷ 0 in probability. 

(b) (Kurtz). There exists p > 0 and processes {An(6),0<6<I}, n = 1,2 .... 

(i) E{O(Xn(t+6), Xn(t))PI~ t} ! E{An(6)[~ t} 

and 

(ii) lim lim sup E{An(6)} = 0. 
6÷0 n~ 

We will follow a proof of T. Kurtz. 

the following three lemmas. 

Most of the work is in establishing 

LEMMA 6.9. (a) is equivalent to 

(6.2) lim lim sup v(6,X n) = 0 ~ • 
6+0  n+~  

PROOF. If (6.2) holds, (a) follows on noticing thaf 8 ÷ v(8,X n) is increasing for 

each n, and that E{Q(XTn+6 n, XTn)} ~ V(6n,Xn). 

Conversely, if (6.2) does not hold, there is an ~ > 0 such that for each 

n and 8 > 0 there exists n > n and 6 < ~ such that v(6 , X ) > e/2. Then 
o o -- o n -- o n n 

E{Q(Xn(Tn+6~),X(Tn))} > e/2 for some Tne ~ and 6A ! 6 n" Since ~ is bounded, this 

implies (a) does not hold. Q.E.D. 

LEMMA 6.10. If T I < T 2 E _T and T 2 - ;~I < 5, then 

26 
2 

(i) E{p(XTI'XT2)} <--~ f0 ~L(u,X)du <__ 4V(26,X); 

26 
2 

(ii) V(8,X) < ~ f ~(u,X)du, 
0 

PROOF. Clearly (i)=>(ii) (let T2--TI+~). To prove (i), use the triangle inequality: 

6 
I 

P(XT1,XT2) -- ~ f0 (Q P(XT2+v'XT2))dv < I XT1,XT2+v) + 

if v <_ 6, T 2 + v = T I + u for some u < 26: 

26 6 
I I <-~ fo P(xT1"X~cu)dU + g f0 0~XT2+v'XT2)av 
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Take expectations of both sides to see that 

26 6 
I I E{P(XTI,XT2)} ! + ~ f ~(u,X)du + ~ [ ~(v,X)dv 

0 0 

which implies (i). Q.E.D. 

LEMMA 6 . 1 1 .  (a) implies that 

(6.3) lim lim sup E{w(8,Xn)} = 0 . 
5+0 n+~ 

PROOF. Fix n, g > 0 and 0 < ~ < I. Set S = 0 and define 
o 

Sk+ I = inf{t>S k : P(Xt,XSk ) ~ E} I 

If t e [Sk,Sk+1), P(Xt,XSk ) < e so P(Xs,X t) < 28 if s,t E [Sk,Sk+1). 

form a partition of mesh >__6, w(6,X) ~ 2£. 

If the (S k) 

Fix K and notice that if S = I, there is some J < K for which 
K 

Sj < I = Sj+I, and if S k - Sk_ I > 8 for all k ~ J, {So,...,Sj,1} forms a partition of 

mesh >_6, hence w(6,X) ~ 2e. In any case, w(6,X) ~ I. Thus, a very rough estimate of 

w(6,x) is 

w(6,X) ~ 2£ + I{Sk_Sk_1 ~ 6 some k<J, J<K; SK=I } " 

Let T k = Sk+ 1 /% (Sk+6): 

K-I 
1 

< 2e + k=0[ ~ P(XTk'XSk) + I{SK<I} 

where we use the fact that if Sk+ I - S k < 6, T k = Sk+ I and P(XTk,XSk) > E so the sum 

is > e. 

Thus 

by Lemma 6 .10 .  

K-I 

E{w(6,Xn)} _< 2E + 1E [ E{Q(Xn(Tk),Xn(Sk)} + I?{SK<I} 
k=0 

4K 
< 2£ + ~-- ~n(26,Xn) + P{SK<I } 

The final probability is independent of 6, and it converges to zero as 

In fact, the convergence is even uniform in n. To see this, fix 6 
o 

1-S K I-SK} 
P{SK<I} = P{e > I} <E{e 

and note 
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by HSlder's inequality. 

otherwise, so this is 

by Lemma 6.10. 

n 

- [(Sk+1-S k) 

< e E{e I } 

K-1 -(Sk+l-S k) 
= e E{ [[ e } 

k=0 

K-I -K(Sk+I-Sk) I/K 
<e~ s{e } 

k=0 
-K& 

The integrand is bounded by e o on {Sk+1-Sk>8o } and by one 

K-I -K60_ 1/K 
< e ~ (e +P{Sk+I-Sk<60 } ) 

k=0 

K-I -K6 
o 4 1/K 

< e ~ (e + ~ v(260,Xn)) 
k=0 

Thus 

E{W(6,X )} < 28 + 4K I-K60 4e 
n -- ~-- v(26'Xn) + e + ~ v(260,Xn). 

Let n ÷ ~ and 6 ÷ 0 in that order and use (a). Then let K ÷ ~, 60 + 0 and finally 

8 ÷ 0 to get (6.3). 

PROOF (of Theorem 6.8). We first show that (b) => (6.2), which implies (a) by Lemma 

6.9, and then we show that (a) implies tightness. 

If 0 < u < 8 and p > 0 

E{PP(Xn(T*~),Xn(T))} ~ E{E{pP(x n (T+~),Xn(T))IF=T}} 

= E{An(~) } 

hence ~(~,X n) ~ E{An(~)}. By the lemma 

26 

2 f0E{An(U)}du v(6,XnJ ! ~ 

Let n + ~ and 6 ÷ 0 and use Fatou's lemma and (ii) to see that (6.2) holds. 

To prove tightness, note that w(6,X ) ~ 0 as 6 ~ 0, so Lemma 6.11 implies 
n 

lim sup E{w(8,Xn)} = 0 • 
6+0 n 

Let (t.) be an ordering of Q~ [0,1] and let £ ÷ 0. For each j there is a compact 
3 

K. C E such that 
3 
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P{Xn(t j) £ Kj} > I - e/2 j+1. 

Choose 6 k ~ 0 such that sup E{W(6k,Xn)} < e Thus 
-- k2k+l n 

1 
sup P{W(6k,X n) > ~ } ~ £/2 k+1. Let A C ~ be 
n 

I 
A = {~ e ~ : ~(t k) E Kk, w(~,6 k) ! ~ , 

Now lim sup w(6,~) = 0. 
6+0 ~EA 

hence (X) is tight. 
n 

k=I,2 .... }. 

Thus A has a compact closure in ~ by Theorem 6.5. 

P{X £A} > I - [ P{Xn(t k) £ ~} 
n 

k 

- ~ P{W(6k,X n) > I/k} 
k 

> I - e/2 - c/2 = I - ~, 

Moreover 

MITOMA'S THEOREM 

The subject of SPDE's involves distributions in a fundamental way. We will 

need to know about the weak convergence of processes with values in ~'. Since ~' is 

not metrizable, the preceeding theory does not apply directly. 

However, weak convergence of distribution-valued processes is almost as 

simple as that of real-valued processes. According to a theorem of Mitoma, in order 

to show that a sequence (X n) of processes tight, one merely needs to verify that for 

each ~, the real-valued processes (xn(~)) are tight. 

Rather than restrict ourselves to S', we will use the somewhat more general 

setting of Chapter Four. Let 

E' = i ; Hn~ ,.. ~ H_I~ H0~ HI~ ,.. ~ ~ H n = E 
n n 

Where Hn is a separable Hilbert space with norm II Rn, E is dense in each Hn, 

m M n ~ n nn+ I and for each n there is a p > n such that , gn < " " " E has the 
HS P 

topology determined by the norms n ~n" and E' has the strong topology which is 

determined by the semi norms 

PACf) = sup{ [f(+)l, ~A} 

where A is a bounded set in E. 

Let ~([0,1],E') be the space of E'-valued right continuous functions which 
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have left limits in E', and let C([0,1],E') be the space of continuous E'-valued 

functions. 

functions. 

C([0,1],H n) and ~([0,1],H n) are the corresponding spaces of Hn-Valued 

and 

If f,g E ~([0,1],E'), let 

dA(f,g) = inf{llkn + sup pA(f(t)-g(k(t)), k e A}, 
t 

d A ( f , g )  = sup pA(f(t)-g(t)). 
t 

Give ~([0,1],E') (resp. C([0,1],E')) the topology determined by the d A (resp. dA ) for 

bounded A E. They both become complete, separable, completely regular spaces. The 

D([0,1],H ) have already been defined, for H is a metric space. 
= n n 

We will need two "moduli of continuity". For ~ e ~([0,1],E'), ~ £ E, set 

w(6,~;~) = inf max sup I<w(t) - ~(s),~>I 

{ti} i ti<__s<t<ti+ I 

where the infimum is over all finite partitions 0 = t0<tl <'''<tn = I such that 

t i - ti_ I ~ 6 for i = I,...,n-I. 

Similarly, for ~ e D([0,1],H ), let 
= n 

w (6,~) = inf max sup ll~(t)-~(s)ll . 
n 

n {t i } i t i~s <t <t i+ I 

We will define w and w on C([0,1],E') as the ordinary moduli of continuity. 
n 

There is a metatheorem which says that anything that happens in E' already 

theorem of Four is instance of happens in one of the H . The regularity Chapter one 
n 

this. Here is another. 

THEOREM 6.12. Let A be compact in ~ = ~([0,1],E') (resp. C([0,1],E')). 

is an n such that A is compact in =D([0'I]'H-n ) (resp. C([0,1],H_n). 

Then there 

PROOF. We will only prove this for C([0,1],E'). The proof for ~ involves the same 

ideas, but is considerably more technical. 

Let # £ E and map C([0,1],E') + C([0,1], ~) by ~ ÷ {<~(t),~> : 0<__t~I}. It 

is easy to see that this map is continuous, so that the image of A is compact in 

C([0,1], ~). By the Arzela-Ascoli Theorem (see Theorem 6.5) 
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(i) sup sup l<w(t),~>1 < ~, and 
~£A te [0,I] 

(ii) lira sup w(8,~,~) = 0. 
840 ~eA 

From (i), we see that the linear functionals F defined by 
~t 

F t(~) = <~(t),~> are bounded at each ~, and hence equicontinuous by the 

Banach-Steinhaus theorem. Thus there is a neighborhood V of zero such that 

£ V => IF t(~) I < I, all ~ £ A, t £ [0,1]. V contains a basis element, say 

{~ : n$11m<e}. 

Thus if C = I/e, 

(6.4) i<~(t),$>i ! CIi~[l m, all ~ £ E. 

There exists p > m such that, if (ej) is a CONS relative to , JIp, 

~e.~ 2 = ~ < ~. Then 
j 3 m 

sup sup,~(t)n 2 = sup sup ~<~(t),ej> 2 ~ c2~. 

~eA t -P ~£A t j 

~_p__<c2~}. There exists n > p such that I, ~p < i~ tin, so K will Set K = {~£H_p : 

HS 

be compact in H by Exercise 4.1. Thus 
-n 

(i') ~ e A => ~ £ K and K is compact in C([0,1],H ). 
-n 

Moreover, (6.4) implies that 

sup w(6,~,e ) < 2cIlejllm, 
3 -- ~£A 

80 

sup W_m(6,~) = lim sup ([<~(t)-~(s),ej>2) I/2 lira 

6÷0 ~EA 840 O<s<t<l j 
t~-4% 

The sum is bounded by 2c2[He 11 

and it is 

2 
4< ~, so that it converges uniformly in s, t and 6, 

3 m 

lim (I sup w(6,~,e )2) I/2 

640 j ~EA 3 

= ([ lim sup w(8,~,e )2) I/2 

j 6÷0 ~EA 3 

= 0. 

Since n n < n H 
-n ~ -m' 

(ii') lira sup w (6,~) = 0 
6+0 ~eA -n 

Thus A is compact in C([0,1],H ) by the Arzela-Ascoli theorem. Q.E.D. 
-n 
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THEOREM 6.13 (Mitoma). Let {X~, 0<t<1}, n = 1,2,... be a sequence of processes whose 

sample paths are in ~([0,1],E') a.s. Then the sequence (X n) is tight iff for each 

@ e E, the sequence of real-valued processes {X~(~), t>0} n = 1,2,... is tight in 

D([0,1], R). 

All the work in the proof comes in establishing the following lemma. 

LEMMA 6.14. Suppose (xn(~)) is tight for each ~ e E. Then for each £ > 0 there 

exist p and M > 0 such that 

P{ sup IIX~II > M} < sup E. 
n 0<t<1 t -P 

PROOF. 

(6.5) 

where 

Then 

We will do this in stages. 

1) Let e > 0. We claim that there exist an m and 6 > 0 such that 

11~, < ~ => sup ~Isuplx?(~)lJ, < e 
m i t P 

n t 

taxi11 = E{IxI~I} 

TO see this, consider the function 

F(~) = sup Illsup Xt(#),l , 
n t 

(i) F(0) = 0; 

(ii) F(#) ) 0 and F(#) = F(-~); 

(iii) lal < Ibl => F(a~) ~ F(b#); 

(iv) F is lower-semi-continuous on E; 

(v) lim F(~/n) = 0. 

Indeed (i)-(iii) are clear. If ~ 3 ÷ ~ in E, xn(#j 

~ E. 

) ÷ X~(#) in L °, hence 

n Ixtc~j~l~, + Ixtc,~l,,1 in probability, and lim inf[supIxn(~ )I^I] > s Ix~c~.~l^, 
j t n 3 -- t p 3 

a.s. Thus 

~c~ = sup E{suplxt(,~l^~} < sup lira inf ~{supTx%~l^1} 
n t n j t 

<__ lira inf sup E{supIXt(0)IA1} 
j n t 

= lim inf F(#j), 

J 

proving (iv). 
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n 

%k) see (v), note that (xt(~)) is tight, so, given ~ and E > 0 there exists 

an M such that P{suPlX~(~)l>M} < £/2. 
t 

Choose k large enough so that M/k < £/2. Then 

F(~/k) = sup E{sup]X~(~/k)1^1} 
n t 

< sup [P{~uplx~(*/k) l>M} ÷ ~l 
-- k 

n t 

< E. 

Let V = {~: F(#) < £}. V is a closed (by (iv)), symmetric (by (ii)), 

absorbing (by (v)) set. We claim it is a neighborhood of 0. Indeed, E = ~ nV, so 

n 

by the Baire category theorem, one, hence all, of the nV must have a non-empty 

I I I 
interior. In particular, ~ V does. Then V C ~ V - ~ V must contain a neighborhood 

of zero. This in turn must contain an element of the basis, say {~: n#nm<6}. This 

proves (6.5). 

The next stages of the argument use the same techniques used in proving 

Theorem 4.1. (We called them "tricks" there. Now we are using them a second time, 

we call them "techniques".) However, the presence of the supremum over t makes this 

proof more delicate than the other. 

2) We claim that for all n 

(6.6) 

iX~(¢) 
Indeed, Re(1-e 

iX~(~) 
Re E{sup(1-e )} ! 2E(I + II~,~/62), # E E. 

t 

t 

1 
) = I - cos X (~) < ~ (Xt(~)2A2). If ~"m < 6, then 

t 

= 2,~ suplx~(~)i,, ! 2~ 
t 

On the other hand, if ,~I[ m > 6, replace ~ by ~ = 6~/li~nm: 

iXt(#) } II#II 2 
1-e I E{--~ X~(+)2A2} 

< 2E 11 ~ II 2/62 
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since II~fl m ~ 6. 

3) We claim that for M > 0 there is p ~ m and constant K such that for 

all n, 

(6.7) 

2 n 

- 1/M supllX~11 -p 
t 

E{I - e } < 2£(I + K/M62). 

Indeed, there exists p > m such that II H 
m p ] 

HS 
N 

to , ~ . Let YI,Y2 .... be iid N(0,~) random variables, and put ~ = ~ Y e . 
n I 3 J 

iX~(*) iX~(*) 
Re E{sup(1 - e )} = Re E{E{sup(1 - e )IY}) 

t t 

E{2e(1 + II~II~/62)}. 

N ~ def 
But E{II~I, 2} = E{~I Y211e'II2}3 3 m < M2 ~ llej112m = MK < ~. 

< It It • Let (e.) be a CONS in E, relative 

On the other hand, 

N 
X n 

iXt(~) i ~Y~ 3 t(e )3 
Re E{sup(1 - e )} = Re E{sup(1 - e )} 

t t 
N 

i~Y X (e) 
i j t J 

>_ Re E{sup E{(I - e )IXt}}. 
t 

N 

But, given Xt, the conditional distribution of ~YjXt(e j) is N(0, 2 ~ xn(e.)2)o3 3 We 

know the characteristic function of a normal random variable, so we see this is 

(6.7). 

Let N ÷ ~. 

1N n 2 
~X (e.) ~ t  j 

= E{sup(1 - e )}. 
t 

~Xt(ej) 2 = llXt'l , so we can combine these inequalities to get -p 

4) 

I II 2 
- ~ supllX t -P 

If supllXtll2 p > M, I e t > e-1 -- -- ' , S O  

t e 

I 2 
- ~ supllXt++ 

e-le P{sup~Xtll2-p > M} _< E{I - e t -P} 

t 

< 2£(I + K/M62). 

I f  M >_. K/82, then 

P{sup"Xt fl2_p > M} -- e~1< 4e £. 
t 

Q.E.D. 
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PROOF (of Theorem 6.13). Fix ~ > 0. Choose M and p as in Lemma 6.14. with 

probability I - e, X t lies in B = {x: Hx~ < M} for all t. There exists q > p such -p -- 

that n n < n n , hence P n < U n . Then A is compact in H . Let 
P q -q -p -q HS HS 

K C ~([0,1],E') be the set {~ : ~(t) E A, 0<t~1}. 

Let (e.) be a CONS relative to ~ ~J . Since (xn(e.)) is tight by 
3 q 3 

hypothesis, there exists a compact set K ~ D([0,1], R) such that ] = 

p{xn(ej)EKj}. _> I - e/23 for all n. Let K~3 be the inverse image of K.3 in =D([0'I]'E') 

under the map ~ ÷ {<~(t),ej> : 0~t~I}. By the Arzela-Ascoli Theorem, 

lim sup w(6,~;e ) = 0; 
6÷0 ~eK~ 3 

3 

moreover 

Set K' = K n /~ K!. 
• 3 
J 

Then 

P{X n e K'} > I - e - I£/29 = I - 2g. 

Nown 

lim sup w(6,~,H ) = lim sup ([ inf max sup <~(t)-~(s),e >2) I/2 

6+0 ~K' -q 6*0 ~eK' j {ti} i ti<__s<t<ti+ I 9 

! lim sup (I w(6,~,ej )2)I/2 

6÷0 w£K' j 

But if ~ ~ K', ,~(t)U_p _< M so the sum is dominated by 2M -~[NeJ~ < -- 
] 

(since | B < n U ). Thus we can go to the limit inside the sum. It is 
P HS q 

(I lim sup w(6,~;ej)2) I/2 

j 6÷0 ~eK' 

= 0o 

A is compact in H_q, so Theorem 6.5 tells us that K' is relatively compact 

in D([0,1],H_q). The inclusion map of H into E' is continuous, so that K' is also = -q 

relatively compact in ~ ([0,1],E'), and hence (X n) is tight. 

This brings us to the convergence theorem. 

Q.E.D. 

THEOREM 6.15. Let (X n) be a sequence of processes with paths in D([0,1],E'). 

Suppose 
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(i) for each ~ e E, (xn(#)) is tight; 

(ii) for each ~I,...,~ p in E and tl,...,tp E [0,1], the distribution of 

(X~ I(~I )'''''Xntp(~p)) converges weakly on RP0 

Then there exists a process X ° with paths in ~([0,1],E') such that X n => X °. 

PROOF. (X n) is tight by Theorem 6.13. The space ~([0,1],E') is completely regular 

and each compact subset is in some H and is therefore metrizable. By Theorem 6.7, 
-n 

some subsequence converges weakly. But (ii) shows that there is only one possible 

limit. We conclude by the usual argument that the whole sequence converges. 

Q.E.Do 

Note: The index p of I~mma 6.14 may depend on c. If it does not, and if 

W a < l nq, then (X n) then will be tight in D([0,1],H q), and we get the 
P HS - - 

following. 

COROLLARY 6 • 16. 

suppose ~ n < 
P~ 

for all n 

Suppose that the hypotheses of Theorem 6.15 hold. Let p < q and 

N n . Suppose that for e > 0 and M > 0 there exists 6 > 0 such that q 

P( sup n 
t I<xt'~>I > M} <_~ if M~Mp <_6. 

Then (X n) converges weakly in D([0,1],H ). 
-q 



CHAPTER SEVEN 

APPLICATIONS OF WEAK CONVERGENCE 

Does the weak convergence of a sequence of martingale measures imply the 

weak convergence of their stochastic integrals? That is, if M n => M, does 

f.M n => f-M? Moreover, do the convolution integrals - which give the solutions of 

SPDE's - also converge? 

We will give the beginnings of the answers to these questions in this 

chapter. We will show that the answer to both is yes, if one is willing to impose 

strong hypotheses on the integrands. Luckily these conditions are satisfied in many 

cases of interest. 

We will confine ourselves to measures on R d and on sub-domains of R d, 

where we have already discussed the theory of distributions. We will view martingale 

measures as distribution-valued processes, so that weak convergence means convergence 

in distribution on the Skorokhod space ~ = ~{ [0,1], S'(Rd)}. 

Our martingale measures may have infinite total mass, but we will require 

that they not blow up too rapidly at infinity. 

Fix P0 > 0 and define h0(x) = (I + IxlP0) -I, x 6 R d • If M is a worthy 

martingale measure with dominating measure K, define an increasing process k by 

(7.1) k(t) = f h0(x) h0(Y) K(dx dy as), 

R 2dx [0,t] 

and 

(7.2) y(6) = sup (k(t+6) - k(t)) 
t<1 

We will assume throughout this chapter that E{k(1)} < ~. Note that this means that 

for any ~ ~ ~(Rd), Mt(#) is defined for all t ~ I, since ~ tends to zero at infinity 

faster than h 0. Thus M t is a tempered distribution (Corollary 4.2). 

For a function f on R d , define 

11f 11~ = sup If(~)l, 

II f II h = II f ho I If. " 

Note that ]I~ II h < " for any #C-s(Rd), and, moreover, if llf Jlh < ~, then Mt(f) is 

defined. 
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LEMMA 7.1. Let S ~ T be stopping times for M, and let f ~ ~M" Then 

T 
2 dk(s). (7.3) <f'M(E)> T - <f'M(E)> S ! f l[ f(s) [I h 

S 

Consequently, if # ~ ~(Rd), 

T 
[7.4) <~'MC*)>T - <f '~(* )>s ! I1' I1~ $ l i f ts ) I1~  dkCs). 

S 

PROOF. The left-hand side of (7.3) is 

f f¢x,s)f¢y,s)~¢dx d~ as) = f f¢x,s)b~¢x)f(y,s)h~¢Y)b0C~)h0¢Y)~(~ dy as) 
R2dx(s,T] R2dx(s,T] 

2 
$ l i f ts)  ilb hoCX)bo¢Y) K¢~ dy as) 

R2dx(s,T] 

T 
2 dk(s). = f I I f (s)  llb 

S 

Then (7.4) follows since l i f ts ) *  I 1 . ~  I1' IIh IIf(s~ I1.- Q.E.D. 

LEMMA 7.2. Let T be a predictable stopping time. If k is a.s. continuous at T then 

for any bounded Borel set A C R d and f 6 ~M' P{f.M(A) is continuous at t} = I. 

PROOF. The graph [T] of T is predictable, hence so is f(x,t) I[T](t)IA(X). By 

(7.3), if f is bounded 

E{(f'MT(A) - f'MT (A))2} ~ E{ f [If(t)I[T](t) l[~ dk(t)} 

= E{ I I f (~) I I~(kCT)  - kCT-))} 

= 0 .  

The result follows for all f & ~M by approximation. Q.E.D. 

Let M 0, M I, M 2,... be a sequence of worthy martingale measures and let k 
n 

and Yn" n = 0, I,2,... be the corresponding quantities defined in (7.1) and (7.2). 

PROPOSITION 7.3. Suppose that 

(7.5) lira limsup E{Yn(6)} = 0. 
8+ 0 n~ 

Then the sequence (M n) is tight on D{ [0,1], S'(Rd)}. 
= _- 
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PROOF. By Mitoma's Theorem, we need only show that (Mn(~)) is tight for each 

e ~' (Rd)-  By (7.4) 

. n  "~c~))21Kt } _ It~ I Ih n - -  E{(t+6(~) - < 2 E{kn(t+6 ) _ k (t)l£t} 

The result now follows from Theorem 6.8(b). Q.E.D. 

COROLLARY 7.4. 

(7.5). Let f 
n 

tight. 

Suppose (M n) is a sequence of worthy martingale measures satisfying 

P be a sequence of uniformly bounded functions. Then (f -M n) is 
=Mn n 

PROOF. K (dx dy ds) = Ifn(X,S)fn(Y,S) I K (dx dy ds) 
f .M n N n 
n 

< b 2 K (dx dy ds) 
-- M n 

where b is the uniform bound for the f • Then the f 
n n 

result follows from Proposition 7.3. 

• M n satisfy (7.5) and the 

Q.E.D. 

WEAK CONVERGENCE OF STOCHASTIC INTEGRALS 

In order to talk of the convergence of a sequence of stochastic integrals 

f.M n, we must be able to define the integrand f for each of the M n. We can do this 

by defining all of the M n on the same probability space. The most convenient spate 

for this is the Skorokhod space ~. Thus we will define all our martingale measures 

Rd + canonically on ~, so that once we define f(x,t,w) on x R × ~, we can define all 

the f-M n . 

The stochastic integral is not in general a continuous function on ~, so 

that it is not always true that M n => M implies that f°M n => f°M, even for classical 

martingales. Two examples, both of real valued martingales, will illustrate some of 

the pitfalls. 

0 if t < I + I/n ~ 0 if t < I 

Example 7.1. Define ~M~ n = and M t = ~ , where X = +I 

X if t > I + I/n X if t > I 
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with probability I/2 each. Let f(t) = I[0,1](t). Then M n => M, but f.M n ~ 0, 

n = 1,2,... while f.M t = X I[1,~)(t) , so the integrals don't converge to the right 

limit. 

Example 7.2. Let B t be a standard real-valued Brownian motion from zero and put 

M t = M 0 + B t and < = M nQ + Bt, where M 0 is a random variable uniformly distributed on 

n is uniformly distributed on {I/n, 2/n,...,I}. Define [0,1], independent of B, and M 0 

these canonically on ~{ [0,1],R}, and let f(t,~) = I{~(0 ) 6 Q} (i.e. f ~ I or f ~ 0 

depending on whether the initial value of the martingale is rational or not.) 

Then ~ => M, but f.M n = B t for all n while foM = 0 a.s., so once again the integrals 

don't converge to the right limit. 

REMARKS I. In Example 7.1, the integrand was deterministic, and the trouble came 

from the jumps of M. In Example 7.2, the integrand was simply a badly discontinuous 

function of ~ on ~. Although it might seem that the trouble in Example 7.2 comes 

because the distribution of M is orthogonal to the distribution of the M n, one can 

modify it slightly to make the distributions of the M n and M all equivalent, and 

still get the same result. 

2. It is easy to get examples in which the f.M n do not just converge to 

the wrong limit but fail to converge entirely. Just replace every second M n in 

either of the examples above by the limit martingale M. 

Let M be a martingale measure defined canonically on ~, relative to a 

probability measure P. Let k be defined by (7.1). Let ~s(M) be the class of 

functions f on R d x R × D of the form + = 

N 

(7.6) f(x,t,~) = 

n=1 

< t n, ~n ~ C~(R--d), and a where 0 ~ s n n 

such that 

an(~)I(sn,tn](t)~n(X), 

is bounded and F -measurable, n = I,...,N, 
=s 

n 

(i) a is continuous P -a.s. on D; 
n = 

(ii) t ~> f(x,t,~) is continuous at each point of discontinuity of k. 
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If f is given by (7.6) and if ~ 6 S(R d) and 0~ E D, define 

N 

Ft(to) (~) = n= I~ an(to)I(sn,tn ](t) (tot Atn(~n~) -~°tASn(~n~))" 

Note that tot(-) is a distribution and ~n ~ 6 s(Rd), so tot(~n4/) is defined. The map 

to ÷ {Ft(~0), t > 0} maps D ÷ D. It is continuous at ~0 if ~ is a point of continuity 

of each of the an and if t ÷ tot is itself continuous at each of the Sn and tn. Thus 

if f ~ ~s(M), f is P -a.e. continuous in ~. Moreover, if M is canonically defined on 

__D, t h e n  

Ft(~)(~) = f. Mt(¢). 

By the continuity theorem (Theorem 6.1 (iii)) we have: 

PROPOSITION 7.5. Let M 0, MI,... be a sequence of worthy martingale measures such 

that ~ => M 0. If f 6~s(M0) then (M n, f°M n) => (M 0, foM0). 

This is too restrictive to be of any real use, so we must extend the class 

by approximating more general f by f in ~s(M 0) and using of f. We will do this the 

fa~t that L 2 convergence implies convergence in distribution. 

The class of f we can treat depends on the sequence (Mn), and, in 

particular, on the sequence (K) of dominating measures. The more we are willing to 
n 

assume about the Kn, the better description we can give of the class of f. We will 

start with minimal assumptions on the K . This will allow us to give a simple 
n 

treatment which is sufficient to handle the convergence of the solutions of the 

SPDE's in Chapter 5. We will then give a slightly deeper treatment under stronger 

hypotheses on the K . 
n 

DEFINITION. Let ~s(M) be the closure of ~j%(M) in the norm 

II f III = sup llfct,to~ II= 

0<t<1 

Note: We will suppress variables from our notation when possible. Thus, we write 

II f(t,to) II in place of IIf(.,t,to)II" 

If M n => M 0 f-M 0, , we are interested not only in the convergence of f-M n to 

but also in the joint convergence of (M n, foM n) to (M 0, f.M0). We may also want to 
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know about the simultaneous convergence of a number of martingale measures and 

integrals. This means we will want to state a convergence theorem for martingale 

measures with values in R m, and integrands which are rxm matrices. Weak convergence 

in this context is convergence in the Skorokhod space D m = D{ [0,I], S'(Rmd)}. 
= = 

If M = (MI,...,M n) and if f = (fij) is matrix valued, we will say f 6 ~s(M) 

(resp. f e ~(S)) if for each i, j, fij e ~s(MJ), (resp. fi9 6 ~(MJ)). 

PROPOSITION 7.6. Let M 0, M I , M 2, ... be a sequence of R m -valued worthy martingale 

measures and suppose that each coordinate satisfies (7.5). Let fn(x,t,~) = 

(f~j(x,t,~)) be rXm matrices such that fn ~ ~(Mn), n = 1,2 ..... and f0 ~(M0). 

n f0 ° on Suppose that M s => M 0 (on =D TM) and that II ~ij- ij Ill÷ 0. Then fn M n => f0M0 

D m . 
= 

I ) where I is the m×m identity and F n is REMARK. We can choose fn of the form IF n 

diagonal with F n = fn. (Mnl nm n nl jj j Then foM = , .... M , f1.M ,...,f .M rim) and the 

proposition gives the joint convergence of the M n3 and the fnoM n]. 
3 

PROOF. Each coordinate of (fn'Mn) is tight by Corollary 7.4, so (fn-Mn) is tight. 

To show it converges, we need only show convergence of the distributions of 

(fnoMtl,...,fnoMtk), where t I _< t 2 _< ... _< t k are continuity points of M 0. Note that 

this vector can be realized by taking another, larger matrix f and looking only at 

t ~ n ~ t = I. For instance, if t I < t 2 < I, (foM f.M n ) = f.M1, where ~ = (f1' f2 ) and 
I' -- t 2 

f(x,t), t < t 
~ (x,t) = - l 
1 0 t > t. , i = 1,2. 

1 

Since f 6 %(M 0) and the t i are continuity points of M 0, fi 6 ~s(M0) • 

By Mitoma's theorem, then, it is enough to check the convergence of 

fn.Mt(~) for a single test function @ and for t = I. By Theorem 6.1, it is enough to 

show that 

E{hCf'M~(~))} ~ ~{h(f'M01(*))} 

for any uniformly continuous bounded h on R r . 



372 

0 e 
Choose f£'lj £ (M 0) such that II ~ij- fij III < e2-n for each i, j and let 

fe = (fij) " Then 

IE{hCfn.M~))} - E{h(f0.M~(~))}I 

< E{ Ih(fn.M~(~)) - h(f°.M~(,~))l} 
+ E~ IhCd-M~C¢)) - hCf~.M~C~))I} 

E 0 + I~{h(r~:.M'~¢,~))} - ~{ f  .M I (~ ) } I  

÷ - 

= E I + E 2 + E 3 + E 4 • 

Since h is uniformly continuous, given p > 0 there exists 6 > 0 such that 

lh(y) - h(x) I < p if IY - xl < 6. Then 

E I < p + 2 llh II~ P{Ifn'Mn(# ) - f0"Mn(~)l > 6} 
_<~ + 211hll® 6 -2 ~{l(f n- f°) 'Mn(~)12} 

< ~ +  21YhI16 -211~11~ ~ J i l l ' - f °  12 -- i,j 13 lj It E{7 n¢I)} 

by Lemma 7.1. Now it follows frQm (7.5) that E{Tn(1)} is bounded by, say, C, so that 

Moreover, the same type of calculation, with fn f0 replaced by lim sup E n ~ p. 
n ÷ 

f¢ f0, gives 

2 
E 2<_p÷2= IIih1116 -2 II~IlhCE, 

and E 4 satisfies the same inequality since the calculation is valid for n = 0. 

Finally E 3 ~ 0 by Proposition 7.5. Since p and e are arbitrary, we conclude that 

E l + . . . +  E 4 + 0.  Q.E.D.  

Let uS now consider the SPDE (5.4). Its solution is 

Vt(~) = f T* Gt_s(~,y) M(dy as) 
(7.7) DX[0,t] 

t 
= f T* ( f Gu_s(L~,y)du + ~(y)) M(dy ds) 

DX [0 ,t] s 
t u 

= MtCT**) ÷ f [ f f T* Gu_s(L*,y) M(dy ds)]du, 
0 0 D 

where we have used (5.7), the fundamental equation of the Green's function, and then 

changed the order of integration. 

Vt(~)2 } 2 + 2 sup L~ 7.7. E{ sup ~ (~ IIT*~ llh 
tit t~1 

IIT*~tCL~) 11~)B{k(1)}. 



373 

t u 
PROOF sup vt(~) 2 < 2 sup M2t(T*~I ÷ 2 sup [ f I f / T*Gu S(L~)M(dy ds)l 2du] 

t t t 0 0 D 

by Schwartz. By Doob's inequality 

I u 
~{sup vt(,) 2} <_ 8 ~{M21(T*,)} + 2 f E{[ I f T*Gu s(~*)MCdy as)J2} du 

t 0 0 D 

and the conclusion follows by Lemma 7. I. 

Q.E.D. 

Let M 0, M I , M 2,... be a sequence of worthy martingale measures and define 

v n by (7.7). 

PROPOSITION 7.8. If (M n) satisfies (7.5), then (V n) is tight. If, in addition, 

M n => M 0, then (M n, V n) => (M 0, V0). 

PROOF. In order to prove (V n) is tight, it is enough by Mitoma's theorem to show 

that (~t(~)) is tight for any ~ 6 ~(Rd). The (M n) are tight by Proposition 7.3, so 

we must show that the sequence (U n) defined by 

t u 
n 
ut=f If 

0 0 

is tight. Let 

T* Gu_s(L~,y)M(dy ds)du 
D 

u 

S n = sup I f f T* Gu_s(L~,y)M(dy ds) I. 
u<1 0 D 

If ~n is a stopping time for M n, 6 n > 0, and if ~n + 6n <-- 1, then 

- un I < 6nS n" I ~n +6 ~ 
n n n 

By Lemma 7.7, E{S 2} < C E{kn(1)}. By (7.5), this expectation is bounded in n, so 

E" U n 2- 2 +6 - ~ ÷ 0 in L I, hence in probability. Moreover, i( t ) } --< E{S }, so that (U t) 
n n n 

is tight for fixed t. By Aldous' Theorem, (U n) is tight. 

We need only check the convergence of the finite-dimensional distributions 

in order to see that (M n, V n) => (M 0, V0). But for each t, T*Gt_s(~,y) is 

deterministic, is in ~(R d) as a function of y, and is a continuous function of s for 

s ~ t. Thus if t is not a discontinuity point of M 0, (s,y) + T*Gt_s(~,y) is in 

~(M0). The finite-dimensional convergence now follows from Proposition 7.6. 

Q.E.D. 
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If ~ is in the Sobolev space H (D) of Example I, Chapter 4, and if p > d/2, 
P 

then there is a constant C such that II~ II~ ~ C II~ N H Since h 0 is bounded away 

P 

from zero on the bounded domain D, I}~ II h ~ C If# II H for another constant C. If ~ is 

P 

the order of T (and hence of T*) and if ~ ~ Hp+~+ 2 for all 0 < t < I, then 

IIT*Gt(L #) II h < C II~ II for all 0 < t < I (and in particular for t = 0) so that 
- -  Hp+~+ 2 

Lemma 7.7 implies that 

E{sup V~(*) 2} ~ C( If# II H )E{kn(1)}" 
t~1 p+~+2 

Suppose that q > p + 2 + d/2. Now E{k (I)} is bounded if (7.5) holds, and 
n 

Hp+~+2 kS Hq. By Corollary 6.16, V n => V, as processes with values in H • Thus -q 

COROLLARY 7.9. If (M n) is a sequence of worthy martingale measures which satisfies 

(7.5) and if Mn=> M, then V n => V 0 in ~{ [0,1], H_(d+~+3)}. 

AN APPLICATION 

In many applications - the neurophysiological example of Chapter 3, for 

instance - the driving noise is basically impulsive, of a Poisson type, but the 

impulses are so small and so closely spaced that, after centering, they look very 

much like a white noise. The following results show that for some purposes at least, 

one can approximate the impulsive model by a continuous model driven by a white 

noise. One might think of this as a diffusion approximation. 

Let us return to the setting of Chapter 5. Let D be a bounded domain in 

R d with a smooth boundary, and consider the initial-boundary value problem (5.3) 

with two changes: we will allow an initial value given by a measure on R d , and we 

will replace the martingale measure M by a Poisson point process ~. 

Let ~n be a sequence of time-homogeneous Poisson point processes on D with 

characteristic measures ~n" (Recall that this means that ~n is a random G-finite 

signed measure on D×[0,~) which is a sum of point masses. If A ~ D is Borel and 

n(AxK) be the counting process: N~(A×K) is the K C R is compact with 0 r K, let N t 

number of points in A×[0,t] whose masses are in K. Then {N?(A×K), t ~ 0} is a 
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Poisson process with parameter ~n(AXK), and if AIXK I ~ A2XK 2 = ~, then Nn(AIXKI 

Nn(A2XK2 ) are independent.) Let 

m (A) = f r ~n(dX dr) 
n 

DxR 

) and 

and 

2 
~n(A) = f r ~n(dX dr) 

DXR 

be the mean and intensity measures, respectively, of ~n. For 6 > 0, let 

2+6 
Qn(6) = f r ~n(dX dy). 

D 

Let L, T and B be as in (5.3), let v be a finite measure on D and consider 
n 

the initial-boundary value problem 

(7.8) 

measure. 

(7.9) 

~v = ~v + ~ 
~t 

BV = 0 on ~D 

V 0 = "O n 

n def 
Note that Mt(A) = ~n(A x [0,t] ) - t mn(A) is an orthogonal martingale 

The solution to (7.8) is, by Theorem 5.2, 

Vt(~) = f Gt(~,Y)Vn(dY)+ f Gt_s(~,Y)mn(dy)ds 
D D× [0,t] 

+ f T*Gt_s(~,y)Mn(dy ds). 
Dx [0,t] 

THEOREM 7.10. Suppose that there exist finite (signed) measures v, m, and 2 on D 

such that v => 9~ m => m, and ~ => ~, in the sense of weak convergence of measures 
n n n 

on D. Suppose further that for some 6 > 0, Qn(6) + 0. Then there exists a white 

noise W on D×[0,t), based on d~ dt, such that (M n, V n) => (W, V), where V is defined 

b y  

(7.10) Vt(*) = I Gt(*,Y)~(dY) + I Gt_s(*,Y)m(dy)ds + I T*G~_s(O,Y)W(dy ds) 
D×[0,t] D×[0,t]- 

PROOF. The first t~ terms of (7.9) are deterministic and an elementary analysis 

shows that they converge uniformly in t, 0 < t < I, to the corresponding terms of 

(7.10). (Indeed, y ÷ Gt(#,y) is continuous so the integrals with respect to Vn and 

m converge; one gets the requisite uniform convergence by noticing that the same 
n 

~G t 
holds for the integrals of ~ (~,y).) 
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It remains to show that the third term converges weakly. Note that the 

sequences (Mn(D)) and (On(D)), being convergent, are bounded by, say, K. Thus if 

0 < s < t < I: 

<Sn(D)>t - <Sn(D)> = (t-s)o (D) < K(t-s). 
S n -- 

It follows that (M n) is of class (p,~) for all p > 0 and that (7.5) holds, for 

y(6) = K6. Thus (M n) is tight by Proposition 7.3. We claim that M n => W. Note that 

once we establish this claim, the theorem follows by Proposition 7.8. 

It is enough to show that the finite-dimensional distributions of Mn(~) 

tend to those of W(@) for one ~, and, since M~(#) and Wt(@) are processes of 

stationary independent increments, we need only check the convergence for one value 

of t, say t = I. Thus we have reduced the theorem to a special case of the classical 

central limit theorem. 

Since we know the characteristic functions for the M n explicitly, we can do 

this by a direct calculation rather than applying, say, Liapounov's central limit 

theorem. 

I 2 
Write eiX-1 = ix - ~ x + f(x). Then certainly If(x) I < 2x 2 and 

l~m f(x)/x 2 = 0. Let 
x÷0 

ik S1(~) 
~n(k) = log E{e } 

= log E{e i~q1(~)} - ik mn(~), 

where n~(~) = f ~(x)IIn(dx ds). Let us also write mn(0) = f 0(X)mn(dX), 
Dx [0, I ]  

On(@ 2) = f #2(X)On(dX). From the properties of Poisson processes the above is 

= k f (e i ~(x)r-1) ~n(dX dr) - ik mn(~) 
DX [0, I] 

= i~ f ~(x) r ~n(dX dr) - i k mn(~) 
Dx [0, I ]  

-12 k2 I k2(x)r2~n(dX dr) + I f(X¢(x)r)~n(dX dr) 
Dx[0,1] Dx [0,I] 

= --12 k2On (~2) + f f(k ~(x)r)~n(dX dr) . 
Dx [0, I] 

I k2o(~2) 
The first term converges to - ~ as n + ~ since O n => O. We claim the second 

term tends to zero. 

Choose g > 0 and let ~ > 0 be such that if Ix] < D, then If(x) l <__ Ex 2. The 

second integral is bounded by 
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£ f k2#2(x)r2~n(dX dr) + I D-6(k ~2(x) Ir[)2+6~n(dX dr) 

2+6 ! e k2~n(# 2) + D-6k 2+6 [i# ~ Qn (6)" 

since (~n(~2)) is bounded and Qn(6) ÷ 0, we conclude that 

k 2 
~n(k) + - ~- o (#2) 

n 

which is the log characteristic function of WI(~). 

Q.E.D. 

REMARKS. Let ~ be the degree of T. By Corollary 7.9, we see that V n => V in 

~{ [0,I], H_(d+~+3)}. One can doubtless improve the exponent of the Sobolev space by 

a more careful analysis. 

AN EXTENSION 

Propositions 7.6 and 7.8 are sufficient for many of our needs, but they are 

basically designed to handle deterministic integrands, and we need to extend them if 

we are to handle any reasonably large class of random integrands. 

We will look at the case in which the functions k (t) of (7.1) are all 
n 

absolutely continuous. The treatment unfortunately becomes more complicated. Any 

reader without a morbid interest in Holder's inequalities should skip this section 

until he needs it. 

Let M be a worthy martingale measure on R d • Set 

AM*(~) = supIMt(#) - Mt (~)i and AM* = sup daM~(IAh0). 
t<1 A C R i 

Note that for any f & ~M such that [If(t)[[ h ! I for all t, we have 

sup If.Mt(A) - f.Mt_(A)[ ! 2 AM*. 
t,A 

We say M has LP-dominated jumps if AM* E L P. 

Let us recall Burkholder's inequalities for the 8redictable square function 

<M(~)> t. 

THEOREM 7.11. (Burkholder-Davis-Gundy) Suppose ~ is a continuous increasing 

function on [0,~) with ~(0) = 0, such that for some constant c, ~(2x) < c ~(x), for 
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all x > 0. Then 

(i) there exists a constant C such that 

1 / 2 , .  
E{~( SUp I MS(~)J)} -- < CE{~(<M(~)~t ~] + CE{~(~M+(#))}; 

S<t 

(ii) if ~ is concave 

E{~(sup ]Ms(ell 2} ! S E{~(<~(,)>~/2)}. 
s<t 

We will usually apply this to ~(x) = Ixl p for p > 0. If 0 < p < I, we are in 

case (ii). 

In what follows, M 0, M I , M 2, ... is a sequence of worthy martingale 

measures and k0,kl,k2,.., are the increasing processes of (7.1). We will assume, as 

we may, that all the M n are defined canonically on ~ and we will use pn and E n for 

the distribution and expectation relative to M n. When there is no danger of 

confusion we will simply write P and E respectively. 

DEFINITION. Let p > 0, K > 0. The sequence (M n) is of class (p,K) if for all n 

there exists a random variable X on D such that 
n = 

(7.11a) kn(t) - kn(S) ~ X n ~-s I if 0 < s < t < I, n = 0,1,2,... ; 

(7.11b) En{X~} ~ K, n = 0,1,2, .... 

If the M n are m-dimensional, we say that (M n) is of class (p,K) if for each 

n there exists an X satisfying (ii) such that (i) holds for each coordinate. (In 
n 

particular, each coordinate is itself of class (p,K).) 

REMARK. If (M n) is of class (p,K), than each M n is quasi-left continuous, i.e. M n 

has no predictable jumps. This is immediate from Lemma 7.2. 

Just as in Proposition 7.6, we want to close ~s(M 0) in some suitable norm. 

In this case, the norm depends on the sequence M = (Mn). 

DEFINITION. ~s(M) is the class of f E ~ P such that for each e > 0 there exists 
n=0 =M n 

f£ ~ %(M 0) such that 

I 
(7.12) SUp En{1 A f I l f ( s )  - fC(S) H~ds} ~ e. 

n 0 
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Note that Y ÷ E{I ~ IYI} gives a distance compatible with convergence in 

probability, so that the above says that f can be approximated in pn-probability for 

each n, and that the approximation is uniform in n. It is this uniformity which is 

important. Without it, the condition is trivial, as the following exercise shows. 

Exercise 7.1. 

such that 

Let fe 6~ =PMn. Then for any N and ~ > 0 there exists fE'N6 ~ ~__~(M n) 
n n 

1 
EN{ f 

0 
l i f ( s~  - ~ ' N ( s ) I I ~ d s }  <_ ~.  

PROPOSITION 7.12. Let M n, n = 0,1,2,... be a sequence of m-dimensional worthy 

martingale measures which is of class (p,k) for some p > 0, K > 0. For each n, let 

n 
fn(x,t,~) = (fij(x,t,~)) be an rXm matrix such that fn e PMn. We suppose that there 

I 

exists > 0 such that {{i f li n s)Ll. ÷ dsi } n o 0,2 .... is bonded 
0 

(i) Then (fnoMn) is tight on Dr; 

(ii) if, further, M n => M 0 in D TM, and if 

a) f0 lj e ~s(M), all i,9; 

1 
b) lim En{l f II n 0 112 fij(s) - f. (s) ds I } = 0, 

n~= 0 ~3 

then fn.Mn => f0.M0 on D r • 

PROOF. If the hypotheses hold for a given e, they also hold for any ~' < e, so we 

may assume that e < p a I. Thus if X , n = 0,1,2,... are the random variables of 
n 

(7.11), then En{X e} < K £/p by Jensen's inequality. 
n -- 

(7.13) l f n ' ~ ( * ) l  ~ = I [ ¢[ fn j ' "nJ( * ) )21~/2  
i 9 

since ~ < 1. 

Let T be a stopping time for M n and let 6 > 0 be such that T 
n n n 

By Burkholder's inequality, (7.13), and (7.4), for any test function 

E n i l f n ' ~  +6 (*) - f n ' M T  (*)1~1 <- 5 I1~ I1~ X 
n n n 113 

Notice also that for f 6 PMn, 

--< .[. Ifij'MnJ(~)I£ 
i,] 

+6 < 1 .  
n -- 

T +6 e__ 
En{I in n n ll2dhn (s) 12} T llfij(s) 

n 
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T ~  
~ I1, II h . 

z, 3 T 
n 

Apply Holder's inequality to the integral with p = I + £/2, q = I + 2/~, then apply 

Schwartz' inequality: 

I n 

i,j 0 
2~ 

Now ~ < e so the expectations are bounded, and the above is then 

2 
< C6£ /(4+¢) 
-- n 

nn nn 
for some constant C. Thus, if 6 n + 0, f ,M T +6 (~) - f "MT (~) ÷ 0 in probability. 

nn n 

Take T n 0 and 6 n t to see that for each t the sequence (fn, M (~)) of random 

variables is bounded in ~, hence tight. Aldous' theorem then implies that the 

sequence (fn-Mn(~)) of real-valued processes is tight, and Mitoma's theorem implies 

that (fn,Mn) is tight on D r. = 

As in Proposition 7.5 we need only show that (fn, Mq(#)) converges weakly to 

prove (ii). Let h be bounded and uniformly continuous on R r . Then if y > 0 there 

exist fY & %(M 0 ij ) such that 

I 
(7.14) En{lIAf IIf~j(s) - f?.(s)II2ds} < 7, n = 0,1,2 ..... 

0 z3 

Now 

dsf E1 + E2 + E3 + E4" 

Fix p > 0 and let n > 0 be such that lh(y) - h(x) I < p if ]y-x I < n. 

E I _ < ~ +  ~ l lh l i®P{ icfn  ~O~ .M~C~ j  >_~} 

By (7.13) and Burkholder's inequality (Theorem 7.11 (ii)) this is 

I 
n 0 2 E/2 

_<~ + lo Ilh 11= ~-~ ~ ~n {I / I lrij~s~ - f i jcs~ II®~nCs~l } 
i j  o 

1 
_< p + lO llh I1®'~-~ ~. E~{x~/21 I IlfnCs~ - =Ocs~ II=~dsl ~/2} 

z3 0 

Then 
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I 
-e n e 1/2  p + 10 Ilh I1=~ E {Xn} .~ En{I f I l fn(s)  - f0Cs)11~dsl~} ' /2  

z 3 0 

where we have used the fact that (M n) is of class (p,K) and Schwartz' equality. But 

En{x~} is bounded, and the last expectation tends to zero, so lim sup E I S P" 
n ÷ 

Similarly, 

E 2 s o  + 211hll~n -~ E{~ ^ lCf ~- fo) . M ~ ( , ) I ~ } .  

NOW ~(X) = I ^ IXl e is concave so by Burkholder's inequality and (7.4) 

I 
p + 10 llh II,~ -C [ En{1A ( f }IfY(s) - f0(s)II~ dkn(S)£/2} 

ij 0 
1 

! p * ,o llh I1=~ -~ E~{x~} 1/2 ~ En{(1 ^ f I I f~(s)  - f0Cs) I ld~)~}  v 2 .  
i j  o 

Apply Jensen's inequality to this last expectation, and use (7.14): 

c/2 -E E/2 
! P + 10mr IIh J ~ 

This is valid for n = 0 too, so E 4 has the same bound. Finally, E 3 + 0 as 

n ÷ = by Proposition 7.5. Since p and ¥ can be made as small as we wish, it follows 

that E I + ...+ E 4 ÷ 0. Thus fn.Mq(@) => f0.M~($) and, by Mitoma's theorem, we are 

done. 

Q.E.D. 

We now look at the convolution integrals. In order to prove convergence of 

n 
distribution-valued processes such as V of (7.9), we usually prove that the 

real-valued processes (Vn(~)) converge weakly and appeal to Mitoma's theorem. This 

means that we only need to deal with the convergence of real-valued processes. 

In the interest of simplicity - relative simplicity, that is - we will 

limit ourselves to the case where the integrand does not depend on n. The extension 

to the case where it does depend on n requires an additional condition on the order 

of (ii) of Proposition 7.12, but is relatively straightforward. We will be dealing 

with processes of the form 

Ut n = f g(x,s,t)Mn(dx ds). 

Rdx[0,t] 

Let M 0, M I,... be a family of worthy martingale measures of class (p,K) for 

some p > 0, K > 0. Let g(x,s,t,~) be a function on R d × {(s,t): 0 < s < t} x D such 
= 

that 
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(i) for each to, g(o,o,t0,.)I{s<to}_ ~ ~n=0=M nP ; 

(ii) there exist functions Y on D and positive constants 6, q, and C such 
n = 

that if 0 < s < t < t', 

a) Ng(s,t') - g(s,t)llh !Yn(~) It'-tl ~ pn-a.s., all n; 

b) Ilg(s,t') Ilh!Yn(~) pn-a.s., all n; 

En{y~} ~ C, all n. c) 

DEFINITION. If g satisfies (i) and (ii) above we say g is of ~61der class (~,q,C) 

relative to (Mn). 

THEOREM 7.13. Let (M n) be of class (p,K), where p > 2 and K > 0. Let g be of Holder 

I < ~ < I and q > 2p Suppose further that the jumps of M n class (~,q,C), where ~_ _ ~p-1" 

are L2P-dominated, uniformly in n. Then 

(i) {U~, 0 < t < I} has a version which is right continuous and has left 

limits; 

(ii) there exists a constant A, depending only on p, q, C and K such that 

E{ sup IU~I r} < A if I < r < 2pq 
t<1 -- -- -- 2p+q ; 

n is continuous, U n is Holder continuous. Moreover there (iii) if t ÷ M t 

exists a random variable Z n with E{Z~} < ~ such that if r = 2pq 
2p+q' 

I I 
n - -- 2 2/r 

n l < Zn sT A ~ r(log ~) , 0 < s, t < I} IUt+ s- U t _ _ _ 

(iv) the family (U n) is tight on ~{ [0,t], R}. 

(v) Suppose further that ~ => M 0 on D and that for a dense set of = 

t ~ [0,t], g(x,s,t)I{s<_t } e ~s(M). Then (U n, M n) => (U 0, M0). 

PROOF. By replacing C and K by max(C,K) if necessary, we may assume C = K. By 

enlarging K further, we may assume that E{IdMn*l 2P} ~ K for all n. 

Set r = 2pq(2p+q)-1; since q > 2p(~q-1) -I 6 -I ~ p < r < 2p. If X and Y 
• n n 

are the random variables from (7.11) and from the definition of Holder class (~,q,C) 

respectively, then 

(7.15) 
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Indeed the left-hand side is bounded by 

r/2p 2p-r 2p-r 

E{xP } E{yq ) 2q < K r/2p K 2p 
n n -- 

Let us extend the domain of definition of g to include values of s ~ t by 

setting 

g(x,s,t) = g(x,s,tv s), 0 < s < 1, 0 < t < 1. 

Then t ÷ g(x,s,t) is constant on [0,s], so g remains predictable in s and still 

satisfies (i) and (ii). Define 

vtn = ~ g(x,s,t)Mn(dx ds). 
EX [0,1] 

n L r . Let us first show that V n has a continuous version for which sup V t 
t 

Note that A((g(t') - g(t)).M n) is bounded by 

2 SUp 

S 

n* t) ~ Hg(s,t') - g(s,t)II h d M n* ~ 2Y AM (t'- . 

inequality (Thm 7.11 (ii)) 

is 

By (7.4) and Burkholder's 

E~lv~,- v~lr~ = E(I S cgcx,s,t') - g¢x,s,t))Mn(dx ds)l r} 
EX[0,1] 

I 
n* r} 

~ C r En{I f llg(s,t') - gis,t)ll~dkn(S)l r/2 + 12Y~M (t'-t)~l 
0 

n* r , ~ r < C Enix(X r-2 + (2~S ) }(t -t) • 
-- r n 

Then (7.15) and a similar calculation with X I/2 replaced by AM n* shows this 
n 

< Cr K (I + 2r)(t TM t)~r0 

By the same argument 

En{ Iv~l r} ~ CrK(I + 2r). 

Since 8r > I, Corollary 1.2 implies that V n has a continuous version. More exactly, 

there exists a random variable Z and a constant A', which does not depend on n, such 
n 

that for 0 < y < ~ - I/r 

V n _ I 7 sup It.-v l <  nlt'-  
0<t<t'<1 

and 

t<1 

Now by the general theory the optional projection of V n will be right 

continuous and have left limits. But 
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n n 
(7.16) E{VtJ~ t} = S g(x,s,t)Mn(dx ds) = U t pn-a.s., 

R×[0,t] 

so the optional projection of V is a version of U, and U indeed does have a right 

continuous version. 

Note that 

Thus 

by Doob's inequality. 

which proves (ii). 

n def 
IUtl ~ E{]V~]1~t} ~ E{suPlv~I l~t} = S t 

s 

2 
_ r E{ S~} 

t t 

But this is 

2 
r A' 

<- r-ZT =A 

Let us skip (iii) for the moment, and prove (iv). 
n 

a s t o p p i n g  t i m e  f o r  M n s u c h  t h a t  Tn+  6 n ~ 1. 

n n n n n n n n n 

< E{ IV T +6 - VT I IF- T +6 } + IE{VT IFTn+6n } - E{VT IFT }l 
n n n n n n n n 

= E{ IV T +6 - VT IFT +6 } + I SR~ g(x,S,Tn)Mn(dx ds)l 
n n n n n (Tn+6n] 

Let 6 > 0 and let T be 
n 

Similarly, 

T+6 
n n 

S _ _ _ 12}i/2 + ~{ NgCS,~n) 2 1/2 
E{I~Tn+6 n ~Tn12}I/2 < E{I~Tn +6n ~Tn T ll~dkn(S)} 

n 

We can estimate the increment of V n by (ii) and use the hypotheses on g and k in the 
n 

second term: 

n 2 1/2 6 I/2 < 6YEn{Z 2} I/2+ C E {Y X n} 
-- n r n 

n n 
Since both e x p e c t a t i o n s  a r e  b o u n d e d ,  we s e e  t h a t  i f  6 n + 0 ,  t h e n  U T +6 - UT ÷ 0 i n  

n n n 

L 2, hence in probability. Since the U n are bounded in L r by (ii), the family (U n) is 

tight by Aldous' theorem. This proves (iv). 

If now M n => M 0, then Proposition 7.12 implies that the finite-dimensional 

distributions of U n converge to those of U 0. Since the (U n) are tight, this implies 
t t 

that U n => U. 
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n 
It remains to prove (iii). Suppose M is continuous, and compute 

n n r}I/r mR (g(x,u,t+s) - g(x,u,t))Mn(dx du)ir} I/r E{ lut+ s- utl ! E( d×Co,t] 

+ ~{1 ~ g(x,u,t+s)M(dx du) l r )  l f r  
R dx (t,t+s] 

By Burkholder's inequality and (7.4) - and this time M is continuous, so 

AM* - 0 - this is 

t 

_< Cr~{I S IIg(u,t+s) - g ( u , t ) I I ~ n ( u ) l r / 2 }  v r  
0 

t + s  

+ c~,{l S Ilg(u,t+s) I I~nCu) l r l2 )  v r  
t 

Since g is of H'older class (~,q,K) and M n is of class (p,K): 

_< C r E{yrx r/2}I/r(s~tl/2+ s I/2) . 

By (7.~4) we conclude that there is a constant B such that for 0 < s < I 

r 
~A~r 

u~l r) <- B s 

But ~r > I and r/2 > p/2 > I so that (iii) follows by Corollary 1.2. 

Q.E.D. 



CHAPTER EIGHT 

THE BROWNIAN DENSITY PROCESS 

Imagine a large but finite number - say 6 x 1023- of Brownian particles B | , 

B2,..., B N diffusing through a region D C R d • Consider the density of particles at 

a point x at time t. This is of course just the number of particles per unit volume. 

We can approximate it by counting the number in, say, a small cube centered at x and 

dividing by the volume. But is this a good approximation? Not really. If we let 

the cube shrink to the point {x}, the limit will either be zero, if there is no 

particle at x, or infinity, if there is one. So we can't take a limit. We'll have 

to stick to finite sizes of cubes. Since there seems to be no reason to prefer one 

size cube to another, perhaps we should do it for all cubes. Once that is admitted, 

one might ask why we should restrict ourselves to cubes, and whether other forms of 

averaging might be equally relevant. For instance, if # is a positive function of' 

compact support such that f #(x)dx = I, one could define the ~-average as 

N 

i = I  

Finally, we might as well go all the way and compute (8.1) for all test functions +. 

This will give us a Schwartz distribution. In short we will describe the density of 

particles by the Schwartz distribution (8.1). 

It is usually easier to deal with a continuous process than a discrete 

process such as this, so we might let N ÷ ~, re normalize, and see if the process ~t 

goes to a limit. It does, and this limit is what we call the Brownian density 

~rocess. 

From what we have said above, one might think that we should describe the 

particle density by a measure, rather than a distribution, for (8.1) defines both. 

It is only when we take the limit as N + ~ that the reason for the choice becomes 

clear. In general, the limit will be a pure distribution, not a measure. 

We will add one complication: we will consider branching Brownian motions, 

rather than just Brownian motions. The presence of branching gives us a more 

interesting class of limit processes. However, aside from that, we shall operate in 

the simplest possible setting. It is possible to generalize to branching diffusions, 
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or even branching Hunt processes, but most of the ideas needed in the general case 

are already present in this elementary situation. 

A branching Brownian motion with parameter ~ can be described as follows. 

A particle performs Brownian motion in some region of R d . In a time interval 

(t, t+h) the particle has a probability ~h + o(h) of branching. If it does branch, 

it either splits into two identical particles, or it dies out, with probability I/2 

each. If it splits, the two daughters begin their life at the branching point. They 

continue independently as Brownian motions until the time they themselves branch, 

and so on. 

If we start with a single particle and let N t be the total number of 

particles at time t, then N t is an ordinary branching process, and also a martingale. 

Note that we are in the critical case, E{Nt} ~ I. 

We are going to assume that the initial distribution of particles is a 

Poisson point process on R d of parameter k: the number of particles in a set A is a 

Poisson random variable with parameter kIAl, and the numbers in disjoint sets are 

independent. This means that the initial number of particles is infinite, but that 

will not bother us; the Poisson initial distribution makes things easier rather than 

harder. 

Let us first give an explicit construction of branching Brownian motion. 

There are numerous constructions in the literature, most of which are more 

sophisticated than this, which is done entirely by hand, but it sets up the process 

in a useful form. 

Let A be the set of all multi indices, i.e. of strings of the form = 

= nln2...nk where the nj are non-negative integers. Let I~I be the length of ~. 

We provide A with the arboreal ordering: ml...m ~ nl.0.n iff p < q and = p q -- 

m I = nl,... , m = n • If I~l = p, then u has exactly p-1 predecessors, which we 
P P 

shall denote respectively by ~-I, ~-2,..., ~-I~I+I. That is, if ~ = 2341, then 

~-~ = 234, 5-2 = 23 and ~-3 = 2. 

Let ~k be a Poisson point process on R d of parameter k. The probability 

that any two points of ~k lie exactly the same distance from the origin is zero, so 

that we can order them by magnitude. Thus the initial values can be denoted by 

{ x ~ ( o ) ,  ~ ~,  lel = I } .  
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Define three families 

{B~, t ~ 0, a d 3}, {S~, ~ ~ 3} and {N ~, ~ e ~}, 

0, all a; the where the B ~ are independent standard Brownian motions in R d with B 0 = 

S ~ are i.i.d, exponential random variables with parameter ~, which will serve as 

lifetimes; and the N ~ are i.i.d, random variables with P{N ~ = 0} = P{N a = 2} = I/2. 

The families (B~), (S~), (Na), and (XU(0)) are independent. 

The birth time ~(~) of X ~ is 

I~I-I 
S u-j if N u-j= 2, j =I,.., lal-I f 

~(~) = 
I 

t otherwise 

The death time ~(~) of X ~ is 

~(~) = ~(~) + s ~ 

Define ha(t) = I{~(~)~t<~(a)}, which is the indicator function of the lifespan of X a. 

If ~ = nln2...n p (so ~ - p+l = nl) then the birthplace X~(~(~)) is 

n I +1~-I 
Xa(~(~)) = X (0) a-i a-i 

i=I (B~(~-i)- B~(a-i) )" 

NOW let 5 - the cemetary - be a point disjoint from R d , and put 

I ~ if t < ~'(~) or t > ~(a) 

xa(t) = t 

X~(~(~)) + f h~(s)dB a otherwise. 
s 

0 

Note that since h a = I between ~ and ~, X ~ is a Brownian motion on the interval 

[~(~), C(a)), and X ~ = 5 outside it. We make the convention that any function f 

on R d is extended to Rdu {5} by f(5) = 0. 

Finally, define 

(8.2) ~tc~ = ~ ~(x t) 

for any ~ on R d for which the sum makes sense. 

The branching process ~t starting at the single point xn(0) is constructed 

from the X ~ for n ~ a. That is, 

n 
(8.3) ~]t (~)= [ ~(Xt) ' Nn = [ h~ (t). 

t 
~'3 =43 

Note that N n is the number of particles alive at time t, and it is a classical 
t 

branching process of the critical case - we leave it to the reader to verify that 
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this does indeed follow from our construction - hence E{Nt} = I. In particular, 

Dt(@) is finite for all t. 

Furthermore, a symmetry argument shows that, given hC(t) = I (so X ~ is 

alive at t), 

P{x~ E AIxn(0) = x} = P{x + B t 6 A}, where n < ~. (This relies on the fact that all 

) Thus birth and death times are independent of the B t. 

E{ [ ~(Xt)Ixn(0) = x} = Z E{~(Xt)Ixn(0) = x, h~(t) = I} P{h~(t) = IIxn(0) = x} 

= E{~(Bt+ x)} Z P{h~(t) = I} 

= E{@(Bt+ x)}- 

Suppose now that ~ > 0. We can integrate over the initial values, which 

are Poisson(k), to see that 

- t Z-x[2 

= k If (2xt)-d/2e 2t ~(y)dx dy . 

Since Lebesgue measure is invariant this is 

= X~C(x)dx . 

Thus, for any positive ~, 

(8.4) E{~t(~)} = k f ~(x)dx. 

This makes it clear that Dt(~) makes sense for any integrable ~. 

THE FUNDAMENTAL NOISES 

There are two distinct sources of randomness for our branching Brownian 

motion. The first comes from the diffusion, and the second comes from the branching. 

We will treat these separately. 

Recall that k is the parameter of the initial distribution and ~ is the 

branching rate. Define, for a Borel set A C R d , 

W(A × (0,t]) = X -I/2 
t 

Z(A x (0,t])= (k~) -I/2 ~ (N~-I)I 
~A {~(~)<__t, X~(~(~)-)~ A} 
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(If ~ = 0, Z ~ 0). 

These take some explanation. In the expression for W, h a ~ I when X ~ is 

alive so dB ~ = dX ~, and the integral gives us the total amount that X ~ diffuses while 

in A; the sum over ~ gives the total diffusion of all the particles while they are in 

A. Thus W keeps track of the diffusion and ignores the branching. 

Z does just the opposite. N u is the size of family foaled by X ~ when it 

branches, at time ~(~). N ~- I counts +I if X ~ splits in two, -1 if it dies without 

progeny. Thus Z(A x (0,t]) is the number of births minus the number of deaths 

occurring in A up to time t. 

Let us put 

Wt(A) = W(A × (0,t]); Zt(A) = Zt(A × (0,t])° 

PROPOSITION 8.1 W and Z are orthogonal martingale measures. W is continuous 

and R d -valued while Z is purely discontinuous and real-valued. Moreover, 

t 
I 

(i) <W(A)> t = <Z(A)>tI = ~ ( ~ ~s(A)ds)I; 

(ii) <Wij(A) s Z(C)> t = 0 for all Borel A and C of finite measure and all 

i, j < n; 

(iii) both W and Z have the same mean and covariance as white noises (based 

on Lebesgue measure). 

is a dxd matrix whose ijth component is Note. W has values in R d , so <W> 
t t 

<W l, W]> t. 

PROOF. 

easy. 

We must first show W and Z are square integrable. This done, the rest is 

First look at the branching diffusion starting from one of the xn(0). Define 

t 
w~(A) = x  -1/2 ~ / ha(s) i ~B ~. 

n<~ 0 {X: e A} s 

Since the B ~ are independent, hence orthogonal, 

t 
<WnCA)>t = k-l( [ f ha(s) I ds)I 

n~ 0 {X = E A} 
s 

t 
=x -I ( I nn(A)ds)I • 

0 
t 

I 
0 

The interchange is justified since the sum is dominated by Nnds which has 
s 
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expectation t. (I is the d×d identity matrix.) 

It follows that E{IW~(A)I 2} = E{I<Wn(A)>t I} ! td/k. 

Turning to Z, let 

S~ = (N=- I)I[~(~)'~)(t)I{x~(C(~)-) g A}" 

Note that this is adapted to the natural ~-fields (~t) . Since N~-I has mean zero and 

is independent of the indicator functions, M s is a martingale. Noticing that 

~(~) = ~(~) + S ~, where S ~ is eXponential(~), it is easy to see that 

t 

<M=> t = f h~Cs)I ~ds. 
o {x~ ~ A} 

The N ~ are independent, so the M ~ are orthogonal for different ~ and 

t 
I I 

n<~ n<~ 0 {X~ 6 A} 

t 

n 
The processes ~ , n = 0, 1,2,.. are conditionally independent given F0, so 

if m# n 

Then 

(8.6) 

n n 
<Wm(A), W (A)> t = <Zm(A), Z (A)> t = 0. 

<W(A)> t = 
I 

[ <Wn(A) > t 
n 

t 
I n(A)ds) I f 

n 0 

t 
1 

~s(A)ds)l. 

If A has finite Lebesgue measure, this is finite and even integrable by (8.4). The 

same reasoning applies to Zt(A). 

Now that we know Wt(A) and Zt(A) are square-integrable, we can read off 

their properties directly from the definition. If A ~ C = ~ and if they have finite 

measure, 

t 
<W(A), W(C)> t = [ f h~(s)hY(s) I d<B ~, BY> . 

Now <B ~, B~> t = 0 unless ~ = y, and if ~ = y, the indicator function vanishes, so 

<W(A), W(C)> t = 0. Similarly, <Z(A), Z(C)> t = 0. Furthermore both A ÷ Wt(A) and 

A ÷ Zt(A) are L2-valued measures. This is clear for Z from (8.5) and almost clear 
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for w, so we leave the verification to the reader. This proves (i). 

If A and C are two sets of finite Lebesgue measure, Wt(A) is a continuous 

martingale while Zt(A) is purely discontinuous, so the two are orthogonal, proving 

(ii). 

To see (iii), recall W and Z have mean zero and note that by (i) 

Z{Ws(A)Wt(c)T} = E{<W(A), w(C)>s^t)1 

s t 
I 

= (~ S E{ns(A ~ c)}ds)Z 
0 

= (s t)IA a eli 

by (8.4). 

real-valued. 

Exactly the same calculation holds for Z, except that I = I since Z is 

This is the covariance of white noise. 

Q.E.D. 

Corollary 8.2 If $(x) is deterministic 

t t 
E{( S Sd ~b(x)W(dxds)) 2} = E{ S S d (# (x)Z(dxds))2} = t Sd d~2(x)dx • 

0 R 0 R R 

It is clear how to integrate with respect to Z. Here is a fundamental 

identity for integrals with respect to W. 

PROPOSITION 8.3 Let #(x) E L2(Rd). Then 

t t 

a ~  0 s s 0 

PROOF. If #(x) = IA(X), this is true by the definition of W, for both sides equal 

W (A). It follows that (8.7) holds for finite sums of such processes, hence for all 
t 

E L2(R d) by the usual argument. Q.E.D. 

INTEG~ EWUATION ~0~ n 

C (2) R d Let ~ be a real-valued function on . By convention, ~(X;) = 0 

unless t ~ [~(~), ~(~)); for t in this interval we can apply Ito's formula: 

t t 

,(<, = 0 x;, + 10 ha(s' v0(x , • * 10 ha(s' 
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(If t > ~(~), we must subtract *(X~_) from this.) Thus for any test function *: 

nt(*) = no(*) - X ,(x~ )ir~,~,<t, 
I¢/=1 ~ -  '~' '-' 

le >_2 (e) <_t}- - (e) <_t} 

t 

0 
t 

I 
+ [ ~- f h~(s) a , ( X ( ~ ) d s  . 

s ¢ 0 

We can identify all these terms. ~0(*) is of course the initial value. 

t 
sums give all the births and deaths• and combine into ~ 

0 

The next two 

fd ,(x)Z(~ds)- 
R 

Proposition 8.3 applies to the stochastic integral, which equals 

t t i{ /~ f fd V*(x),W(dxds). The final integral is~ ns(A#)ds. 
0 R 

Thus we have proved 

PROPOSITION 8.4. Let * 6 S( Rd)" = 

I 
(8.8) nt(¢) = n0(¢) + 

Then 

t t 

{ ~s (~)ds + ~ f 
0 

~d #(x)Z(dxds) 

t 

+ /~ f fd V,(x)-w(dxas) . 
0 R 

If we check equations (5.3) and (5.4), we see this translates into the SPDE 

(8.9) 

If Gt(x,y) = (2~t)-d/2e 

(8.9) is 

5t 2 

~o = Hk 

ly.xl2 
2 t  • Theorem 5.1 tells us the solution of (8.8) and 

t 

t 

+ ~ 0 f ~d VGt-s (*'y)'W(dyds)" 

Note that in the last integral the ith component of VGt(*,y) is Gt(~'u^ y) so we will 

write VG~(*,y) = G~(V*,y) below. 
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WEAK CONVERGENCE IN THE GAUSSIAN CASE 

If ¢ 6 LI(Rd), let <~> = ~d ~(x)dx. From (8.4) 

E{~t(~)} = X<¢>, t k 0. 

We want t o  est imate the higher moments - a t  l e a s t  the second moments - o f  D. 

Let ~ t (¢ )  = sup ]ns(#) I • 
s<_t 

PROPOSITION 8.5. There exist continuous functions C1(~,t) and C2(#,t) such that 

* 2 
(8.11) E{~t(~) } ~ k2C1(~,t) + k(~ + I)C2(~,t) 

PROOF. Note that the three terms on the right-hand side of (8.10) are orthogonal, 

so, remembering that Z and N have the same c~variance as white noise, (Cor. 8.2) we 

have 

E{~t(~)2} = E{( ~R d Gt(~,y)IIk(dy))2} 

t 
÷ ~ I fd J t_s(#,y)dy ds 

0 R 
t 

+ x o f ~ dl%-s(v*'y)12dyds 

t 

: x(<Jt(*,')> + x<%(*,') ,2) ÷ ~ I <Jt_s(*,')>ds 
0 

t 
+ x f <IGt_s(V,,-)12>ds 

0 

NOW <G2(~,.)> is bounded uniformly in t, so the above is bounded by 

(8.12) E{~t (~)2} ! X2ci (~) + tk(~ + I)c2(~) 

for some c I and c 2. Frc~ (8.8) 

t 
* 9 E{nt(#) 2} < 9 E{n0(*) 2} + ~ E{( { ns(l*l)ds) 2} 

s s 

+gE{ s<tSuP (~/~7~ 10 £d *~ +/f 10 
NOW E{n0(¢)2} = E{(~ ¢(x) [Ik(dx~ 2} 

= k <~2> + k2<~>2 

f d V# • dW) 2} . 
R 

Apply Schwartz' inequality and (8.12) to the second term: 

t t 
E{( I ~s(~ )ds)2} ~ t I E{D~(~)}ds 

0 0 
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t 3 
< k2t2Cl(#) + k(~ + 1) ~-c2(~). 

Apply Doob's inequality to see the third term is bounded by 

t t 

36E{(~ f0 ~Yd * ~*/[ f0 ~a V*'dW)2} 
The two stochastic integrals are orthogonal, so by Cor.8.2: 

= 36 (t k~<~2> + At <IV#f2>). 

Put these three estimates together to get (8.11). 

Exercise 8.1. Show ~t is bounded in L p for all p > 0. (Hint: By Prop. 8.1 and 

= 2 n Burkholder's inequality, Dt LP => W and Z are in L 2p. Use induction on p to 

see Dt L p for all p, then use (8.8) and Doob's L P inequality as above.) 

THEOREM 8.6. Let (~n' An) be sequence of parameter values and let (W n, Z n) be the 

k 
corresponding processes. Let Vn(dx) = k-1/2(n n(dx) - k dx) be the normalized 

n n 

initial measure. If the sequence ((~n+l)/kn) is bounded, then (V n, W n, Z n) is tight 

on =~[0,I], ~'(Rd2+2d)}. 

PROOF. We regard V n as a constant process: V n H V n, in order to define it on 
t 

~{[0,I], ~'(Rd2+2d)}. It is enough to prove the three are individually tight. 

By Mitoma's theorem it is enough to show that (vn(~)), (wn(~)), and (zn(#)) 

are each tight for each ~ E ~(Rd). 

In the case of ~, which is constant in t, it is enough to notice that 

E{Vn(#)2} = <~2> is uniformly bounded in n. 

Then 

We will use Kurtz' criterion (Theorem 6.8b) for the other two. 

T An(6) ffi (6d/kn)n (,), 0 < 6 < I . 

sup (I < wn(~)>t+6 - <wn(~)>t I) ~ An(6) and 
t<1 

Set 

sup (<zn(#)>t+6 - <zn(~)>t ) ~ An(6) 
t<1 

by Proposition 8.1. By Jensen's inequality and (8.11), 
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lim lim sup E{A (6)}__ --< lim lim sup 6~ E{~in*(~)2}I/2 

6+0 n+ ~ 6+0 n+~ % 

~n +1 
! lim 6d(c I + --~--- c 2) 

6+0 n 

= 0 

since (~n + 1)/An is bounded. Furthermore 

n E{lw~(~)l 2} = d E{zt(~) 2} = td < ~2> 

for all n so that for each t, (W~(~)) and (Z~(#)) are tight on R d and R 

respectively. By Theorem 6.8 the processes (wn(~)) and (zn(~)) are each tight. 

Q.E.D. 

THEOREM 8.7. If A n + ~, ~nkn ÷ ~, and ~n/kn + 0, then (V n, Z n, W n) => (V 0' Z 0, W0), 

where V 0, Z 0 and W 0 are white noises based on Lebesgue measure on R d, R dx R+, and 

R d x R+ respectively; V 0 and Z 0 are real-valued and W 0 has values in R d • If 

A n + = and ~n/kn + 0, (V n, W n) => (V 0, W0). 

PROOF. Suppose k is an integer. Modifications for non-integral k are trivial. 
n 

To show weak convergence, we merely need to show convergence of the finite- 

dimensional distributions and invoke Theorem 6.15. 

The initial distribution is Poisson (A n and can thus be written as a sum 

of k independent Poisson (I) point processes. 
n 

~I ^2 
Let ~ , D ,... be a sequence of iid copies with k = I, ~ = ~n" (We have 

^n 
changed notation: these are not the D used in constructing the branching Brownian 

motion.) Then the branching Brownian motion corresponding to An, ~n has the same 

k 
^ n ~2, .. W , W .... and ~I, ~2 distribution as ~I + ~2 + + ~ Define ~I AI ~2 ... , . , ,... in 

the obvious way. Then 

k k 
k ^1 ~ n Z ZAI+...+^ n 

V n = ~I  + ... + ~ n, W n W +...+W , Z n 

x,,7-- ~ 
n n 

We have written everything as sums of independent random variables. To finish the 

proof, we will call on the classical Lindeberg theorem. 

. i ii S i Let ~I' ~" ~I ..... ~p' ~p" ~p f = (R), t1< t 2 ! "" --< %" We must show weak 

convergence of the vector 
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,vn(~p) .. n (#;)) U s d__ef(vn(#1) ''°" • Wtln (#;) ..... W~p(~;), Ztln (~i) ..... Ztp 

This can be written as a sum of lid vectors, and the mean and covariance of 

the vectors are independent of n (Prop. 8.1). 

It is enough to check the Lindeberg condition for each coordinate. The 

distribution of ~ does not depend on ~n' so we leave this to the reader. 

k 
n (~[) = ~-I/2 n Ak ^k , 

Fix i and look at Wt. wt(*~). Now (Wt(#i)) is 
1 k=1 1 

an R d -va lued  con t inuous  m a r t i n g a l e ,  so by Burkho lde r ' s  i n e q u a l i t y  

~k ~k 2 
~{lwt(,[)l 4} ~ c 4 E{l<w ~, i )> l  } 

l 
t 

~ td C 4 ~ E{~(*~)2}ds 

Now t < I so by Proposition 8.5 with k = I, there is a C independent of k and k such 
-- n 

that this is 

C(~n+ I). 

For e > 0, 

1 1 1 1 

by Schwartz. Use Chebyshev with the above bound: 

! [C(I + ~n)]1/2[C(1 + ~n)/k~E2] 1/2 

Thus 

~ C(I + ~n)/kne. 

k 
n 

--I/2Ak . -I/2^k 2 
E{Ikn Wt.(~i )12; ~n Wt.(~i)l > E} 

k=1 i l 
~1 2 ~1 2 

= E { I w t ( ~ i )  I : I w t ( ~ i )  1 > kn E } 
1 1 

~ C3(1 + ~n) /kne ÷ 0. 

Thus the Lindeberg condition holds for each of the W~ (~[).~. The same argument holds 

Z n .~ for the t.(,i). In this case, while (Z~(~))~ is not a continuous martingale, its 
1 

jumps are uniformly bounded by (kn~n)-I/2, which goes to zero, and we can apply 

Burkholder's inequality in the form of Theorem 7.11(i). Thus the finite-dimensional 

distributions converge by Lindeberg's theorem, implying weak convergence. 
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The only place we used the hypothesis that A n ~n ÷ ~ was in this last 

statement, so that if we only have A n + ~, ~n/kn + 0, we still have (V n, 

w n) => (v°,w°). 

Q.E.D. 

We have done the hard work and have arrived where we wanted to be, out of 

the woods and in the cherry orchard. We can now reach out and pick our results from 

the nearby boughs. 

Define, for n = 0, I, ... 

t 

Rt(~) = ~ ~Rd Gt_s(V~,y) • Wn(dy ds) 

t 

Ut(~) = f fd Gt_s(~,y)zn(dy ds). 
0 R 

Recall from Proposition 7.8 that convergence of the martingale measures 

implies convergence of the integrals. It thus follows immediately from Theorem 8.7 

that 

COROLLARY 8.8. 

(i) 

(ii) 

Suppose A n ÷ ~ and ~n/kn + 0. Then 

(V n, W n, R n) => (V 0, W 0, R0); 

if, in addition, An~ n + ~, 

(V n, W n, Z n, R n, U n) => (V 0, W 0, Z 0, R 0, U0). 

Rewrite (8.10) as 

~t($) - k<$> 
(8.13) V(Gt(~,o)) + ~/~ Ut(~) + Rt(~). 

In view of Corollary 8.6 we can read off all the weak limits for which ~ ÷ 0. 
k 

~t(~) - An<#> 
THEOREM 8.9 (i) If k ÷ ~ and ~n + 0, then 

n 

D{ [0,1], __S'(Rd)} to a solution of the SPDE 

~t = ~ ~ + v-~ 

~0 = v0 

converges in 
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(ii) If An+ ~, ~n + ~ and ~n/kn + 0, then 

~(%) - kn<#> 

/kn~ n 

(iii) If k 
n 

converges in ~{ [0,1], ~'(Rd)} to a solution of the SPDE 

~ 1 

~0 = 0 . 

2 ~($) - kn<$> 
+ ~, kn~ n + ~ and ~n + c ~ 0, then 

n 

D{ [0,1], S'(Rd)} to a solution of the SPDE 

St = ~A~ + c~ + V.~ 

~0 = V0" 

converges in 

Theorem 8.9 covers the interesting limits in which k + ~ and ~/k + 0. 

These are all Gaussian. The remaining limits are in general non Gaussian. those in 

which ~ and k both tend to finite limits are trivial enough to pass over here, which 

leaves us two cases 

(iv) k + ~ and ~/k + c 2 > 0; 

(v) ~ + - and ~/k + =. 

The limits in case (v) turn out to be zero, as we will show below. Thus 

the only non-trivial, non-Gaussian limit is case (iv), which leads to measure-valued 

processes. 

A MEASURE DIFFUSION 

1 n 
THEOREM 8.10 Suppose A n + = and ~n/kn + c 2 > 0. Then ~ Dt converges weakly in 

n 

D__{[0,1], S'(Rd)} to a process {~t" t ~ [0,1]} which is continuous and has 

measure-values. 

There are a number of proofs of this theorem in the literature (see the 

Notes), but all those we know of use specific properties of branching processes which 

we don't want to develop here, so we refer the reader to the references for the 

proof, and ~imit ourselves to some formal remarks. 

We can get some idea of the behavior of the limiting process by rewriting 
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(8.13) in the form 

I I 
(8.14) ~ Dt(~) = <~> + CUt(~) + ~/E (V(Gt(~'')) + ~I Rt(~)) " 

I 
If (kn,~n) is any sequence satisfying (iv), {(vn,wn,zn,Rn,U n, ~ n)} is tight by 

n 

Theorem 8.6 and Proposition 7.8, hence we may choose a subsequence along which it 

converges weakly to a limit (V, W, Z, R, U, D)' From (8.14) 

(8.15) ~t(~) = <~> + cUt(~) 

t 

(8.16) 

= <~> + C f fd Gt-S(~'Y)Z(dy'ds)" 
0 R 

In SPDE form this is 

5t 

~ o ( d X )  = dx 

We can see several things from this. For one thing, n is positive, hence 

so is D. Consequently, ~t' being a positive distribution, is a measure. It must be 

non-Gaussian - Gaussian processes aren't positive - so Z itself must be non-Gaussian. 

In particular, it is not a white noise. 

Now ~0 is Lebesgue measure, but if d > I, Dawson and Hochberg have shown 

that ~t is purely singular with respect to Lebesgue measure for t > 0. If d = I, 

Roelly-Coppoletta has shown that ~t is absolutely continuous. 

To get some idea of what the orthogonal martingale measure Z is like, note 

from Proposition 8.1 that 

<Zn(A)> = 

which suggests that in the limit 

t 
I D~(A)ds, f ~  

0 n 

t 

<Z(A)> t = ~ ~s (A)ds' 

or, in terms of the measure u of Corollary 2.8, 

(8.17) v(dx,ds) = Ds(dX)ds. 

This indicates why the SPDE (8.16) is not very useful for studying ~: the 

statistics of Z are simply too closely connected with those of D, for Z vanishes 

wherever ~ does, and ~ vanishes on large sets - in fact on a set of full Lebesgue 

measure if d > 2. In fact, it seems easier to study D, which is a continuous state 

branching process, than Z, so (8.16) effectively expresses D in terms of a process 
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which is even less understood. This contrasts with cases (i)-(iii), in which Z and W 

were white noises, processes which we understand rather well. 

Nevertheless, there is a heuristic transformation of (8.16) into an SPDE 

involving a white noise which is worthwhile giving. This has been used by Dawson to 

give some intuitive understanding of 11, but which has never, to our knowledge, been 

made rigorous. And which, we hasten to add, will certainly not be made rigorous 

here. 

d 
Let W be a real-valued white noise on R x R+ • Then (8.17) indicates 

that Z has the same mean and covariance as Z' where 

t 

z't(~) = f fd ~ s  (y) w(dy ds). 
0 R 

(If d = I, Ds(dY) = Ds(Y)dy, so /~s(y) makes sense. If d > I, ~s is a 

singular measure, so it is hard to see what /~D_ means, but let's not worry about 

it. ) 

F - - -  / 

In derivative form, Z' = ~? W , which makes it tempting to rewrite the SPDE 
S 

(8.16) as 

(8 .18)  ~ =  c~ + ~ 
5 t  

It is not clear that this equation has any meaning if d ~ 2, and even if 

d = I, it is not clear what its connection is with the process D which is the weak 

limit of the infinite particle system, so it remains one of the curiosities of the 

subject. 

THE CASE ~ ÷ 

REMARKS. One of the features of Theorem 8.9 is that it allows us to see which of the 

three sources - initial measure, diffusion, or branching - drives the limit process. 

In case (i), the branching is negligeable and the noise comes from the initial 

distribution and the diffusion. In case (ii) the initial distribution washes out 

completely, the diffusion becomes deterministic and only contributes to the drift 

I 
term ~d ~, while the noise comes entirely from the branching. In case (iii), all 

three effects contribute to the noise term. In case (iv), the measure-valued 
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diffusion, we see from (8.16) that the initial distribution and diffusion both become 

deterministic, while the randomness comes entirely from the branching. 

In case (v), which we will analyze now, it turns out that all the sources 

wash out. Notice that Theorem 8.6 doesn't apply when ~/k + ~, and in fact we can't 

affirm that the family is tight. Nevertheless, ~ tends to zero in a rather strong 

way. In fact the unnormalized process tends to zero. 

THEOREM 8.11. Let k ÷ ~ and ~/k ÷ ~. Then for any compact set K C R d and ~ > 0 

(i) PA,M {Dr(K) = 0, all t 6 [c,I/~]} ÷ I 

and, if d = I, 

(ii) Pk,~{~t(K) = 0, all t ~ ~} ~ I. 

Before proving this we need to look at first-hitting times for branching 

Brownian motions. This discussion is complicated by the profusion of particles: many 

of them may hit a given set. To which belongs the honor of first entry? 

The type of first hitting time we have in mind uses the implicit partial 

ordering of the branching process - its paths form a tree, after all - and those 

familiar with two parameter martingales might be interested to compare these with 

stopping lines. 

Suppose that {X ~, ~ £ ~} is the family of processes we constructed at the 

beginning of the chapter, and let A C R d be a Borel set. For each ~, let 

~A = inf{t > 0: X ~ ~ by t e A}, and define T A 

T ~ = { ~A if ~ = ~ for all ~ < ~, ~ # ~; 

A 
otherwise 

may be The time T~ is our analogue of a first hitting time. Notice that T A 

finite for many different ~, but if ~ ~ ~, T~ and ~A can't both be finite. Consider, 

for example, the first entrance T E of the British citizenery to an earldom. If an 

individual - call him ~ - is created the first Earl of Emsworth, some of his 

descendants may inherit the title, but his elevation is the vital one, so only T ~ is 
E 

finite. On the other hand, a first cousin - call him ~ - may be created the first 

Ickenham; then T~ will also be finite. Earl of 
E 
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In general~ if ~ ~ ~ and if T~A and T~ are both finite, then the descendants 

of X ~ and of X ~ form disjoint families. (Why?) By the strong Markov property and the 

independence of the different particles, the post-T~ and post-T~ processes are 

X ~ - ~ conditionally independent given (T A) and X~(T~) 

Let pX be the distribution cf the branching Brownian motion with branching 

x X I is an rate ~ which starts with a single particle X I at x. Under PO" then, t 

ordinary (non-branching) Brownian motion. 

The following result is a fancy version of (8.4). While it is true for the 

same reason (symmetry), it is more complicated and rates a detailed proof° 

PROPOSITION 8.12. Let ~(x,t) be a bounded Borel function R n x R+ , with ~(x,~) = 0, 

x R d • For any Borel set A~ R d 

%{ x = (~A),TA) } • 

PROOF. By standard capacity arguments it is enough to prove this for the case where 

A is compact and ~ has compact support in R d × [0,~). We will drop the subscript 

and t A. and write T ~ and ~ instead of T A 

Define u(x,t) = E0{~(X11,t + I)}. Note that {u(X I I' t ^ I), t >__ 0} 
t A T 

is a martingale, so that we can conclude that u ~ C (2) on the open set A c x R+ and 

5 I 
~-~ U + ~ AU = 0. Thus by Ito's formula 

Yt g=ef ! u(X ~ t ^ T ~) 

tAT ~' 
t 

= u(x,0) + [ f h'XCs) z Vu(x~,s) • ~ 
0 { s<T ~} s 

u(x~(~)_, C(~))I (N ~- I), 
{C(~)<_t T ~} 

where h ~, B a, ~(~), and N ~ are the quantitites used to define the branching process. 

Note that Yt = Dt(u(''t)) as long as t < inf T ~. Since u is bounded, Y has all 

moments. We claim it is a martingale. 

Certainly the stochastic integrals are martingales, hence so is their sum. 

To see that the second sum is also a martingale, put 
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v = u(X~(~(~) -), ~(~))(N ~- I)I 
t {~(~) < t ^ T ~} 

Then v~ = 0 if t < C(~), it is constant on [~(~), ~), and it is identically zero on 

the set {T ~ < ~(~)}. Thus if s < t, E{v~I~t} vanishes on {t < ~(~)}, and equals v~ = 

v on {s > ~(~), T ~ > ~(~)}. One can use the fact that N ~- I has mean zero and is 

independent of (X ~, ~) to see that the expectation also vanishes on the set {s < 

~(~), t _> ~(~), T ~ _> C(~)}. Thus in all cases E{<IFs}_ = Van' proving the claim. 

xl 
If x is a regular point of A, i.e. if P0{T = 0} = 1, then u(x,t) = #(x,t) 

for all t > 0. A Brownian motion hitting A must do so at a regular point, so 

u(X ~ T ~) = ~(X~ , T~). (This even holds if T u = ~, since both sides vanish then.) 
T ~ ' T 

Thus 

u(x,0) = E~{lim Yt } = E~{ ! *(X~'T T~)}" 

Q.E.D. 

REMARKS. This implies that the hitting probabilities of the branching Brownian 

motion are dominated by those of Brownian motion - just take ~ --- I and note that the 

left hand side of (8.14) dominates EX{sup ~(XT~,T~)} = pX{T~< ~, some ~}. It also 

implies that the left hand side of (8.14) is independent of ~. 

We need several results before we can prove Theorem 8.11. 

treat the case d = I. Let D be the unit interval in R I and put 

H(x) = px{T~ < ~, some ~}. 

Let us first 

H (x) = £ (x - I - /~)-2 if x > I. PROPOSITION 8.14. ~ 

PROOF. This will follow once we show that H is the unique solution of 

2 
(8.19) u" = ~ u on (I,~) 

u(1) = I 

0 < u < I on (I,~), 

since it is easily verified that the given expression satisfies (8.19). 

Let T = inf T ~. If x > 1, Proposition 8.12 implies 
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(8.20) pX{TIX < h} = P0{TX < h} = o(h) as h ÷ 0. 

Let ~ be the first branching time of the process. Then 

+ pX{~ < h, ~ A h < T < --}. 
IX -- 

The first probability is o(h) by (8.20). Apply the strong Markov property at ~ ^ h 

to the latter two. If ~ > h, there is still only one particle• X I, alive, so T = T I 

and the probability equals E {~ > h, HIX(X~Ah)} + o(h), where the o(h) comes from 

I 
ignoring the possibility that T < ~ ~ h. X either dies or splits into two 

independent particles, X 11 and X 12 at ~, so if ~ < h, 

11 
+ - I I . Since T 

I{T<. } : I{T11<~ } I{T12<. } {TII<.,T12<~} 

F~, we see the second term is 

< . CxL  
11 12 1 

where we have used the fact that X~ = X~ = X~_. 

Add these terms together to see that 

E {HIX(X~^h_ ) (x) = I x 2IX x I } - H ~ EIX{~ < h; H (X ,h_)} + o(h). 

X I is Brownian motion up to ~, which is exponential (IX), so we can 

calculate this. Divide by EX{~ A h} > (I - e-ixh)/ix, let h ÷ 0, and use Dynkin's 

2 
f o r m u l a .  The l e f t  h a d  s i d e  t e n d s  t o  H " ( x ) / 2  w h i l e •  s i n c e  Hp.(X~^h ) + H ( x ) ,  t h e  

tx 

r i g h t  h a n d  s i d e  t e n d s  t o  IX H 2 ( x ) / 2 .  Thus  HIX s a t i s f i e s  ( 8 . 1 9 ) .  

To see that the solution of (8.19) is unique, suppose that u I and u 2 are 

beth solutions and that u~(1) < u~(1). Let v = u 2- u I. Then v" = Ix(u1+ u2)v, which 

is strictly positive on {x: v(x) > 0}. Thus v' is increasing on {v > 0} , while 

v(1) = 0 and v'(1) > 0. This implies that v' is increasing on [I,~), hence v(x) ÷ 

as x ÷ ~, contradicting the fact that 0 < Ul, u 2 < 1. Thus u~(1) = u~(1), 

ui(I) = u2(I) , and the usual uniqueness result for the initial value problem implies 

that u I -= u 2. Q.E.D. 

12 
and T are independent given 

Moving to the d-dimensional case, let D be the ball of radius r centered 
r 

at 0, let T = inf T ~ and put 
D 1 ' 

f (x,t) = P~{T _< t}. 
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x l  
Let Q(x,r,ds) = P0{~D ds} be the distribution of ~D 

r r 

motion. 

for ordinary Brownian 

LEMMA 8.15. Let r > 1 and let x, y 6 R d be such that Ixl > r and IYl = r. Then 

t 
f (x,t) ! f Q(x,r,ds)f (y,t-s). 

0 

PROOF. In order for a particle to reach D 1 from x either it or one of its ancestors 

must first reach D . Now 
r 

f (x,t) = I - px{T; > t, all ~} 

and 

x ~ > t all ~} = P {for all ~: T > t for all ~ > ~ if T D _ 

I r 

Let us apply the strong Markov property at T ~ . Since IYl = r and f (y,t) 
D 
r 

is sym~netric in y, the conditional probability that the particle - or some descendant 

- reaches D 1 b e f o r e  t g i v e n  t h a t  T c~ < t i s  f ( y , t - T ; ) .  S i n c e  t h e  d i f f e r e n t  p o s t - T  ~ 
r r 

processes are independent, the above probability equals 

t EX{n(1~ ~ - f (y, -TDr)}, 

D ~ > t. Thus where f (y, t-T ) = 0 if T D 
r r 

r 

< 1-E;{1 - ! f (y, t-T;r) } 

t e)} 
= ~x{[~ e f~(y' -TDr 

= Eo{f~(Y' ~D )} 
r 

by Proposition 8.12. Q.E.D. 

This brings us to Theorem 8.11. 

PROOF of Theorem 8 . 1 1 .  Suppose without loss of generality that K is the unit ball 

--k =k --k 
D I • Write ~ = ~t + Dt where ~t comes from those initial particles inside D2, and 
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=k k -A 

NOW if we start a single particle from x, ~(1) is an ordinary branching 

process hence (see e.g. Harris [28]). 

pX{~t( c I) > 0} ~ ~ as ~ ÷ ~ for t > 0. 

Thus 

Next 

P~{~t = 0 all t > e} = P { (1) = 0} 

f c ck = -- kdx ~ - - - - ÷  O. 
D2 ~e e 

PIj{~(D1) > 0 some t < l/e} 

t 

< ~dD2 f 
- 0 

dx 

Q(x,~,ds)f (y,t-s)kds 

by Lermna 8.15. 

Now in order for a particle to hit D I , its first coordinate must hit 

[-1,1], so that f(y, t-s) <__H(lyl). Thus this is 

< k H (3) ~Rd D 2- Q(x, 3, [0,t])dx . 

This integral is finite - indeed, it is bounded by 

_ ~ lxl-3/2) 2 
pX{ sup IXls - X I < IXl - 3} < C e 2t , so by Proposition 8.14, this is 

u 0<s<t -- -- 

=C k_ I (~ + ~6/p)-2 ÷ 0. 

Putting these together gives (i). In case d = 1, 

i P{~cD I)-~= >Oso~et>O}=2 f 6--Cx-,+,' ~-2~ 
- -  1 I ~  

< 1 2 ~  0 - -  

giving ( ii ). 

Q.E.D. 
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THE SQUARE OF THE BROWNIAN DENSITY PROCESS 

Now that we have seen how the Brownian density process can be squeezed out 

of an infinite particle system, we can't resist the temptation to look at its square. 

We renormalize during its construction, so that it is actually the square by analogy 

rather than by algebra, but it is at least closely related. 

We return to the system of discrete particles to set up the process and 

then take a weak limit at the end. We will show that the limiting process satisfies 

a stochastic partial differential equation whose solution can be written in terms of 

multiple Wiener integrals. In particular, it is non-Gaussian. The end result is in 

Theorem 8.18. 

Let {X ~, ~ E N} be a family of i.i.d, standard (i.e. non-branching) 

Brownian motions in R d, with initial distribution given by a Poisson point process 

Hkof parameter k. Set, as before, 

Now ~(~)= [ #(X~)#(X~).~ ~ We will first symmetrize this, then throw away the terms 
A 

a,~ 

with ~ = ~, to get a new process, Qt' 

Let" {~, ~ £ N} be a sequence of i.i.d, random variables, independent of 

the X ~, such that P{~ = I} = P{~ = -I} = I/2. Define 

¢8.211 ~tc~) = [ ~ ~cx~) 
ueN 

and, for any function ~ on R d × R d, set 

This is the process of interest. We define it on R 2d rather than 
d 

R ,; 

to see its connection with ~2, set ~(x,y) = ~(x)#(y). Then 

Qt(~) = k-I(~2(~) - ~t(~2)). 

Notation: Let D C R 2d be the set {(x,y): x C- R d, Y e Rd, x = y}. If ~ is a measure 

on R d, define a measure ~ ~ ~ on R 2d by ~ ~ ~(A) = ~ x ~(A-D), where A C R 2d, and 

x ~ is the product measure on R 2d. If we let ~k = ~0' which is the symmetrized 

version of II k, then Q0 = ~k~ ~k and Qt = ~t ~ ~t" 

If we try to write Q in differential form, we would expect that dQ = ~t x 
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~t + ~t ~t" This is roughly what happens. To see exactly what happens, tho, we 

must analyze the system from scratch. 

t 
Define Wt(A) : X -I/2 [ S IA(X~)dX:s as before, and let its symmetrized 

0 

version be 

t 
Wt (A) = k-1/2 [ ~E S IA(X~s)dX ~" 

0 

Since there is no branching, (8.10) becomes 

t 
13t(~) = S d Gt(#'Y)IG0(dY) + k l / 2  S 

R 0 

{d ?Gt-s(~'Y)'W(dy ds). 

Its symmetrized version is 

t 
(8.23) ~t (#) : SRd Gt(4~'Y) ~0(dY ) + ki12 S S d VGt-s(¢'Y)'W(dyds)" 

0 R 

Let us use V I and 72 to indicate the gradients V1~(x,y) = Vx~(X,y) and 

?2~(x,y) = ?y~(X,y). Similarly we define the Laplacians 41 = 4 x and 42 = Ay, so that 

the Laplacian on R 2d is A = 41 + 42 • 

If ~ = C2(R 2d) has compact support, then by Ito's formula 

(8.24) 
t t 

Qt (~b) = Q0(~ ) + k-1 [ ~ [ S V-~(X~, x~)•dx~ + ~ ?~ (xa,X~)'dX~ 
~#~ 0 i s s s z s s s 

t 
+ (~)-' ~ ~ S 4,(x~,x~)~s. 

ee~ 0 

Each of these sums can be identified in terms of ~, Q and the martingale 

t 
W and W. The last term, for instance, is just (2k) -1 S Qs(4~ )ds, while measures 

0 
t 

~!3 o 
t t 

: ~ s ~%, (~ ,x~> .< -~  s ~<x:,x~>.< 
!g o ~ o 

t t 

0 sx ~ 0 

t t 
= k112 S S d ~ s ( V l ¢ ( x , ' ) ) - ~ s x -  x l / 2  S SdVl*(x,x)'dWsx" 

0 R 0 R 

• dW 
sx 

Let X(x) = (Vld/)(x,x) + (V2~)(x,x). Then (8.24) becomes 

t , ~ ~,,2£ ~ (v,(x >>~ 
Qt (~) = Q0 (~) + [ Qs (A~)ds + dx[0,t]s ! sx 
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(8.25) 

+ k -I/2 ~ ~s(V2 ~(''y))'d~ - k -I/2 Sd X( x)°dW . 
dx [0,t] sy R x[0,t] sx 

Let us write Q = Q + R where 

I 
Qt(d2) = Q0(~) + 

t 
~s(~)ds + k -I/2 

+ k -I/2 ~dx[0,t]~s(V2~(o,y)).dWsy; 

t 
I ~ k-I/2 

(8.26) Rt(~) = ~ Rs(~)ds + Sd X(x)°dW • 
R x[0,t] sx 

These are integral forms of SPDE's which we can solve by Theorem 5. I. 

get them in the form (5.4), define a pair of martingale measures on R 2d by 

) = Sd I Sd*(X 
R [0,t] 

To 

and 

: ( Sd ~(x'Y)~sCdy)l&s. 
M~(~) ~d× [0,t] R 

Note that these are worthy martingale measures. The covariance measure for M I, for 

instance, is ~s(dX)~s(dX')~y(y')dydy'dsI, hence its dominating measure is 

K1(dx dy dx'dy'ds) = ~s(dX)~s(dX')6y(y')dydy'ds, 

which is clearly positive definite. 

Notice also that the M i are neither orthogonal nor of nuclear covarianceo M I and M 2 

have values in R d (since W does) and, if we abuse notation by writing 

S dy) become  

1 t A_1/2M1(VI~) A_I/2M2(V2~) " (8.27) Qt(~) = Q0(~) + ~ { Qs(d~)ds + + 

By Theorem 5.1 

Qt(~) = Q0(Gt~) + R Sdx[0,t]VIGt_s(~)(x,y,s)°S2(dx dy as) 

+ Sd V2G t s(~)(x,y,s).M1(dx dy ds). 
R x[0,t] - 

If we write MI(~) as S ~s(~(°,Y))dWly this becomes 

(8.28) Qt(~) = Q0(Gt~) + ~d×[0,t]~s(VIGt_s$(X,,))-dWsx 

+ {dx[0,t]~s(V2Gt_s~(',Y))'dWsy- 
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t 
Next, define Nt(~) = ~ ~(x,x)dWsx. N is an orthogonal Rd-valued 

0 

martingale measure on R 2d, and (8.26) becomes 

t 
Rt(~) ~ Rs(A~)ds + k-1/2Nt(V1~+V2~). 

ly-xL2 
Let Pt(x,y) = (2gt)-d/2e 2t and let Gt(x,y;x',y') = Pt(x,Y)Pt(x',y')- 

Then G is the Green's function on R 2d for this problem, so that, by Theorem 5.1 it 

is 

or 

(8.29) 

= k-I/2 fd (VIGt s ~(x'y) + V2Gt-s~(X'y)'N(dx dy de) 
R x[0,t] 

Rt(~) = k -1 f [V_G (~)(y,y) + V2(G t s(~)(y,y)] • W(dyds) 
Rdx[0,t] i t-s 

If we let k ÷ ~, we will see that Q and R have weak limits, and in fact 

R => 0. Most of the work has already been done. Let us make the dependence on k 

explicit, writing ~, k, QA etc. Note that ~ and ~ have the same distribution, 

and thus both have hhe same means and covariances as a white noise, independent of k. 

They are orthogonal, hence ~ and ~k must converge weakly to independent white noises 

by Theorem 8.7. We know about the moments of D from (8.4), (8.12), Proposition 8.5 

and Exercise 8.1. In the case of ~, 

(8.30) E{~t(~)} = 0, E{~(~)} = k<~2>, 

the latter following since the left hand side is 

Once can show as in Exercise 8.1 that k -1/2 ~k is L P bounded, independent of k, for 

all p < ~. 

In order to establish that Q converges weakly, we need to show that R => 0 

and that the various terms of (8.28) converge weakly. Let us dispatch the easy parts 

of the convergence argument first. 

PROPOSITION 8.16. The processes k -I/2 ~k, k-1~k~ ~k, ~, k-l~k, R k and Qk are tight 

on the appropropriate space D{ ([0, I] ,__S' (~)}. Moreover, if V 0 and W 0 are independent 
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white noises on R d and Rd× R+ respectively, with values in R and R d 

respectively, then, as k + 

(1-I/2~1, i-lg1 @ ~1, ~1, i-I/2 I, R 1) => (V 0, V0~V 0, W 0, n,0) ' 

where ~ is a solution of the SPDE 

5t ~ A~ + V,W 0 

= V 0 
~0 

Note. V 0 ~V 0 is a multiple Wiener integral. We can define V0~ V0(A) = 

V0(AI)V0(A2 ) if A = A I x A 2 and A I ~ A 2 = ¢, and extend it to all Borel A by the 

usual approximation arguments. 

PROOF. As remarked above ~k => W 0, and we have proved k-I/2~ k converges weakly. We 

leave it as an exercise to show that k-I/2~ k => V 0 . If ~ and ~ are test functions of 

d 
disjoint support in R , 

(k-I/2uk(~), k-I/2~k(~)) => (V0(#), V0(~)). 

Multiplication is continuous on R 2, so this implies that 

X-1 ~I~x(¢,¢) = x-IEI(¢)~I{+) => v0(¢)v0(+) = v0~v0(~+). 

This holds for finite sums of such functions, hence for all ~(x,y) ~ ~(R 2d) by 

approximation. 

In view of (8.23), the convergence of I -I/2 ~k to ~ follow from Proposition 

7.8, and the limit is identified as in Theorem 8.9(i). 

The tightness of R 1 follows from (8.29) and Proposition 7.8, and, from 

(8.29) 

{ ~(~)2} c 
E R !~+ O, 

hence R 1 => 0. 

We leave it to the reader to use Proposition 7.6 to show joint convergence 

of these processes. Q.E.D. 

This leaves us the question of the weak convergence of Q or, equivalently, 

of Q. In view of (8.28), it is enough to show the convergence of the stochastic 

integrals there. 

Let ~t = k-I/2 d f ~k(VIG ~(x'°))'d~ " 
R x[0,t] s t-s xs 
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If ¢(x,y) = ¢(x)x(y) , then 

k S X-1/2 ~ (X)  VIG t S #(x)id~'W)~ ° 
Ut = ~dx[0,t] - XS 

Let (k) be a sequence tending to infinity. 
n 

k k k 
PROPOSITION 8.17. (~ n, k-~/2 g n, U n) => (W 0' D, U0) 

where 

ut°(¢) = S~ n CV.G. ~(x,-))-dW0xs,¢~ SCR 2d) 
[0,t] S ] t-S ----- • 

k k 
PROOF. We already know from Proposition 8.16 that (W n, k-I/2 D n) => (W 0, ~]). It 

remains to treat U. The idea of the proof is the same: the martingale measure 

converges, hence so does the stochastic integral. However, we can't use Propositions 

7.6 and 7.8, for the integrand is not in ~s. We will use 7.12 and 7.13 instead. 

k k 
0 

Define (V , W 0) and (~ n, ~ n) canonically on D = D([0,1], S'(R2d)), and 

denote their probability distributions by p0 and P respectively. By (8.23) we can 

k 
n 

define Dt on D simultaneously for n = 0,1,2,... as a continuous process. That is, 

the stochastic integrals in (8.23) are consistent up to sets which are of pn-measure 

zero for all n > 0. Thus we can also define 

k 

n (¢)VP X(x)-~ n g(x,s,t) 
d×[0,t]s t-s xs 

for each s,t and x, independent of n. You can do better. 

Exercise 8.2. Show g(o,.,t0)I{s<_t0} 

Wkl A 2 
W01 I W t..- , 

e ~s(W), where W is the sequence 

Hint. It is not quite enough to approximate Ds(~) by the step function D[ms](~) 

m 

where [ t ]  i s  t h e  g r e a t e s t  i n t e g e r  i n  t ,  s i n c e  i t  i s  n o t  c l e a r  t h a t  t h i s  w i l l  be  a 

continuous ~unction of ~ on ----D" Go back one step further and approximate ~[ms] (~) 

m 
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itself by the integral of a deterministic step function with respect to dWxs. This 

will be continuous in ~. 

Now apply Theorem 7.13 with p = q = 4 and ~ = I. Note that g is of H'older 

class (1,4,C) for some C. Indeed (i) of the definition was verified in the above 

exercise; if we take Yn(~) = sup[ IIVPtx II. + NPtX II.] then parts (a) and (b) of 
t<1 

(ii) hold, while (c) follows from the uniform LP-boundedness of k-I/2~ko 

k 

The family (W n) is of class (4,K) (see Chapter 7) for some K, and 6, P, 

and q satisfy the necessary inequalities, so that Theorem 7.13 (v) ~mplies that 

Ut(~) => Ut(~) for ~ of the form X(x)~(y). It follows that there is also convergence 

for finite sums of such functions. Since any q5 ~ S(R 2d) can be approximated 

uniformly and in L p by such sums, it is easy to see that un(~) => U(~) for all 

E S(R2d). We leave the details to the reader. It now follows from Mitoma's 

k 
theorem that U n => U 0 on D{ [0,1], S'(R2d)}. 

To show that the triple converges jointly, let fn(x,t,~) be the 3x2 matrix 

0 Pt~ 2 

k van ) T, = ~k n k n k 
and let M n = (W n, in which case (fnoMn) t C t (~I)' Dt (@2)' utn(~3x))T' and 

fn° M n => f0 M0 by Proposition 7.12, which implies joint convergence. Q.E.D 

REMARK. We took p = q = 4 in the above proof, but as W and U are L p bounded for all 

p, we could let p and q ÷ ~ with p = q. In that case, Theorem 7.13(iii) tells us 

that U is L p bounded for all p, and W61der continuous with exponent ~ - £ for any 

£ > 0. 

The second integral in (8.28) also converges, so, combining Propostions 

8.16 and 8.17, we have 

THEOREM 8.18. 

the SPDE 

The process QA converges weakly in ~{[0,I], ~'(R2d)} to a solution of 



(8.31) 
(x,y) 

Q0 
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1 ; + ~(y)Vl"W 0 = ~ ~Q(x,y) + D(x)V2"W s s 

= V 0 ~ V 0 

PROOF. There is very little to prove. (8.31) is just the differential form of 

(8.25) (with W replaced by W 0 and ~ by D) and (8.28) is the unique solution of 

(8.25). By Propositions 8.16 and 8.17, all the stochastic integrals converge to the 

right limits, so equation (8.28) is valid for the limiting process, hence so is 

(8.25). 

Q.E.D. 

V 0 W 0 _ If we plug (8.23) - which remains valid if we replace ~0 by and W by 

into (8.25) we get Q in all its glory. For simplicity's sake we will only write it 

for ~ of the form ~(x,y) = X(x) #(y). 

Qt(~) = ~R2d_DPt_sX(X)Pt_s~(y)V0(dx)V0(dy) 

+ Rfd×[0,t][ ~R d PsX(X)V0(dx) + ~Rd×[0,t] vPs-uX(x)'W0(dxdu)]V*(y)'w0(dyds) 

+ fa [ ~d Ps *(x)v°(dx) + ~a× VPs-u *(x)'w°ldxdu)]vx(y)'w°(dyds)" 
R x[0.t] R [0.t] 

The first integral is a classical multiple Wiener integral. The next two 

could also be called multiple Wiener integrals, as they are iterated stochastic 

integrals with respect to white noise. 



CHAPTER NINE 

We have spent most of our time on parabolic equations; non-parabolic 

equations have made only token appearances, such as at the beginning of these 

notes when we took a brief glance at the wave equation, which is hyperbolic. 

It is fitting to end with a brief glance at a token elliptic, Laplace's 

equation. 

We will give one existence and uniqueness theorem for bounded regions, 

and then see how such equations arise as the limits of parabolic equations. 

In particular, we will look at the limits of the Brownian density process as 

t ÷ ~. 

Let D be a bounded domain in R d with a smooth boundary. Consider 

(9.1) ~ du = f in D 

[ U = 0 on 5D • 

If f is bounded and continuous, the solution to (9.1i is 

(9.2) u(y) = f K(x,y) f(x)dx = K(f,y), 

where K is the Green's function for (9.1). Notice that in particular, 

AK(f,y) ='f(y). 

Let M be an L2-vaiued measure on R d (not a martingale measure, for 

there is no t in the problem!) Set Q(A,B) = E{M(A)M(B)} and suppose that 

there exists a positive definite measure Q on R d × R d such that 

IQ(A,B)I !Q(AXB) for all Borel A, B C R d . This assures us of a good 

integration theory. We also assume for convenience that M(~D) = 0. 

Let T be a kth order differential operator on R d with smooth 

coefficients (0 < k < ~) and consider the SPDE 

(9.3) ~ AU = ~ in D 

U = 0 in ~D 

Let us get the weak form of (9.3). Multiply by a test function # and 

integrate over R d , pretending M is smooth. Suppose # = 0 on 5D. We can 

then do two integrations by parts to get 

(9.4) f u(x)A¢(x)~ = f T ~(x)¢(x)~. 
D 

Let T* be the formal adjoint of T. If T is a zeroth or first order 



417 

operator, or if ¢ has compact support in D, we can integrate by parts on the 

right to get 

(9.5) U(d¢) = f T*¢(X) M(dx). 
D 

Let H be the Sobolev space introduced in Example I, Chapter 4. We say 
n 

U is an H solution of (9.3) if for a.e.~, U(o,~) takes values in H and 
n -n 

(9.5) holds for all ~ E H • We say U is a weak solution if U E S'(R d) a.e. 
n = 

and if (9.5) holds for all # 6 ~0' where 

~0 = {¢ ~ ~(Rd): ~ = 0 on ~D}. 

PROPOSITION 9.1. Let k = order of T. If n > d + k, then (9.3) has a unique 

H -solution, defined by 
n 

(9.6) U(~) = f T*K(~,y)S(dy). 

This also defines a weak solution of (9.3). 

PROOF. Uniqueness. By the general theory of PDE, ¢ E H => 
n 

K(#,-) E Hn+2 ~ Hn. If U is any Hn-SOlution, apply (9.5) to ~(y) = K(~,y): 

U(~) = U(~) = f T*~(y)M(dy) = f T*K(~,y)S(dy). 
D D 

d 
Existence. Define U by (9.6). If ~ e C (R), 

E{[U(*)I 2} = E{[ f T*K(*,y)M(dyI] 2} 

D 

= I f T* K(#,x)T*K(*,y)Q(dx dy) 
D D 

< C I,T*K(~,')R2 

L 

where C I = Q{D x D}. By the Sobolev embedding theorem, if q > d/2 this is 

2 
< C2nT*K(¢ ,"  ) [1 - -  q 

T is a differential operator of order k, hence it is bounded from Hq+ k ÷ Hq, 

while K maps Hq+k_ 2 ÷ Hq+ k boundedly. Thus the above is 

< C4W ~" 2+k_2 

It follows that U is continuous in probability on Hq+k_ 2 and, by Theorem 

4. I, it is a random linear functional on H for any p > q + k - 2 + d/2. Fix 
P 

a p > d + k - 2 and let n = p + 2. Then U 6 H_n. (It is much easier to see 
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that U ~ ~'(Rd). Just note that T'K(#,.) is bounded if # G ~(R d) and apply 

Corollary 4.2). 

If ~ e SO" 

U(A#) = f T*K(A~,y)M(dy) 
D 

= f T*~(y)M(dy). 
D 

On the other hand, C0C ~0' and C O is dense in all the H t. 

continuous on H SO the map ~ ÷ 4# ÷ U(~) of H ÷ H + R 
p n p 

while on the right-hand side of (9.5) 

U is 

is continuous, 

E{I fd T* ¢~j2} ~C,T.¢,2® ~c,¢,~+q. 
R L 

which tells us the right-hand side is continuous in probability on Hk+q, 

hence, by Theorem 4.1, it is a linear functional on Hd+ k = H n. Thus (9.5) 

holds for # ~ H n. Q.E.D. 

LIMITS OF THE BROWNIAN DENSITY PROCESS 

(9.8) 

and K itself is given by 

The Brownian density process Dt satisfies the equation 

(9.7) ~ = ! A~ + a V.& + bZ 
at 2 

where W is a d-dimensional white noise and z is an independent 

one-dimensional white noise, both on R d x R+, and the coefficients a and b 

are constants. (They depend on the limiting behavior of ~ and k.) 

Let us ask if the process has a weak limit as t ÷ ~. It is not too hard 

to see that the process blows up in dimensions d = I and 2, so suppose d ~ 3. 

R d The Green's function G t for the heat equation on is related to the 

Green's function K for Laplace's equation by 

K(x,y) = - f Gt(x,y)dt 
0 

where C d is a constant. 

C d 
K(x,y) = 

i y_x i d-2 ' 

The solution of (9.7) is 
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t 

Tit(C) = T)oGt(~)) + a 
0 

t 

~R d VGt_s(~,y)-W(dy ds) + b 
0 

dGt_s(¢,Y)Z(dyds) 
R 

d~f ~0Gt(~) + a Rt(~) + b Ut(~). 

and U t are mean-zero Gaussian processes. The covariance of R t is 

t 

E{Rt(~)Rt(~) } = ~ fRd(VxGt_s)(~,y)-(VxOt_s)(~,y)dy ds . 
0 

Now VxG = -V G; 
Y 

if we then integrate by parts 

t 

= - 0 ~ ~d AyGt-s(~'Y)Gt-s(~'y)dy ds 

t 

= - ~ Id Gt-s(A#'Y)Gt-s (y'(~)dy ds 
0 R 

= - f G2t_2s(d~,~)ds 
0 

2t 

= - ~ d ~(Y) f Gu(d#,y)ds dy 
0 

= - ~ d ~(Y) [-~(x) + G2t(x,~)]dy 

by (5.7). Since d ~ 3, G t ÷ 0 as t + ~ so 

I 
(9.9) E{Rt(#)Rt(~) } + ~ <~,~>. 

The calculation for U is easier since we don't need to integrate by 

parts: 

t 

E{Ut(~)Ut(~)} = 0 f ~d Gt-s(#'Y)Gt-s($'y)dy ds 

2t ! = ÷ ~(¢,~) 
2 ~ G2t-u(0'~)du - 2"" 

as t ÷ ~. Taking this and (9.9) into account, we see: 

PROPOSITION 9.3. Suppose d ~ 3. AS t ÷ ~, /2 R t converges weakly to a white 

noise and /~U t converges to a random Gaussian tempered distribution with 

covariance function 

(9.10) E{U(¢)U(~)} = -K(¢,~). 

In particular, Dt converges weakly as t ÷ m. The convergence is weak 

convergence of S'(Rd)-valued random variables in all cases. 
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Exercise 9.1. Fill in the details of the convergence argument. 

DEFINITION. The mean zero Gaussian process {U(#): ~ • ~(Rd)} with covariance 

(9.10) is called the Euclidean free field. 

CONNECTION WITH SPDE's 

We can get an integral representation of the free field U from 

Proposition 9.3, for the weak limit of /2 U t has the same distribution as 

fd  Gs(*'Y)Z(dY as). 
0 R 

This is not enlightening; we would prefer a representation independent 

of time. This is not hard to find. Let W be a d-dimensional white noise 

on R d (not on R d × R+ as before) and, for # £ ~(Rd), define 

(9.11) U(~) f f i  fRd?K(#,y).W(dy). 

if ~, ~e ~(Rd), 

E{U(¢)U(%)} = f dV~(~,y).VK(%,y)dy 
R 

= - fR d K(~,y)~K(~,y)dy 

= - f d K(~,y)~(y)dy 
R 

= - K(~,~). 

(This shows a posteriori that U(#) is definedl) 

Gaussian process, it is a free field. 

Thus, as U(#) is a mean zero 

PROPOSITION 9.4. U satisfies the SPDE 

(9.12) ~U = V.W 

PROOF. U(~) = f VK(~#,y) oW(dy) 
R 

= f V*(y).W(dy) 
R 



since for ~ E s(Rd), K(A~,y) = ~(y). 

421 

But this is the weak form of (9o12). 

Q.E.D. 

Exercise 9.1. Convince yourself that for a.e.~, (9.12) is an equation in 

distributions. 

SMOOTHNESS 

Since we are working on R d, we can use the Fourier transform. 

be the Sobolev space defined in Example la, Chapter 4. If u is any 

_loc if for any ~ e CO, ~u E H t distribution, we say u ¢ H t 

loc 
PROPOSITION 9.5. Let £ > 0. Then with probability one, W E H_d/2_£ 

loc 
U & H1_d_2_£,/ where U is the free field. 

~t st 

and 

PROOF. The Fourier transform of ~W is a function: 

~W(~) = ~ e-2Ki~'x~ (x)W(dx) 

R 

and 

SO 

E{I¢I * I~12~t/2~¢~I 2} = ¢I * I~12~ t ff ~¢x~Cy~e2~iCYx~'~dy~, 

_< c I c, + l~12~td~ 

which is finite if 2t < -d, in which case n~wn t is evidently finite a.s. 

loc 
Now VoW £ N_d/2_1_e so, since U satisfies AU = V-W, the elliptic 

loc 
regularity theorem of PDE's tells us U g Hl_e_d/2. Q.E.D. 

THE MARKOV PROPERTY OF THE FREE FIELD 

We discussed L~vy's Markov and sharp Markov properties in Chapter One, 

in connection with the Brownian sheet. They make sense for general 
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distribution-valued processes, but one must first define the o-fields ~D and 

G*° This involves extending the distribution. 
=D 

Since U takes values on a Sobolev space, the Sobolev embedding theorem 

tells us that it has a trace on certain lower-dimensional manifolds. But 

since we want to talk about its values on rather irregular sets, we will use 

a more direct method. 

If ~ is a measure on R d, let us define U(~) by (9.11). This certainly 

works if ~ is of the form ~(dx) = ~(x)dx, and it will continue to work if 

is suffciently nice. By the calculation following (9.11), "sufficiently 

nice" means that 

(9 .13)  n~li~= - [ [ ~ (dx )K (x ,y )~ (dy )  < ~ .  

Let E be the class of measures on R d which satisfy (9.13), and let E = E - 
=+ = =+ 

E . =+ 

If B C R d is Borel, one version of the restriction of U to B would be 

{U(~): ~ 6 ~, U(A) > 0, all A C R d - B}. 

Of course, this requires that there be measures in E which sit on B. This = 

will always be true if B has positive capacity, for if B is bounded and has 

positive capacity, its equilibrium measure has a bounded potential and is 

thus in E. (For the potential of ~ is K(~,.) and 8~H~ = f K(~,y)~(dy). 

Thus, define 

G = ~{U(~): ~ E ~, ~(A) = 0, all AC R d - B} 
=B 

G* = =B ~ ~A " 
ADB 

A open 

PROPOSITION 9.6. The free field U satisfies L~vy's sharp Markov property 

relative to bounded open sets in R d. 

PROOF. This follows easily from the balayage property of K: if D C R d is an 

open set and if ~ is supported by D c, there exists a measure v on 5D such 

-K(~,y) ~ -K(~,y) for all y, and K(v,y) = K(~,y) for all y ~ D, and all but a 

set of capacity zero in ~D. We call v the balayage of ~ on ~D. 
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D c . Suppose ~ E ~ and supp ~ C If v is the balayage of ~ on ~D, we 

claim that 

(9.14) E{U(~)I~ } = U(v). 
D 

This will do it since, as U(~) is ~SD-measurable, the left-hand side of 

(9.~4) must be E{U(~)I~SD }. 

Note that v e ~ (for ~ is and -K(v, o) ! -K(~,-)) so if k e ~, 

supp(k) C 5, 

E{(U(~) - U(v))U(A)} = f[K(~,y) - K(v,y)]k(dy) 

= 0 

since K(~,x) = K(v,x) on D, except possibly for a set of capacity zero, and 

k, being of finite energy, does not charge sets of capacity zero. Thus the 

integrand vanishes k-a.e. But we are dealing with Gaussian processes, so 

this implies (9.14). Q.E.D. 



NOTES 

We omitted most references from the body of the text - a consequence of 

putting off the bibliography till last - and we will try to remedy that here. Our 

references will be rather sketchy - you may put that down to a lack of scholarship - 

and we list the sources from which we personally have learned things, which may not 

be the sources in which they originally appeared. We apologize in advance to the 

many whose work we have slighted in this way. 

CHAPTER ONE 

The Brownian sheet was introduced by Kitagawa in [37], though it is usually 

credited to others, perhaps because he failed to prove the underlying measure was 

countably additive. This omission looks less serious now than it did then. 

The Garsia-Rodemich-Rumsey Theorem (Theorem 1.1) was proved for 

one-parameter processes in [23], and was proved in general in the brief and elegant 

article [22], which is the source of this proof. This commonly gives the right order 

of magnitude for the modulus of continuity of a process, but doesn't necessarily give 

the best constant, as, for example, in Proposition 1.4. The exact modulus of 

continuity there, as well as many other interesting sample-path properties of the 

Brownian sheet, may be found in Orey and Pruitt [49]. 

Kolmogorov's Theorem is usually stated more simply than in Corollary 1 . 2 .  

In particular, the extra log terms there are a bit of an affectation. We just were 

curious to see how far one can go with non-Gaussian processes. Our version is only 

valid for real-valued processes, but the theorem holds for metric-space valued 

processes. See for example [44, p.519]. 

The Markov property of the Brownian sheet was proved by L. Pitt [52]. The 

splitting field is identified in [59]; the proof there is due to S. Orey (private 

communication.) 
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The propagation of singularities in the Brownian sheet is studied in detail 

in [56]. Orey and Taylor showed the existence of singular points of the Brownian 

path and determined their Hausdorff dimension in [50]. Proposition 1.7 is due to G. 

Zimmerman [63], with a quite different proof. 

The connection of the vibrating string and the Brownian sheet is due to E. 

Caba~a [8], who worked it out in the case of a finite string, which is harder than 

the infinite string we treat. He also discusses the energy of the string. 

CHAPTER TWO 

In terms of the mathematical techniques involved, one can split up much 

of the study of SPDE's into two parts: that in which the underlying noise has 

nuclear covariance, and that in which it is a white noise. The former leads 

naturally to Hilbert space methods; these don't suffice to handle white noise, which 

leads to some fairly exotic functional analysis. This chapter is an attempt to 

combine the two in a (nearly) real variable setting. The integral constructed here 

may be technically new, but all the important cases can also be handled by previous 

integrals. 

(We should explain that we did not have time or space in these notes to 

cover SPDE's driven by martingale measures with nuclear covariance, so that we never 

take advantage of the integral's full generality). 

Integration with respect to orthogonal martingale measures, which include 

white noise, goes back at least to Gihman and Skorohod [25]. (They assumed as part 

of their definition that the measures are worthy, but this assumption is unnecessary; 

c.f. Corollary 2.9.) 

Integrals with respect to martingale measures having nuclear covariance 

have been well-studied, though not in those terms. An excellent account can be found 

in M~tivier and Pellaumeil [46]. They handle the case of "cylindrical processes", 

(which include white noise) separately. 

The measure ~ of Corollary 2.8 is a Dol~ans measure at heart, although we 

haven't put it in the usual form. True Dol~ans measures for such processes have been 
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constructed by Huang, [31]. 

Proposition 2.10 is due to J. Watkins [61]. 

in [2]. 

Bakry's example can be found 

CHAPTER THREE 

The linear wave and cable equations driven by white and colored noise have 

been treated numerous times. Dawson [13] gives an account of these and similar 

equations. 

The existence and uniqueness of the solution of (3.5) were established by 

Dawson [14]. The LP-boundednes and Holder continuity of the paths are new. See [57] 

for a detailed account of the sample path behavior in the linear case and for more on 

the barrier problem. 

The wave equation has been treated in the literature of two-parameter 

processes, going back to R. Cairoli's 1972 article [9]. The setting there is special 

because of the nature of the domain: on these domains, only the initial position need 

be specified, not the velocity. 

As indicated in Exercises 3.4 and 3.5, one can extend Theorem 3.2 and 

Corollary 3.4, with virtually the same proof, to the equation 

~V ~2V 
÷ g(V,t) + f(v,t)~, 

at 5x 2 

where both f and g satisfy Lipschitz conditions. Such equations can model physical 

systems in which g is potential term. Faris and Jona-Lasinio [19] have used similar 

equations to model the "tunnelling" of a system from one stable state to another. 

We chose reflecting boundary conditions in (3.5) and (3.5b) for 

convenience. They can be replaced by general linear homogeneous boundary conditions; 

the important point is that the Green's funciton satisfies (3.6) and (3.7), which 

hold in general [27]. 
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427 

CHAPTER FOUR 

We follow some unpublished lecture notes of the Ito here. See also [24] 

CHAPTER FIVE 

The techniques used to solve (5.1) also work when L is a higher order 

elliptic operator. In fact the Green's function for higher order operators has a 

lower order pole, so that the solutions are better behaved than in the second-order 

case. 

We suspect that Theorem 5.1 goes back to the mists of antiquity. Ito 

studies a special case in [33]. Theorem 5.4 and other results on the sample paths of 

the solution can be found in [58]. See Da Prato [12] for another point of view on 

these and similar theorems. 

CHAPTER SIX 

The basic reference on weak convergence remains Billingsley's book [5]. 

Aldous' theorem is in [I], and Kurtz' criterion is in [42]. We follow Kurtz' 

treatment here. Mitoma's theorem is proved in [47], but the article is not 

self-contained. Fouque [21] has generalized this to a larger class of spaces of 

distributions, which includes the familiar spaces D(Q). His proof is close to that 

of Mitoma. 

CHAPTER SEVEN 

It may not be obvious from the exposition - in fact we took care to hide it 

- but the first part of the chapter is designed to handle deterministic integrands. 

The accounts for its relatively elementary character. 

Theorems general enough to handle the random integrands met in practice 
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seem to be delicate; we were surprised to find out how little is known, even in the 

classical case. Our work in the section "an extension" is just a first attempt in 

that direction. 

Peter Kotelenez showed us the proof of Proposition 7.8. Theorem 7.10 is 

due to Kallianpur and Wolpert [36]° An earlier, clumsier version can be found in 

[57]. The BUrkholder-Davis-Gundy theorem is surmnarized in its most highly developed 

form in [7]. 

CHAPTER EIGHT 

This chapter completes a cycle of results on weak limits of Poisson systems 

of branching Brownian motion due to a number of authors. "Completes" is perhaps too 

strong a word, for these point in many directions and we have only followed one: to 

find all possible weak limits of a certain class of infinite particle systems, and to 

connect them with SPDE's. 

These systems were investigated by Martin-Lof [45] who considered 

non-branching particles (~ = 0 in our terminology) and by Holley and Stroock [29], 

who considered branching Brownian motions in R d with parameters k = ~ = I ; their 

results look superficially different since, instead of letting ~ and k tend to 

infinity, they rescale the process in both space and time by replacing x by x/~ and t 

by ~2t. Because of the Brownian scaling, this has the same effect as replacing k by 

d 2 
and ~ by ~ , and leaving x and t unscaled. The critical parameter is then 

2-d 
~/k = ~ , so their results depend on the dimension d of the space. If d > 3, they 

find a Gaussian limit (case (ii) of Theorem 8.9), if d = 2 they have the 

measure-valued diffusion (case (iv)) and if d = I, the process tends to zero (Theorem 

8.11). The case ~ = 0, investigated by Martin-Lof and, with some differences, by Ito 

[33], [34], also leads to a Gaussian limit (Theorem 8.9 (i)). 

Gorostitza [26] treated the case where ~ is fixed and k ÷ ~ (Theorem 

8.9(iii) if ~ > 0). He also gets a decomposition of the noise into two parts, but it 

is different from ours; he has pointed out [26, Correction] that the two parts are 

not in fact independent. 
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The non-Gaussian case (case (iv)) is extremely interesting and has been 

investigated by numerous authors. S. Watanabe [60] proved the convergence of the 

system to a measure-valued diffusion. Different proofs have been given by Dawson 

[13], Kurtz [42], and Roelly-Copoletta [53]. Dawson and Hochberg [15] have looked at 

the Hausdorff dimension of the support of the measure and showed it is singular with 

respect to Lebesgue measure if d > 2. It is absolutely continuous if d = I 

(Roelly-Copoletta [53]). A related equation which can be written suggestively as 

an = ~ A~ + ~(1-~)w 
at 2 

has been studied by Fleming and Viot [20]. 

The case in which ~/k ÷ ~ comes up in Holley and Stroock's paper if d = I. 

The results presented here, which are stronger, are joint work with E. Perkins and J. 

Watkins, and appear here with their permission. The noise W of Proposition 8.1 is 

due to E. Perkins who used it to translate Ito's work into the setting of SPDE's 

relative to martingale measures (private communication.) 

A more general and more sophisticated construction of branching diffusions 

can be found in Ikeda, Nagasawa, and Watanabe [32]. Holley and Stroock also give a 

construction. 

The square process Q is connected with U statistics. Dynkin and Mandelbaum 

[17] showed that certain central limit theorems involving U statistics lead to 

multiple Wiener integrals, and we wish to thank Dynkin for suggesting that our 

methods might handle the case when the particles were diffusing in time. In fact 

Theorem 8.18 might be viewed as a central limit theorem for certain U-statistics 

evolving in time. 

We should say a word about generalizations here. We have treated only the 

simplest settings for the sake of clarity, but there is surprisingly little 

change if we move to more complex systems. We can replace the Brownian particles by 

branching diffusions, or even branching Hunt processes, for instance, without 

changing the character of the limiting process. (Roelly-Copoletta [Thesis, U. of 

Paris, 1984]). One can treat more general branching schemes. If the family size N 
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has a finite variance, Gorostitza [26] has shown that one gets limiting equations of 

the form ~D I at = ~ ~D + ~ + ~Z + yVoW, where ~ = 0 if E{N - 1} = 0, so that the only 

new effect is to add a growth term, ~. 

If E{N 2} = ~, however, things do change. For example, ~ can tend to zero 

in certain cases when ~/k has a finite limit. This needs further study. 

CHAPTER NINE 

The term "random field" is a portmanteau word. At one time or another, it 

has been used to cover almost any process having more than one parameter - and some 

one-parameter processes, too. It seems to be used particularly for elliptic systems, 

though why it should be used more often for elliptic than parabolic or hyperbolic 

systems is something of a mystery. (As is the term itself, for that matter). At any 

rate, this chapter is about random fields. 

We have used some heavy technical machinery here. Frankly, we were under 

deadline pressure and didn't have time to work out an easier approach. For sobolev 

spaces, see Adams [64]; for the PDE theorems, see Folland [67] and Hormander [30]. 

The classical potential theory and the energy of measures can be found in Doob [66]. 

The exponent n of the Sobolev space in Proposition 7.1 can doubtless be 

improved. If M is a white noise, one can bypass the Sobolev embedding in the proof 

and get n > k + d/2 rather than n > k + d. 

The free field was introduced by Nelson in [48]. He proved the sharp 

Markov property, and used it to construct the quantum field which describes 

non-interacting particles. He also showed that it can be modified to describe 

certain interacting systems. 

Rozanov's book [54] is a good reference for L~vy's Markov property. See 

Evstigneev for a strong Markov property, and Kusuoka [43] for results which also 

apply to parabolic systems in which, contrary to the claim in [57], one commonly 

finds that L~vy's Markov property holds but the sharp Markov property does not. 
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CHAPTER TEN 

There is no Chapter Ten in these notes. For some reason that hasn't 

stopped us from having notes on Chapter Ten. We will use this space to collect some 

remarks which didn't fit in elsewhere. Since the chapter under discussion doesn't 

exist, no one can accuse us of digressing. 

We did not have a chance to discuss equations relative to martingale 

measures with a nuclear covariance. These can arise when the underlying noise is 

smoother than a white noise or, as often happens, it is white noise which one has 

approximated by a smoothed out version. If one thinks of a white noise, as we did in 

the introduction, as coming from storm-driven grains of sand bombarding a guitar 

string, one might think of nuclear covariance noise as coming from a storm of 

ping-pong balls. The solutions of such systems tend to be better-behaved, and in 

particular, they often give function solutions rather than distributions. This makes 

it possible to treat non-linear equations, something rather awkward to do otherwise 

(how does one take a non-linear function of a distribution?) Mathematically, these 

equations are usually treated in a Hilbert-space setting. See for instance Curtain 

and Falb [11], Da Prato [12], and Ichikawa [68]. 

There have been a variety of approaches devised to cope with SPDE's driven 

by white noise and related processes. See Kuo [41] and Dawson [13] for a treatment 

based on the theory of abstract Wiener spaces. The latter paper reviews the subject 

of SPDE's up to 1975 and has extensive references. Balakrishnan [3] and Kallianpur 

and Karandikar [35] have used cylindrical Brownian motions and finitely additive 

measures. See also M6tivier and Pellaumail [46], which gives an account of the 

integration theory of cylindrical processes. Gihman and Skorohod [25] introduced 

orthogonal martingale measures. See also Watkins [61]. Ustunel [55] has studied 

nuclear space valued semi-martingales with applications to SPDE's and stochastic 

flows. The martingale problem method can be adapted to SPDE'S as well as ordinary 

SDE's. It has had succes in handling non-linear equations intractable to other 

methods. See Dawson [65] and Fleming and Viot [20], and Holley and Stroock [29] for 

the linear case. 



432 

Another type of equation which has generated considerable research is the 

SPDE driven by a single one-parameter Brownian motion. (One could get such an 

equation from (5.1) by letting T be an integral operator rather than a differential 

operator.) An example of this is the Zakai equation which arises in filtering 

theory. See Pardoux [51] and Krylov and Rosovski [39]. 

Let us finish by mentioning a few more subjects which might interest the 

reader: fluid flow and the stochastic Navier-Stokes equation (e.g. Bensoussan and 

Temam [4] ); measure-valued diffusions and their application to population growth 

(Dawson [65], Fleming and Viot [20]); reaction diffusion equations in chemistry 

(Kotelenz [38]) and quantum fields (Wolpert [70] and Dynkin [16])0 
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