Test I: February 14th, 2002

- 1. Topics Covered: (I have tried to make this list as comprehensive as possible)
 - (a) Review of Basic probability (Borel Cantelli Lemma, Jensens/Chebyshcev's inequality, independence,..)
 - (b) Brownian motion (definition, construction, properties discussed)
 - (c) Weak-convergence (Definition, applications to \mathbb{R}^{∞} , C([0,1]), determining class, convergence determining class, tightness)

2. Basic Results:

- (a) You may ignore(for this test): problems in assignment 4: 1(a),(b), 3.
- (b) Borel Cantelli
- (c) Construction of Brownian motion
- (d) Regularity of a probability measure on a metric space S
- (e) Determining classes.
- (f) Each probability measure on a metric space S is tight.
- (g) Equivalent definitions on weak convergence.
- (h) Finite dimensional sets
- (i) Theorem on mappings (i.e $\mathbb{P}_n \Rightarrow \mathbb{P}$ then when does $\mathbb{P}_n h^{-1} \Rightarrow \mathbb{P} h^{-1}$ and such...)
- (j) Need to understand how to determining when a subclass is a convergence determining class.(In Billingsley notation-Theorem 2.2 and Corollary 1)
- (k) All the problems given in the assignments.