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Summary. A long range contact process and a long range voter process are 
scaled so that the distance between sites decreases and the number of neigh- 
bors of  each site increases. The approximate densities of occupied sites, un- 
der suitable time scaling, converge to continuous space time densities which 
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Kolmogorov-Petrovskii-Piscuinov equation driven by branching white noise. 
For the voter process the limiting equation is the heat equation driven by 
Fisher-Wright white noise. 
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1 Introduction 

We define a sequence of one dimensional contact processes indexed by a 
parameter n. In the nth model the sites are indexed by x E n-2~.  We la- 
bel the state of  site x by (~(x) where ~ ' ( x ) =  1 if the site is occupied 
at time t and ~ ( x ) =  0 if it is vacant. Two sites are neighbors, denoted 
by x ~ y, if I x -  Yl < n-1/2. Thus each site has 2cln 3/2 neighbors where 
cl(n) -+ 1 as n ---+ oc. Occupied sites become vacant at rate n. Occupied sites 
also give birth at rate n + 0c. At the time of a birth at site x, a site is cho- 
sen uniformly from the neighbors of x and, if  vacant, becomes occupied. The 
parameter 0~ E 1R (where the subscript stands for contact process) is fixed 
throughout and we consider only n > ]20c]. 

An approximate density is defined by Ac(~') where for f :  n-27Z ~ IR 
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A ~ ( f ) ( x )  := (2clnl/e) - I  ~ f ( y )  for x E n-eT/ .  
y ~ x  

We linearly interpolate between sites to obtain a function A ~ ( ~ ) ( x )  for x C IR. 
Let e;~(x) ----- exp(21x]) for 2 CIR. The set 

cd = { f :  IR ---+ [0, ec)  continuous with I f(x)e~(x)l  ---+ 0 as Ixl -+ oc 

for a l l 2  < 0} 

is the set of  non-negative continuous functions with slower than exponential 
growth. Define Ilfll;. = sup~lf(x)e2(x)l  and give cd the topology generated by 
the norms (ll II;~: 2 < 0). Then the paths t ---* A~(~)  are qr valued (since, for 
instance, IAc(~])(x)l <= n) and cadlag. We consider the law of  A~(~") on the 
space of cadlag cd valued paths with the Skorokhod topology. 

Theorem 1 Suppose that as n ---+ ec the initial conditions (A~(~g)(x): x C lR) 
converge (in cg) to f o  E ~,. Then the approximate densities (A~(~.~): t > 
O) converge in distribution as n--~ oc to a continuous cg valued process 
(ut: t > 0) which solves the stochastic p.d.e, driven by white noise 

(1.1) Otu = (1/6)Au + Ocu - u 2 q -  12ull/zl?g 

with initial condition uo = f o. 

For the voter processes the lattice scale is different. In the nth model the 
voters are indexed by x E n - ~ .  The voters can take two opinions, labeled 
0 and 1. Two voters are neighbors, again denoted by x ~ y, if  I x -  Yl < 
n -1/2. Thus each voter has 2c2n I/2 neighbors where c2(n)---+ 1 as n--+ exp. 
Voters change their opinion at rate O(n) and adopt the opinion of one of  their 
neighbors. We allow a slight asymmetry where the opinion 1 is more dominant. 
More precisely, for each of  the O(n ~/2) neighbors independently, they adopt 
the opinion of  that neighbor at rate n ~/2 if  it is 0 and at rate n 1/2 + O,n -1/2 if  
it is 1. The parameter 0" => 0 (where the subscript stands for voter process) is 
fixed througout and we consider only n > 20,. 

The opinion of  the voter at x at time t is again labelled by ~ ' (x)  E {0, 1}. An 
approximate density is defined by A , ( ~ )  where for f :  n-12~ -+ IR 

A , ( f ) ( x )  := (2c2nl/2) -~ ~ f ( y )  for x ~ n - l ~ .  
y ~ X  

We linearly interpolate between sites to obtain a function A ~ ( ~ ) ( x )  for x E IR. 
Again the paths t -+ A~(~') are cadlag ~ valued. 

Theorem 2 Suppose that as n --+ oo, the initial conditions, (Av(~) (x) :  x E IR) 
converge (in cg) to f o  Ccg. Then the approximate densities (A~(~]): t > 0) 
converge in distribution as n--~ oo to a continuous cg valued process (ut : t > 0) 
which solves the stochastic p.d.e, driven by white noise 

(1.2) Otu =- (1/6)Au + 20vu(1 - u) + 14u(1 - u)ll /2W 

with initial condition uo = f o. 
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Equations (1.1) and (1.2), where W is a space time white noise, can be given 
rigorous meaning in terms of an integral equation, as explained in Walsh [16, 
Chap. 3]. Uniqueness in law holds for both equations. Equation (1.1) without 
the overcrowding term - u  2 is the density of super Brownian motion with mass 
creation at rate 0c. Uniqueness for this process is well known [3]. Uniqueness 
for (1.1) then follows from change of measure arguments (see [7] for the case 
where u0 is integrable and [14] for the case u0 E cg). For (1.2) uniqueness 
follows from the existence of a dual process [12]. Solutions to both equations 
have been studied [8,9, 14, 15]. They show phenomena (phase transition and 
travelling wave solutions) that are analogous to their underlying simple (not 
long range) discrete versions. 

Theorem 1 was conjectured by R. Durrett and partially proved by Perkins 
[10] who showed that a discrete time process analogous to the long range con- 
tact process also converges to the limit (1.1). The method of proof here is sim- 
ilar. The models are shown to satisfy a martingale problem that approximates 
the martingale problem for the limiting processes. Tightness of the approximate 
densities is established. Passing to the limit in the approximate martingale prob- 
lems, all limit points are shown to satisfy the limiting equations. The proof is 
then concluded by the uniqueness for solutions to the limiting equations. A 
stronger result is obtained here than in [10] which proved only convergence in 
distribution as finite measure valued processes. 

Tightness is proved by estimating moments of small increments for the 
approximate densities and arguing as in the Kolmogorov tightness criterion. 
For this an approximate Green's function representation is established 
(equation (2.11)) for the approximate densities Ac(~)(x) which is analogous 
to the Green's function representation for solutions to (1.1) but with certain 
error terms. Such a representation was also used in [10]. The method for 
estimating moments from the Green's function representation is analogous 
to that used for the limiting stochastic p.d.e.'s [13]. The extra work 
involved is to control the error terms. The same method works for the voter 
model and is considerably easier because the densities are known to be bounded 
by 1. 

Finally we note that these random limits are possible because of the pres- 
ence of an asymptotically critical branching mechanism. In one dimension, this 
allows a suitable rescaling to a stochastic p.d.e, driven by white noise. A well 
known example of this kind of scaling is the super Brownian motion, which is 
the limit of critical branching Brownian motions. In one dimension, the super 
Brownian motion has a density which satisfies a stochastic p.d.e, similar to 
those above. Super Brownian motion exists in higher dimensions. However it 
exists as a singular measure valued process and possible higher dimensional 
analogues for equations (1.1) and (1.2) are unclear. 

The choice of uniform jumping mechanisms, although natural, is very spe- 
cial and the result should carry over to a class of jumping mechanisms. For 
instance symmetric jumps with the same variance and enough moments would 
allow the approximation by the local limit theorem that is needed. 

Notation. C will denote a non-negative quantity whose dependence will be 
indicated but whose exact value is unimportant and may change from line to 



522 C. Mfiller, R. Tribe 

line. A point mass at x C IR is denoted C~x. We write p(t, x)  for the Brownian 
transition density and Pt for the Brownian semigroup. 

2 Long range contact process 

For f ,  9: n-22~ ~ ]R we write ( f ,  9) for n - 2 ~ x f ( X ) 9 ( x )  (whenever this sum 
is meaningful). I f  also v is a measure on n-22g we write (v, f )  for f f  dr. We 
write again (with a slight abuse of notation) Ilfll;~ for sup{lf(x)e;~(x)]:  x E 
n-27/}. We also use the notation, for x E n-22g, 6 > 0 

D(f,  fi)(x) = suP{If(y ) - f (x ) ] -  l y - x l  < 6, y ~ n-27z}, 

A~( f ) (x )  = (n + 0~)(2c~n3/2)-1~-~ ( f ( y )  - f ( x ) ) .  
y ~ x  

The long range contact processes may be constructed by the graphical con- 
struction [4] from two independent families of i.i.d. Poisson processes: 

(Pt(x): x C n-22~) with rate n ,  

(Pt(x, y):  x, y E n-22g, x ~ y) with rate (2cln3/2)-l(n + Oc), 

where the processes are indexed over t E [0, oc). At a jump time of Pt(x) the 
site x, if occupied, becomes vacant. At a jump time fo Pt(x, y),  if the site x 
is occupied, there is a birth and the site y, if vacant, becomes occupied. The 
dynamics of the contact process 47 C {0, 1} are captured in the equations 

t t 

~;(x) ~(x)  f~L(x)aP, (x )+ 2 f(1 ~" x "  : - - . s - (  ) )~,_(y)dP~(y,  x) 
0 y ~ x  0 

We define the measure valued process 

" n-l~6xI(~](x) 1). Yt : =  
x 

For most of the proof we now drop the superscripts and write simply ~t, vt. 

Step 1 An approximate martingale problem 
Take a test function ~b: [0, oc) x n -2~  --+ IR with t --+ ~t(x) continuously dif- 
ferentiable and satisfying 

T 
(2.1) f(IqS,[ § q 52 + I~,~1, 1)ds < oo. 

0 

Then, applying integration by parts to ~t(x)c~t(x) and summing over x, for 
t < T  
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t 

(v,, 4',) =(~o ,  r  f(vs, &r 
0 

523 

- n-lEf~s_(X)4s(x)dPs(x) 
x O  

t 

+ n - l ~  f (1  - ~s_(X)){s_(Y)Os(x)dPs(y , x) 
x y ~ x  0 

(2.2) 

(2.3) 

t 

=(vo, 42o) + f(v,, GG)ds 
0 

t 

+ n - l E ~  f~s-(y)(4,(x) - G(y))dP,(y,  x) 
x y N x  0 

t 

(2.4) - n - l ~  ~ f ~s-(X)~s-(y)d?s(x)dPs(y, x).  
x y ~ x  0 

We break term (2.2) into two parts, an average term and a fluctuation term: 

t 

n - l ~ f  ~s _ (x)(Os(X) 
x O  

t 

+ n-lOc~fG(x)O,(x) ds 
x O  

t 

= z,(4,) + el(v,,  O,)ds 
0 

where Zt(4) is the martingale defined by 

and has predictable brackets process given by 

t 

(2.5) (z(q~))t = n-aF, f G_(x)4,~(x)(2n + oc) ds 
x 0 

t 

= (2 + O~n-' )f(v~, r 
0 

We break term (2.3) into two parts, an average term and a fluctuation term: 
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t 

~ - - 1 ~  ~ f ~,_(y)(O,(x) - Os(y))(dPs(y, x) - d(P(y,X))s) 
x y ~ x  0 

t 

+ n - l ~  ~ f~,(y)(d?,(x) - (ps(y))(2cln3/2)-l(n + Oc)ds 
x y ~ x  0 

t 

----- E}')(~b) + f(Vs, Ac(as)ds 
0 

where the error term 

t 

E}l)(~b) := n - ' ~  ~ f ~,-(y)((~s(X) - $s(y))(dP/y, x) - d(P(y, x)),) 
x y ~ x  0 

is a martingale with predictable brackets process given by 

(2.6) d{E(l)((J))t = n-2~-~ ~ ~t(y)($~(x) - ~bt(y))2(2Qn3/2)-l(n + Oc)dt 
x y ~ x  

< (1 + Ocn-l)(vt, D2(dpt, n-l/2))dt 

N 2(vt, e_2~)l[D(~bt, rt-1/2)l[~dt (for any 2) .  

Alternatively we may bound 

(2.7) d{EO)($))t 

=< n -2 (2Cln3/2) -1 (n + Oc)~ ~ ~,(y)rt0,llo(lq$,(x)l + 14,(y)l)dt 
X y ~ x  

= t]~btllo(m + Ocn-') @-i~y~t(y)lCt(y) I + n 2~Ac(~')(x)lcpt(x)lx 

< 2114,11o((V. 14,t) + (Ac(~t), IqStl))dt. 

dt 

We break term (2.4) into two parts, an average term and a fluctuation term: 

t 

n - ~  ~ f ~,_(x)~_(y)(~(x)(dP~(y,x) - d(P(y,x)),) 
x y N x  0 

t 

+ n - l ~  ~ f~s(x)~s(y)Os(x)(2cln3/2)-l(n + Oc)ds 
x y ~ x  0 

t 

= E}2)(q$) + (1 + Ocn-l)f(v~,Ad~D(oDds 
0 

where the error term 

t 

E}2)(q$) :=  n - l ~  ~ f ~,_(x)f~_(y)dPs(x)(dPs(y,x) - d(P(y,x)),) 
x y ~ x  0 

is a martingale with predictable brackets process given by 
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t 

(2.8) <E(2)(~b)) t = n _ 2 ~  ~ f~ (X)~s(y )O2(x)  (2Cln3/2) -1  (n + Oc)ds 
x y ~ x  0 

t 

eU~n-5/2~ ~ f G(x)G(y)e-2r 
x y ~ x O  

t 

=< c ~ l n - S / 2 e ; ~ f  ~ , ( x )~ , ( y )  e_;~ ( x ) e_x (y)llr s II~d 
x y o  

l 

= eT~e~-~/2f(vs, e_j3211r (for any 2). 
o 

Collecting terms we have the following semimartingale decomposition 

t 

(2.9) ( v , , ( ~ t ) = ( v o , ( % ) +  f (v~,G4)s+Oc(os+ Ac(d?,))ds 
0 

l 

- (1 + Ocn-') f (vs,Ac(~s)r + Zr + E}l)(qb) - E}2)(qb). 
o 

Step 2 Green's function representation 
We now take a special test function in the above decomposition. For each 
z E n-2Z define a test function O7(x) > 0 (for t > 0, x E n-27Z) as the unique 
solution, satisfying the hypothesis (2.1), to 

(2.1o) 

OZo(x ) = (nl/2/2c]) I(x ~ z) .  

Note that Ac is the generator of a simple random walk Xt jumping at rate 
n + 0c with symmetric steps of variance ( (1/3)+ o(1))n -].  Define 

~t (X)  = n2p (x t  =- x l X  0 = Z ) .  

Then t)~ (x) (0~), -x = ~k t ). Also the local central limit theorem implies that (when 
z x -~ x p( t /3 ,z  x). We linearly interpolated) the functions ~ ( ) ,0t(  ) converge to 

collect together the information we need about the test functions 0 ,  ~ below. 

Lemma 3 There exists no < oo such that for  n > no, T > O, z E n-2T ,  
2 > 0  

�9 = ~ (a) OPT, l) (~t, 1) landll~llo~Cnl/2,1i~lLo~Cn2forallt~O, 
(b) (e),, ~zt + ~ )  = < C(2, T)e~(z) for  all t =< T, 

(c) t[~bT][;~ __< C(2, T)(n 1/2 At-2/3)e;~(z) for  all t < T, 

(d) ([qJ/- ~b~],l) __< 6 n ] t - s [  for  all &t >= 0 

and for  n > no, n -3/4 < s < t < T, y , z  E n-2Z, [ y -  z I < 1, 

( e )  [LO z, - Y Oi IIx <= c(~, r)e~(z)(lz ylU2t-l + n- l /2 t -3 /4) ,  

(f) II~'f - 4~zib~ < c ( L  T)ex(z)(lt - s[1/2s -3 /2  At- r1--1/2s--3/4), 
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(g) IID(~L n-'/2)l]z ~ C(2, T)e2(z)n-1/4t -1. 

The proof  of  Lemma 3, which uses estimates from the local limit theorem, is 
delayed until Sect. 4. 

We apply (2.9) with the test function ~bs = e ~ *)O~-s for s < t, (it is straight- 
forward to check that hypothesis (2.1) is satisfied). This test function is chosen 
so that the first drift term vanishes and the initial condition is chosen so that 
(vt, 4t) = (vt, ~ )  = Ac( {t)(x ). Thus we obtain an approximate Green's  function 
representation for Ac(~t), for a fixed value of  t. 

(2.11) 
I 

&(~,)(x) = ( v 0 , ~ )  - (1 + Ocn 1) f (v , ,Ac(~)~_ , )ds  
0 

+ + E} - 

We now use this Green's  function representation to obtain some moment esti- 
mates needed for the proof  of  tightness. 

L e m m a  4 Suppose that the initial conditions satisfy Ac(~o)--+ f o in cg as 
n--+oc. Then for T > O, p > 2 ,2  > O 

(a) E(supt<r(Vt, e_2) p) <= C(fo,  2, Oc, p, T) 

(b) E(lE}i)(t/17_. )l p) =< C ( f  o, )~, Oc, p, T)n-p/16e2p(Z) for a[l t <= T 

(e) I[E(APc(~t))l[_;tp <= C(fo,)~,Oc, p ,T )  for all t <= T. 

We shall need a technical lemma. 

Lemma  5 For f :  n-2;g ~ [0, oc) with ( f , f )  < oc, 2 E 1R 

( a )  (v,, 0, z) = (At ( ( , ) ,  

(b) ](vt, f ) -  (Ac(~.t),f)] <= IlD(f,n-l/2)l];(vt, e-;.), 

(c) (vt,Ac(~_t)f) <= C(A2c((t),f) + ClID(f,n-l/2il];(A2(~_t),e_;~). 

Proof o f  Lemma 5 Part (a) is straightforward and the proof  is omitted. For 
part (b) we have 

(Ac((t), f )  = (2c, n 1/2) - t  n _ 2 ~  ~ f (x)~t(y)  
X y ~ x  

= (2CIF/1/2)--I F/_2~ ~ ( f ( x )  - f ( y ) )  it(Y) + (vt, f )  
x y ~ x  

and 
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l(2clnl/e)-ln-2F, ~ ( f (x )  - f ( y ) )  it(Y)[ 
x y ~ x  

<= (2clnl/2) -~ n - 2 E  E D ( f  , n-1/2) (Y)~t(Y) 
x y ~ x  

527 

= (v .D (i ,n-1/2))  

<= liD (f  ,n -1/2) II;~ (v,,e_;~). 
In the next argument C will denote a strictly positive constant. 

(A2(~t),f) 

= (4c2)-1/,/_3E ~ ~ f ( x ) ~ t ( Y ) d t ( y ' )  

x y ~ x  y t ~ x  

< (4c~) -1/7--3~ ~ ~ ( f (Y )  - D(f ,n- ' /2)(x))~t(y)dt(y ') 
x y ~ x  y l ~  x 

> C n - 3 ~  ~ ~ f (y ) s  ~ y,x ~ y') - (A2(~t),D(f,n 1/2)) 
y y t ~ y  x 

>= Cn-3/2~-~ ~ f(Y)~_t(Y)~t(j) - (AZ(~t),D(f ,n-1/2)) 
y y t ~ y  

> C(v t ,Ac(r  IID(f,n-1/2)ll;~(A2(~r 

Rearranging gives the desired bound for part (c). [] 

Proof of  Lemma 4 Substituting ~bt = e_)~ into (2.9) gives 

t 
(2.12) (vt, e_;~) < (vo, e_;~)+f(vs,  Oce_;~+Ace_;~)ds+Mt 

0 

where Mt is a martingale with brackets 

(M>t < C ((Z(e_;~)) t + (g(1)(e_2))t @ <E(Z)(e_)~)>t) 

< C (Vs, e_2;~)ds + f(vs, e_aDllD(e_;.n-~/2)ll2ds 
0 

+n-1/2e~'f(Vs, e_~)2 II e-~. I I 2~ ds 
0 

t 
< C ( 2 ) f l  + (v~,e_D2ds. 

0 

It is straightforward to check that Aoe_x < C(2)e_z. Lemma 5 part (b) gives 

(vo, e_ D < (1 + IlO(e_;o,n 1/2)ll;~)(Ac(~o),e_;~ ) < C()O(Ao(~o),e_z) 

which is bounded by C(fo, 2) uniformly in n by the assumption on the initial 
conditions. We now apply a Burkholder-Davis-Gundy inequality in the form 

E(sup IX~] p) < C(p)E((X)Pt/2 + sup I X, -Xs_ l  p) 
s<=t s<t  
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for a cadlag martingale X with X0 = 0 (which may be derived from its discrete 
time version [2, Theorem 21.1]). Note that the largest possible jump of the 
martingales Zt(e_).), E}l)(e_)~), E~(2)(e_z) is bounded by n -1 . Then taking pth 
powers in equation (2.12) and taking expectations, we have for t < T 

E(sup(v~, e_).) p ) 
s<t 

< C(fo,2, p) + C(2,0~,p)E (vs, e_~)ds + C(p)E(sup ]Mtl p) 
t<T 

( '  ) <-_ C(fo, LOc, p ,r)  1+ fE((v,,e_r 
o 

+ C(p)E((M)p/~) + C(p)~-P 

< C(fo, LO~,p,r) 1 +fE((v~,e_~.)P)ds 
o 

Gronwall's inequality completes the proof of the part (a). 

Z z The largest possible jump of the martingales s(tpi_.), E}i)(o7_.) is bounded 
(almost surely) by n-lsups>oll~b~ll~ __< Cn -1/2 by Lemma 3(a). Choose 
t < T. Then by Burkholder's inequality and (2.8) 

(2.13) E(lE}2)(~bt_,)l p) 

< C(p)n-p/2E (vs, e_~)zJpoS_s[l~ds + C(p)n -p/2 

<= C(p)n -p/2 1 + I[,/,~_~,ll~ds fg((vs, e-~)P)ll4'~_sll2_2ds 
o 

< C(fo, 2,0c, p,T)n -p/2 1 + ~fol]O~_sll~ds (by part a) 

C ( f  o, 2, Oc, p ,  T)n-P/4e.~p(Z) (using Lemma 3(c)).  

Similarly using (2.7), Lemma 5(a) and Lemma 3(a-c) 

(2.14) E(]E}I)(O;_.)] p) 

<= C(p)F~ II0;_,llo((V~, 4~;_,) + (Ac(~), 0;_,))as + C(p)n -p/2 

<= C(p, T)E (t - s)-2/3(Ac(~s), @-s § Or-s) ds + C(P) n-p/2 

t 
~= C ( p ,  T ) f ( t  - s ) -2 /3(E(Ap/2(~s) ) ,  tilt_ s -z + ~ t _ s ) d s  -1- C ( p ) n  -p/2 

o 
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t 
-Z < C(p, T ) f ( t  - s) -2/3 [[E(AP/2(~s))[[_~p(e;.p, ~t-~ + ~'t-~) ds + C(P) n-p/2 

0 
t 

< C(2, p, T)e;~p(Z)f(t - s) -2/3 [11 + E(AP(~s))[[_;~pds + C(p)n -p/2 . 
0 

We return after proving part (c) to improve the bound on E (1). 

(2.15) (v0, ~t) p = (A(~o), @)P 

< ][A(~0)l]P_;,(e;,, @)P 

< C(fo,2,  p, T)e;,p(Z) 

using the assumptions on the initial conditions and Lemma 3(b). Using 
Burkholder's inequality again and (2.5), we have 

(2.16) g(lz(~kt_.)l p) 

I '  / t \ p/2X~ 

<= C(p)E~fo(VS,(@_s)2)ds ) ) +C(p)n  -p/2 

t 

< C(2, p, T)e~p(z)f(t - s) -2/3 []1 + E(AP(~s))ll_;opds + C(p)n -p/2 
o 

arguing as in (2.14). To prove part (c) we shall take pth powers and expec- 
tations in the Green's function representation (2.11). Collecting together the 
bounds (2.13-2.16) we have 

liE (AP(r 

= sup E(IAc(~t)(z)l p) e_;~p(Z) 
Z 

< C (fo, 2, Oc, p, T) 1 + f ( t  - s)  -2/3 lie (AP(~s)) II-~pds . 
0 

Then a slight modification of the usual Gronwall argument [16, Lemma 3.3] 
completes the proof of part (c). 

To improve the bound on E (l) and finish the proof of part (b) we apply 
the same Burkholder argument but with a mixture of the two bounds (2.6 and 
2.7) for the brackets process. 

(2.17) 

) 
t-n-3/8)+ 

(t n 3/8)+ 
+ C(p)e 

+ C(p)n -p/2 . 

p/2~ 
) 
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We may botmd the first expectation on the right-hand side of (2.17) as above by 

C(T)E ~f (t - s) (A(~s), Or-, + ~zt-,)ds 
(t--n-3~8)+ 

<=C(T)(  (t-n-3/stf(t-s)-2/3(E(Ap/2(~s))'~t-s+~t-s)ds))+ 

( -z ) (p/2)--i 
(t -- S)-2/3(1, ~z_ s + t[tt_s)ds 

(t-n-3~ 8)+ 

z)  <= C(T) (t - s) -2/3 ]]E(Ap/2(~s))l[_2p(e2p , Ot-s + Ot-s) dS 
(t-n 3/8)+ 

( -z ) (p/2)--I 
( t  - s)-2/3(1, g,~_, + ,/,,_,) a's 

(t--n-3~8)+ 

<= C (fo, 2, Oc, p, T) n-p/16e2p(Z) (using part c) .  

We may bound the second expectation on the right-hand side of (2.17) by 

( ) C(p) (t nf3/8)+E((vs, e-22) p/2)ItD (~_~, n -1/2) II~ds 
\ o (i )+,2+ 

(t n 3/*)+ (,I, z n -1/2] ds 
lID v ' , ' , - s ,  ,, 

),+ 
< CCfo,2,0c, p , T )  IlD(tP t_s,n -1/2) II ds (using part a) 

\/(t_n_3/8) + ) p/2 
<= C (fo,  J., Oc, p, T) e,~p(Z)n -p/4 ~ fo (t - s)-2ds (Lemma 3(f)) 

< C ( fo ,  2, 0~, p, T) e).p(Z)n -p/16 . 

The two bounds together complete the proof of part (b). [] 

Step 3 Tiohtness 
We now use the Green's function representation to estimate moment differences 
for the approximate densities. We assume throughout this section that A({0) -+ 
f0 in cg. Define 

~ieC{,)Cz) = AeC~t)Cz) - (vo, 0[) �9 
Note that this is natural given the Green's function representation. 

Lemma 6 For 0 < s <_ t <_ 7", y ,z  E n-22g, It - s I ~ 1, lY - zl <= 1, 2 > 
0, p>__2 

E@ie( {t )(z ) - ~i~( ~s )(y )l p) < C(2, p, Oc, T, f o )er )(It - sl p/24 

q_ iz _ ylp/24 q_ n-P/t2). 
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Proof  The idea in the proof  is to mimic the similar moment estimates for the 
solutions to equations like ( 1.1 ) (see for example [ 13]). Fix s, t, T, y, z, 2, p as in 
the statement. We decompose the increment into a space increment ~i~(~t)(z) - 

~i~(~t)(y) and a time increment i ] ~ ( { t ) ( y ) -  3c(~)(y) .  We shall subtract the 
Green's function representations for Ac(r and ~ic(~t)(y), take pth moments 
and then expectations. We then estimate individually the terms emerging. We 
consider first the space difference. From the Green's function representation 
and the estimates already obtained in Lemma 4 for the error terms E (i) w e  

have 

(2.18) E(lA~( ~t )(z ) - A~( #t )( y )] p) 

< C(fo,  2, 0~, p, T)e)~p(Z)n -p/16 

t P ) 
+ C(p)E(Iz,(4,L. - 

< C( fo ,  2, Oc, p, T)e2p(Z)n -p/16 

t P 

We break the first expectation on the right-hand side of  (2.18) into two parts. 
Set 6 = (]z - y11/4 V n -1/2) A t. If  we restrict the integral to [0, t - 6) we obtain 
a part bounded by 

( 2 . 1 9 )  C(p)E (vs,Ac(~)e_Ods sup( l l~ ,  z - ~,sYlIP: s e ( ,~ , t ] )  

=< C(p)E A s),e-;~)ds 

• sup(IlK - ~'fl P: s �9 (~,t])  

t 

(Lemma 5(c))  

C( 2, p, T ) f  [IE(A~P)( ~_s )ll_;o/z(e;~/2, e_Dds  
0 

• sup(]]~ z - ~Y P. x ;~ s e ( ~ , t ] )  

< C(2, p, T)e;~p(z)(lz - ylp/2(~-p + n-p/2(~-3p/4)l(~ ) < t) 

! 

x fI[E(A~P)(~s)ll_;q2(e;42, e_;o)ds (Lemma 3(e)) 
0 
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< C(fo,  2, Oc, p, T)e;~p(z)(Iz - ytp/25 -p  -}- n-p/25-3p/4) 

x I(6 < t). (Lemma4(c)) 

The integral over [t - 6, t] gives a part bounded by 

(2.20) C(p)E _ H~bT_s + ~Lsll;~(vs,Ac(~s)e_;.)ds 
-3  

< C(p, T)exp(z)E t -- s)-2/3(A ~ s ) , e - x ) d s  

(Lemmas 5(c) and 3(c)) 

t 
< C(p, r)6(~/3~((P/2)-~%(z) f (t - s ) - 2 / 3 ( E ( A P ( ~ ) ) , e j _ ) d s  

t--6 

<-_ C ( f  o,,~, Oc, p, r )sp/3%(z) .  (Lemma 4(c)) 

We break the second expectation on the right-hand side of (2.18) also into two 
parts. The integral over [ 0 , t -  5) is bounded by 

(2.21) C ( p , T ) E  (sup(vs, e_22)P/2) sup(ll~p z - tpsY]tP: s E (5, t]) 
\ s<t / 

<= C ( f  o,,l, Oc, p, T)%(z)(Iz  - ylp/26 -p + rt-p/25 -3p/4) 

x I(6 < t) (Lemmas4(a) and 3(e)). 

The integral over [ t -  5, t] is bounded by 

(2.22) C(p)E I1~,-~ + 0t-~ll0(vs,0,-s + ~Ls)ds 
t--~5 

<= C(p)E  ( t - s )  2/3(Ac(~s),~l~_s + (lYt_s)ds 
t 

(Lemmas 5(a) and 3(c)) 
t 

~= C ( p ,  T )5  (1/3)((p/2)-1) f (t - s )  -2 /3  

t-6 

• (E(A~/2(~,)), (bL, + ~y_~)a~ 

< C(fo,2, 0~, p, T)Sp/6e;~p(z) (Lemmas 4(c) and 3(b)). 

Combining the four parts and using the definition of 6 leads to 

E@ic(~t)(z) - >ic(~t)(y)] p) < C(fo,  2, p, T)e;,p(z)(fz - yl p/24 + n-p/12). 
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For the time differences we have again, by subtracting the two Green's function 
representations, 

^ ~ p 
(2.23) E(IA,(~t)(z ) - Ac(~s)(z)l ) 

<= C(fo,)~, Oc, p, T)e2p(Z)n p/16 

+ C(p)E ( (!(vr,Ac(~r)~{-r)dr) p) 

+ C(p)E vr,A,(~)(0T_r - 0~_~))dr 

I / / t  x p/2X~ 

+C(P)E(~f(v~,(~'7-r)2)dr) ) 

z 2 -]- C(p)E (Vr,(~tt_ r -- ~lZ_r) )dF "~p/2x~ 

The first expectation in the right-hand side of (2.23) is bounded by 

II~,~ll~E (vr,Ac(~r)e-),)dr 
r<t 

((! )') < C(p, 2, T)e;.p(z)E (A2(~r), e_),)dr (Lemmas 3(c) and 5(c)) 

t 
< C(p, 2, T)e).p(z)[t - s[ p-~ f(E(A2p(~r)), e_;,)dr 

s 

< C(fo, 2, 0~, p, T)e;p(Z)[t - s[ p (Lemma 4(c)) .  

The third expectation in the right-hand side of (2.23) is bounded by 

C(p ,T)E( ( f t ( t - r ) -2 /g (vr ,  tP~_r)dr) p/2 ) (Lemma 3(c)) 

((! =C(p ,T )E  ( t - r ) -2 /3(A(~r) ,~;r )dr)  ) Lemma5(a)) 

t 
<= C(p, r)lr - sl (1/3)((p/2)-1) f ( t  - r)-z/3(E(AP/2(~)), ~_~)dr 

s 

< C(fo, ~, 0~, p, T)lt - slp/6ex~(z) (Lemmas 3(b) and 4(c)). 

We break the second expectation in the right-hand side of (2.23) into two 
parts. Set 3 = (It - s l  1/4 Vn 1~2)As. If we restrict the integral to [0,s - 3) we 
obtain a part bounded, arguing as in (2.19) but using Lemma 3(f) in place of 
Lemma 3(e), by 
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((i C(p)sup(llO,~ r - Os~_r[l~': r E [0,s - 3))E (vr,Ac(~r)e_z)dr 

< C( f0 ,2 ,  Oc, p, T)e;~p(z)(lt - sip/25 -3p/2 + n-P/25-3p/4)I($ < S). 

The integral over [s - $,s] gives a part bounded, arguing as in (2.20), by 

< C(fo,  2, Oc, p, T)SP/3e;~p(z). 

We break the fourth expectation on the right-hand side of  (2.23) also into two 
parts. The integral over [ 0 , s -  3) is bounded, arguing as in (2.21) but using 
Lemma 3(f)  in place of  Lemma 3(e), by 

C(p,T)sup( l l r  - Os-rllx.z p. r c [0,s - ~))E (sup(vr, e_22)P/2) 
\r<s / 

<= C ( f  o, )c, Oe, p, T)e2p(z)(lt - sIP/2$ -3p/2 + n-P/Z$-3p/4)I(3 < s) .  

The integral over [s - 3,s] is bounded, arguing as in (2.22), by 

C(p, T)E (s - r)-2/3(v~, ~tz ~ + ~_~)  dr 
S 

<= C(p, T)~ (1/3)((p/2)-l) f((E(AP/2(~r),-z -z ~ , -r  + $s-~) dr 

<= C(fo,  2, 0c, p, T)3P/6e;~p(Z). 

Combining the six parts and using the definition of  3 leads to 

E(IAc(~t)(z) - Ac(~s)(Z)iP) <= C ( f  o, )o, 0c, p, T)e;~p(Z)(It - sl p/24 + n -p/j2) 

completing the proof  of  Lemma. [] 

We now show that these moment  estimates imply tightness of  the approximate 
densities. Define A~(~t)(z) = A(~t)(z) on the grid z E n -27Z, t E n-3]N. Lin- 
early interpolate first in x and then in t to obtain a continuous c~ valued process. 
The next lemma shows that Ac(~t) and ~lc(~t) remain close. The advantage of  
using Ac(~t) is that it is continuous and it is a straightforward exercise to use 
the above moment  estimates and the argument of  Kolmogorov 's  continuity cri- 
terion to show that tightness holds for the processes (Ac(~t): t C [0, T])n=L2 .... 
as continuous c~ valued processes. Then tightness of  (Ac(~t ) :  t E [0, T])n=l,2 .... 
as cadlag (g valued processes and also the continuity of  all limit points follow 
from the next lemma. 

L e m m a  7 For any 2 > O,T < oe 
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(a) P(suPt<TIIfle(~t) -- fte(~t)tl-;~ >= 7n -1/4) ---+ 0 as n ---+ oo, 

(b) supt=<rll(v0,0;) -Pt/3/0H-J  0 a s  n 

Proof a) For 0 < s < t we have 

II(vo, O t ' ) -  (VO,~s)[[-;~ =< nll([~gt " - ~ s l ,  1)[[o =< 6nZlt-s[ 

from Lemma 3(d). So this changes only by O(n -1 ) between the grid points in 
n-3N. Note that the value of  Ac(~t)(x) changes only at jump times of  Pt(x) 
or Pt(y,x) for some y ~ x and that each jump is bounded by Cn -1/2. Then 
for k E 77, writing ~ ( a )  for a Poisson variable with mean a, 

P(3z E n-27/f-I (k,k + 1], 3t < T with [Ac(~t)- iic(~,)[ > 7n-1/4e ;~(Ikl-l)) 

< P(3z E n-27Z A (k,k + 1], 3t C n-ZN A [0, T], 3s E [t,t + n -3] with 

]Ac(~,)(z) - Ac(~t)(Z)I v [Ac(~.s)(Z) - Ac(~t+,,-2)(z)l > n-l/4e2(lk[-1)) 

<= n4p ( Cn-l/z(Pn-3(O) + y~o~ Pn-a(O' Y)) >= n-1/4e;~(lk'-l)) 

<= n4p(c(~(2n-2 + Ocn-3)) p >= nP/4e2p(lk]-l)). 

Applying Chebychev (for p > 17) and summing over k proves part (a). The 
proof of part (b) is delayed until Sect. 4. [] 

Step 4 Characterising limit points 
Radon measures (/~k)k=l,z.. on lR converge vaguely to another measure /~ if 
f (~(z)la,,(dz) ~ f c~(z),u(dz) for all continuous ~b: IR --. IR with compact sup- 
port. Taking such a 4~ we have 

where E(supt<_rlE ~ (~)l) < C(fo,2,0c, T)lID(~),n-1/2)ll~ by Lemma5(b). 
Tightness of (.4~(~): t > 0) then implies the tightness of the cadlag real val- 
ued processes ((v~', qS): t > 0). This in turn implies the tightness of (v~': t > 0) 
as cadlag Radon measure valued processes with the vague topology once a 
compact containment condition is checked [3, Theorem 3.6.4]. Proposition 4(a) 
implies this compact containment condition. Note that all limit points are again 
continuous. 

We now fix a convergent subsequence for the pair (A~(r By 
a theorem of Skorokhod (a slight extension of [6, Theorem2.1.8]) we may 
find variables with the same distribution as (~(z) :  t > O, z c n-27/, n > O) 
for which the convergence is almost sure. Since we are only interested in 
identifying the distribution of the limit there is no danger in continuing to 
label this almost sure convergent subsequence as (A~(~), v'~))t>=o. Also, since 
the limits are continuous, the almost sure convergence holds not only in the 
Skorokhod topology but in the topology of uniform convergence on compacts 
in [0, e c] ([6,Lemma 2.10.1]). Thus we have that with probability one, for all 
T < oo, 2 > 0, r of compact support 
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sup I lA~(gT)  - u,  lI-J~ - - +  o a s  n - - +  o o ,  
t < r  

sup l f  cb(x)vT(dx) - f ~(x)v,(dx)t --+ 0 
t<T 

C. Mfiller, R. Tribe 

a s n  ~ oc .  

z,(r = f (o(x)vT(dx) - J" 4(x),,g(dx) 

- s f(Ocr + Ac(4)(x))v~(dx)ds 

+ (1 + Ocn -1 ) fo f ~(x)Ac({s)(X)v~(dx)ds 

_ E}1)(~) + E}2)(~) 
is a martingale. From (2.6) and (2.8) and Burkholder 's  inequality 

E ( ~up Ie}~)(qS)] 2 + ]U}2)(qS)p 2) 

< C(fo,)~,Oc, T)(HD(O,..-l/2.ql2 - 1 / 2  2 = - ,,,~. + n 11')11;3 + c n - 1 .  

Dropping to a further subsequence if necessary the error terms then converge 
to zero for all t almost surely. Taylor 's  theorem shows that, when linearly 
interpolated, Ac(q~) ---+ (1/6)Aq5 as n + oc uniformly on the support o f  qb. I f  
measures #~ ---+ # vaguely and functions f , ,  are all supported on one compact 
and f ,  + f uniformly then f f~(x)#~(dx) ~ f f(x)lJ(dx).  Using this all the 
terms on the right-hand side of  (2.24) converge for all t > 0, almost surely. 
Hence the left-hand side also converges to a local martingale zt(~b) where 

(2.25) z,(~)  = f ~(x)ut(x)dx - f c)(x)uo(x)dx 

- s f(Oe~(x) + (1/6)A(dp)(x))us(X) - r dx ds.  

Note that since the right-hand side is continuous so is z,(qS). Also from (2.5) 

t 

Z2(qS) - (2 + Ocn-1)f f ~2(x)M~(dx)ds 
o 

is a martingale. Letting n --+ oo we have almost surely, for all t > 0 

t 

(2.26) 2 2 f (~2(x)u2(x) z,  ( , ~ )  - f dx ds 
0 

is a continuous local martingale. Equations (2.25) and (2.26) now hold simulta- 
neously for a countable collection of  such test functions (qS,). We may choose 
(qbn) so that for any twice continuously differentiable function ~. IR--~ IR 
of  compact support, there is a subsequence (qSnr so that ~bn(k)--+ ~p and 
A(on(k) --~ Ar uniformly. Using this we find that (2.25) and (2.26) hold for 
all such r and thus that ut solves the martingale problem associated with the 
stochastic p.d.e. (1.1). It is now straightforward to show that, with respect to 

(2.24) 

It is easy to see that vt(dx) = ut(x)dx for all t > 0. 
Take q~ three times continuously differentiable and with compact support. From 
(2.9) with qSt = r we have that 
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some white noise, ut is actually a solution to (1.1) (see [11], V20 for the 
similar argument in the case of stochastic o.d.e's). Thus all limit points have 
the same law and the convergence in Theorem 1 is proved. 

3 Long range voter process 

We risk a little confusion by redefining some of our notation. Although the 
scaling is different, most of the steps for the voter process are the same as for 
the contact process and we feel that to use different notation would obscure 
the similarities. Indeed once the approximate martingale problem is established 
almost all the remaining steps are left to the reader. 

For f ,y .  n - l ~ - - +  IR we write ( f , g )  for n - l ~ ~ f ( x ) g ( x )  and if v is a 
measure of  n - l Z  we write ( v , f )  for f f d v .  Again II f 11;~ = sup{[f(x)ex(x)]: 
x E n - l ~ }  and for x E n -1~ ,6  > 0 

D ( f , a ) ( x )  = sup{I f (y  ) - f ( x ) ] :  ] y - x ]  =< c5, y ~ n - t ~ } ,  

Av( f ) ( x )  = n ~/2 ~ ( f ( y )  - f ( x ) )  . 
y ~ x  

The graphical construction uses independent families of i.i.d. Poisson processes: 

(Pt(x ,y):  x,y  c n - l ~ ,  x ~ y) i.i.d. Poisson processes of rate n 1/2 , 

(/St(x,y): x, y ~ n - l ~ ,  x ~ y)  i.i.d. Poisson processes of rate Ocn -1/2 . 

At a jump time of Pt(x, y )  the voter at x adopts the opinion of the voter at 
y. At a jump of Pt(x, y )  the voter at x adopts the opinion of the voter at y 
provided that it is the opinion 1. 

We label the opinion of the voter at site x at time t by ~7(x). Define v7 = 
n -  1 Y'~x 6xI(~' (x) = 1 ) so that (~7, q~) = (v~ ~, q~). We now derive the approximate 
martingale problem. We again drop the superscript to simplify notation. The 
dynamics of the voter model are captured in the equation 

t 

~(x) =~,0(x) + ~ f ( ~ s - ( Y )  - ~s - (x ) )dPs (x , y )  
y ~ x  0 

t 

+ ~ f (1  - ~s - ( x ) )~s - ( y )d f i s ( x , y ) .  
y ~ x  0 

Take a test function q~: [ 0 , ~ )  • n-JTZ -+ IR with t --+ ~t(x) continuously dif- 
ferentiable and satisfying (2.1). Apply integration by parts to ~t(x)~t(x) and 
sum over x to obtain, for t < T 

t 

(v,, 4 , )  -- (v0, q~0) + f(v~, a~)ds 
0 

t 

+ n - l ~  ~ f(~_(y)- ~s_(X))r  
x y ~ x o  
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t 

+ n -I ~ ~ f(1 - ~,_(x))g,_(y)qS~(x)dP~(x,y) 
x y ~ x O  

t 

= (vo, 4o) + f(Vs,,Osq3Dds 
0 

t 

(3.1) + n --I ~ ~ f ~s-(y)(4s(X) - 4s (y ) )dPs(x ,y )  
x y N x  0 

t 

(3.21 + n - ' ~  ~ f (1  - ~-(x l )~ , (y lcbs(x)dP,(x ,y)  
x y ~ x  0 

t 

(3.3) + n -~ ~ ~ f r - dP, (x ,y ) ) .  
x y ~ x  0 

We break term (3.1) into two parts, an average term and a fluctuation term: 

t 

n -1 ~ ~ f ~s-(Y)(4s(X) - C~s(y))nl/Zds 
x y ~ x  0 

t 

+ n -~ ~ ~ f ~s-(Yl(Os(X) -- ~s(y))(dPs(x, y)  - na/2ds) 
x y ~ x  0 

t 

0 

where 

t 

g } 3 ) ( ~ )  :-'~- v l - I  S ~ f ~ s - ( y ) ( r  - -  ~,(y))(dPs(x, y)  - d { P ( x , y ) ) ~ )  

x y ~ x O  

is a martingale with predictable brackets process given by 

d(E(3)(~))t = n -2 ~ ~ ~.t(y)(~t(x) - ~)t(y))2nl/2dt 
X y ~ x  

_~ 2c2(D2( (ot, n-l/2 ), 1)dt 

2C2 [[D(q~t, n-1/2)]1~(1, e-22 ) dt .  

Alternatively we may bound 

d(E(3)(cp))t < 4c2[[cptlJo(fpt, 1). 

We break term (3.2) into two parts, an average term and a fluctuation term: 

t 

n - l ~  ~ f (1  - ~s_(x))~,_(y)q)s(x)Ovn</ads) 
x y ~ x  0 

t 

+ n -~ ~ ~ f ( 1  - ~_(x))4,_(y)4~,(x)(dP,(x, y) - -  Ovn-1/2ds) 
x y N x O  

t (4) = 2c20v f(&(~.s), @s) - (vs, Av(~s)d?s)ds + E t (c~) 
0 
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where 
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t 

E}4)(q~) :=  n - I  ~ ~ f (1  - ~s- (X) )~s - (y ) f f ) s (x ) (d f i s (X ,  y )  - d ( f i (x ,  Y)>s) 
x y~x o 

is a martingale with predictable brackets process given by 

t 

(E(4)(q~))t <= n - 2 ~  ~ f Cp2s(x)Ovn-1/2ds 
x y~xO 

t 
<= 4 0 v n - i  f 2 II ~b, 1t2(e_22, 1 ) d s .  

o 

The last term (3.3) is a martingale which we write as Zt(r  = n -1 ~ x  ZXt ((o) 
where 

t 

Z~(q~) : =  ~ f {s-(X)(Os(x)(dPs(y, x)  - dPs(x, y ) ) .  
y~x 0 

From the independence of ( P t ( x ,  y): x, y E n-IX) we conclude that 

( ( P t ( x ,  y )  - n l /2 t ,  P t ( x ' ,  y ' )  - n l / 2 t )  = n l / 2 t  I ( x  = x' ,  y = y ' )  . 

Therefore 

X ! z (r 
t 

= 2 f 
y~x yt ~xt 0 

x 2nl/Z(I(y = y', x = x')  - I (x  = y', y = x ' ) )ds  

t 

= 4nc2l(x = x')  f ~s(X)(oZ(x)ds 
o 

t 

- 2nl/2I(x ~ x ' )  f ~s(X)~s(x')~bs(x)qbs(x')ds. 
o 

Then 

(3.4) (Z(O))t =- n -2  ~ ~<ZX(q~), ZXt(~)) t  
X X f 

t 

= 4c2 f(~.s, ~)2s) -- (~sCs, Ac(~_sr 
o 

t 

< 4c2 f 2 = l] Cs 112(e_2)., t ) d s .  
0 

Collecting terms we have the following approximate martingale decomposition 
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t 

(v, 40~) = (Vo, 40) + f (v,, ~,~, + A~q$,)ds 
0 

t 

+ 2c20v f(Av(~s), @) - (Vs, Av(~s)4s)ds + Zt(O) 
0 

-~  E } 3 ) ( q ~ )  -I- E } 4 ) ( q ~ )  . 

With this approximate decomposition established the proof  now follows that for 
the contact process. Note that since A~(~t) E [0, 1] by definition, the moments 
estimates in Lemma 4(a) and (c) are unnecessary. 

We point out only one difference in deriving the limiting stochastic p.d.e. 
As for the contact process it is established that (v~, A~(~])) are tight and we 
write (ut(x)dx, ut) for a limit point. Then for ~b three times continuously dif- 
ferentiable and of  compact support, Zt(q$) converges to a continuous martingale 
zt(q$) as n ~ oc where 

(3.5) ~,(ep) =- f r - f O(X)~o(X)dX 

t 

- f f(O~O(x) + (1/6)A((~)(x))u,(x) 
0 

+ 20jp(x)u~(x)(1 - u~(x))dx ds .  

From (3.4) 

t 
(3.6) 2 ~n Zi (q~) - 4c2 f (  s, q~2) _ (~(~,Av(~(~))ds 

0 

t 
= Z2(~b) - 4c2 f ( ~ ( 1  - Av(~'~)), O2)ds 

0 

t 

+ 4c2 f(~'~(o, A~,(~4) - A~(~ )qb)ds 
0 

t " 

= Z2(q $) - @2 f f ( 1  - A~(~)(x))O2(x)v](dx)ds + E}S)(~b). 
0 

This defines a third error term E (5) for which 

t 
IE}5)(ck)l < 4c2 f n -I ~ ~n(x)(p(x)(2c2nl/2)-I ~ ~s(y)[~9(y) - -  ~)(x)ids 

0 x y ~ x  

=< 4c2t(q$, D(q$, n- l /2) )  -+ 0 .  

All terms in (3.6) again converge showing that 

t 

(3.7) z:,(cb) - f f (1 - , , (x ) ) , , (x)4)2(x)dx  ds 
0 

is a continuous martingale. Equations (3.5) and (3.7) together imply that ut is 
a solution of  the stochastic p.d.e. (1.2) with respect to some white noise. 
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4 Estimates from the local limit theorem 

The purpose of  this section is to prove Lemmas 3 and 7(b). We need an error 
bound in the local limit theorem. Since our distribution changes with n we 
have not been able to plug directly into a result from the literature but, as we 
see below, the usual characteristic function proof  gives a suitable error bound. 

Let (Y/)1=1,2... be i.i.d, and uniformly distributed on ( jn-2 :  [j[ ~ //3/2). 
Set p( t )  = E(exp ( i tY1 ) )  and Sk = ~i~=1 Y/. Note that E ( Y  2) = c3/3n, E ( Y  4) = 

c4/5//2 where c3(n), c4(n) ---+ 1 as n --~ 0o. 
The relation between the test functions 07, ~ defined in (2.10) and Sk is 

(4.1) @Z(x) = ~ e x p ( - ( n  + Oc)t)((n + Oc) t )k (k ! ) - ln2P(S~+l  = x - z )  , 
k=0 

oo  

(4.2) ~ ( x )  = ~ e x p ( - ( n  + Oc)t)((n + O c ) t ) k ( k ! ) - l / / 2 p ( s k  = x - 2 ) .  
k=0 

We let (Nt)t  be a Poisson process with rate (n + Oc). We shall use the bound 
E ( ( ~ t  + 1) a) < C ( a ) ( n t )  ~ for all a < 0. The following lemma and corollary 
give an error bound in the local limit theorem for Sk. 

Lemma 8 There ex i s t s  no < oo such that f o r  all n > no, k > 1 

(a) I p k ( t ) -  e xp ( - c3k t2 /6n ) [  < C k - l e x p ( - e 3 k f l / 1 2 n )  f o r  t <= (n /3 )  a/2 , 

(b) ]p(t)l < e x p ( - e 3 f l / 1 2 n ) f o r  t <_<_ (2n) 1/2 , 

(c) Ip(t)l < 3/4 f o r  t E [(2n) 1/2,~zn2] . 

P r o o f  (a) This bound is obtained by substituting the moments of  Y1 into 
Theorem 8.5 from Bhattacharya and Rao [1]. 

(b) From Durrett [4, Chap. 2], (3.7) and the moments of  )(1 

(4.3) p( t)  = 1 - (c3/6n)t 2 - (c4/120n 2 )t 4 e 

where [el < 1. First choose no such that el(n)  E [1/2, 2] for i = 1 . . . . .  4, n > 
no. Then [p(t)[ < 1 - (c3/12n) t  2 when t ~ (2n) 1/2, n > no and the first bound 
follows from the inequality 1 - x  < e -x .  

(c) Let m = s u p ( j E N :  j <-_ n3/2). Then 

( 2 C l n 3 / 2 )  - 1  m . .  2 Ip(t)l = ~ e 't;/n 
j ~  - -m 

= l(2c 1 n 3 / 2  ) - 1 (eit(m+ 1 )/n 2 _ e -itm/n2 )(e it~n2 - 1 ) -  1 ] 

< (cln3/2)-11sin(2/n3/2)]-I  for t C [(2n) 1/2, xn2].  

The right-hand side converges to 1/2 as n -+ ec. We may choose no to obtain 
the desired result. 

Corollary 9 For  n > no, y E n-22~ 
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In2p(sk = y )  -- p(c3k/3n, y)] ~ C(n2e -k/48 Jr- nl/2k-3/2) �9 

Proo f  Following a standard characteristic fimction proof (see [4, Sect. 2.5]) 
we have f o r y E n  -271, k > 1 

7Ztt 2 

n2p(sk = y) = (27c) -1 f ei typk( t )dt ,  
- -  tort2 

p(c3k/3n, y )  = (2~z) -1 f ei~ . 

Subtracting these equations and using the bounds from Lemma 8 we have 

In2p(sk = y )  -- p(c3k/3n, Y)I 

7[1~ 2 

<= ~-~ ~f e-~3k'2/6"at + ~-' f I s  + e-~3*'2/6~ 
rcn 2 ( n / 3 ) l / 2  

(n/3) 1/2 
+ ~ 1 f [pk(t ) _  e-C3k?/6,,[dt 

0 

7~//2 

<= 27z-1 of e_C3kt2/12.d t q- rc -1 f (3/4) l~dt 
(n/3) l/2 (2n)I/2 

(n/3) 1/2 

+ ~c -1 f Ck -1 exp(-c3kt2 /12n)dt  
0 

<= C(nl/2k-le-C3k/36 + n2(3/4) k + nl/2k -3/2) 

< C(n2e-k/4s + n~/2k-3/2). [] 

Proof o f  Lemma 3 That (~b[, 1) = ~,~, 1) = 1 is immediate from (4.1) and 
(4.2). By induction we have that P ( &  = x)  < Cn 1/2 for all x E n -17z, k > 1. 
Substituting in (4.1) and (4.2) shows that 

II,P;llo --< c n*/2, 11~711o --< c n  2 

proving part (a). 

We omit the easy proof of the exponential bound E(exp(#Yl )) < exp(5/fln-* ). 
Then from (4.1), for t < T, 

(~k~, e)~) = k exp(-(n + O~)t)((n + O~)t)k(k!) -1 ~ e;.(x)P(&+l = x - z )  
k = O  x 

~2e;~(z) ~ exp(-(n + O~)t)((n + O~)t )k(k!) - lE(exp(2&+l))  
k=0  

~2e~(z) k exp(-(n + Oe)t)((n + Oe) t )k(k!) - lexp(522n- l (k  + 1)) 
k=0  

=2ex(z)exp(522n i + (n + Oc)t(e 5;?"-j - 1)) < C()~, T)e)~(z) . 
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A similar bound holds for (ff~, e, 0 proving part (b). 
By induction on k one may show that the function x ~ P(Sk = x - z) is 

non-negative, symmetric and unimodal about z. The same properties then hold 
for ff~, ~ by substituting in (4.1) and (4.2). Using this unimodality we have, 
for Ix[ > 1, 

P(Sk = x) <= n-ZP(Sk >= Ix[-  1) 

< n -2exp ( -# ( Ix [ -  1))E(exp(#Sk)) 

--< n-Zexp(-#([x[ - 1))exp(5#2kn - l )  . 

Now substitution of this bound into (4.1) gives for any # 

g 
(4.4) ~t(x)  < C(#, T ) e x p ( - # l x - z l )  for t < T, I x - z [  > 1. 

From Corollary 9 and (4.1) we have 

(4.5) ~t(x)  =E(p (c3 (~ t  + 1)/3n, x - z ) ) + e ( n ,  t , x - z )  

where, setting fl = 1 - e  -1/48, 

(4.6) ]e(n, t, x)] =< CnZE(exp(-~t /48))  + cna/2E((1 + ~t )  -3/2) 

< Cn2e-~ nt + Cn- l t  -3/2 

< Cn-l(1 + t -3/2) for t > n -3/4. 

Then using the bound [p(t, x)[ < Ct -t/2 we have from (4.5) 

~tz(x ) <= Cnl/2E((1 + ~t)  -I/2) + [e(n, t, x - z)] 

<= Ct -1/2 § Cn-l(1 + t -3/2) for t > n -3/4 

<= C(T)t  -2/3 for t E [n -3/4, T].  

Combining this bound with the bound in part (a) and (4.4) leads to the bound 

~t(x)  < C()~, T)(nl/Z A t - z / 3 ) e x p ( - 2 [ x - z [ )  

which implies part (c). For part (d) we differentiate (4.1), giving 

(Iq,; - ~ l ,  1) 

t o o  

=< f ~ exp(-(n + Oc)q)((n § Oc)q)k(k!) -I  
s k=0 

• l-- ( n + O c ) + k q - l [ ~ P ( S k + l  = z - x ) d q  
x 

t cx~  

<= 2n f ~ exp(-(n  + Oc)q)((n + Oc)q)k(k!)-l(1 + k q - l n - 1 ) d q  
s k = 0  

t 

= < 6 n f d q  
s 
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For parts ( e ) - ( g )  we fix n -3/4 ~ t ~< T, z, y E rt-2Z, tz - Yl < 1. W e  have  

from (4.5) and the inequality Ip(t, x ) -  p(t, Y)I < Ct-a I x -  Yl 

[[O~ - ~Yl[0 < Clz - ylnE(( ~ t  + 1) - l )  + 2lie(n, t)llo 

< C(T)(lz - y[t - l  + n - i t  -3/2) (using (4 .6)) .  

But from (4.4) we have OtZ(x)+ ~ ( x )  =< C(2, T)exp( -22[x-  zl) for Ix-  zl 
_ 2 .  So 

Ilq,, z _ y ~i lb. =< sup c ( ~ ) l l ~  - r 
x:lx-z[<2 

+ sup min(HOt z -  ff{[[o,C(2, T ) e x p ( - 2 2 [ x - z ] ) ) e ; ~ ( x )  
x:lx-zl>2 

< c(,~, r)e~,(z) ( l l~' f  - 'UIIo + I10, z - '/(11~/2) 

< C(2, T)e;~(z)(lz - y]l/2t-I + n - U z t  -3/4) . 

For part (f) we argue exactly as in part (e) but use the inequality }p(t, x ) -  
p(s, x)l -<_ Clt- sis -3/2 for 0 < s < t. Finally part (g) follows from part (e) 
and the definition of  D(~,~ n-l/2). [] 

Proof  o f  Lemma 7(b) Write f~(x)  = fo ( z  + x). Then 

lt(vo, C t ' ) -  Pt/3foll_z = ll(Ac(~o), 4;;)-Pt/3foll_, t  

_-< I[(A~(~0) - f 0 ,  r + I I ( f . ,  4 ;0 - p ( t / 3 ) ) l l _ ) .  

From Lemma 3(b) 

sup [l(Ac(40) - fo ,  @)1]_~. < ]]Ac(~o) - fo[l_;~ sup Jl(e;o, r 
t<T t<T 

__< c ( ~ ,  r ) I I A c ( ~ o ) -  foJl_;~--+ o. 

To control II(f.,~ ~ -p t /3) l l_~  we argue from the Skorokhod representation 

(see [4, Theorem 7.6.3]) for 4;. We may find a Brownian motion B with 
B(0) = 0 and stopping times 0 = To < T1 < T2 < "-" with (Tin - Tm-1)m i.i.d. 
variables satisfying E(T1) = E(Y~), E(T~) < CE(Y 4) and B(Tm) equal in dis- 
tribution to Sm. We may also assume that the Poisson process (~.~t)t is defined 
on the same probability space and is independent of  B, (Tm)m. Then from (4.2) 

(f~_, r176 t - p(t /3))  = E ( f z ( B ( l ~ , ) )  - f~(B( t /3)) ) .  

Fix e > 0 and choose 6 c (0, 1] so that Ifo(x) - fo(Y)l  < ~e~.(x) whenever 
I x -  y] < 6. Define 

~(~) = { r T ~ ,  - (t/3)l __< ~, Vt < T} ,  

O(r/, 6) = { ] B ( t ) -  B(s)] < 6, V ] t - s [  < r/, s, t < T ) .  



Two Stochastic p.d.e.'s 545 

Then  for t < T 

( f z ,  ~o _ p(t /3))  

< eE(e)~(z + B(t/3))) + E(( f z (B(T~,  )) 

+ fz(B(t/3)))I(12c(rl) tO f2e(q, 6))) 

_ 6] 1/2 2 - 0  <- c ( L  T)eej~(z) + 2(P(f2c(q) U (2c(rl, ))) ( f~ ,  ~Jt + P(t/3)) t/2 

< C(2, T)e+r + (P(f2C(rl) U f2e(r/, 6)))1/2). 
We first choose t/ small  so that P( f2c(q ,6 ) )  < a. The process T~, - c3(1 -[- 
Ocn-l)t/3 is a mart ingale  and us ing a simple mart ingale  inequal i ty  we m ay  
then choose n large so that P(f2r  < e. This shows that 

sup [[(f.,~0 _ p(t/3))[[_;+ --+ as n ---+ ec  
t<T 

which completes  the proof. [] 
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