Due: Thursday, March 14th, 2002

- 1. Let x_n, x be real numbers. Let \mathbb{P}_n , \mathbb{P} be measures on a probability space (Ω, \mathcal{F}) . Show that
 - (a) $x_n \to x$ if and only if for every subsequence of x_n there exists a further subsequence that converges to x.
 - (b) $\mathbb{P}_n \Rightarrow \mathbb{P}$ if and only if for every subsequence of \mathbb{P}_n there exists a further subsequence that converges to \mathbb{P} .
- 2. Let $\{\Omega, \mathcal{F}, \mathbb{P}\}$ be a probability space. Let M be a fixed positive constant, f^n denote the nth derivative.

$$\mathcal{W} = \{ f : \mathbb{R} \to \mathbb{R} \mid f^n \text{ exists and is continuous, } || f ||_{\infty} < M, || f^n ||_{\infty} < M \}.$$

Show that W is a convergence determining class.

- 3. Let X_n, X be random variables on \mathbb{R}^d . Assume that every linear combination of the components of X_n converges in distribution to the corresponding linear combination of the components of X. Show that X_n converges weakly to X.
- 4. Let \mathbb{P}_n (distribution of X_n) be a uniformly tight family of probability measures on C([0,1]), such that $\mathbb{P}_n \pi_{t_1,\ldots,t_k}^{-1} \Rightarrow N(0,\Sigma)$, where $\Sigma = (t_i \wedge t_j)$, for all dyadic rationals $t_1,\ldots,t_k \in [0,1]$, $k=1,2,\ldots$ Show that $X_n \Rightarrow B$, where B_t is a Brownian motion.
- 5. Let \mathbb{P} be a probability measure on $(C([0,1]), \mathcal{C})$, under which the stochastic process B(t) satisfies:

$$\mathbb{P}(B(0) = a) = 1 \tag{1}$$

$$\mathbb{P}(\{B(t) \le \alpha\}) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\alpha} e^{-\frac{u^2}{2t}} du \tag{2}$$

For
$$0 \le t_0 \le t_1 \le \dots \le t_k = 1$$
 $B(t_1) - B(t_0), B(t_2) - B(t_1), B(t_3) - B(t_2),$

$$B(t_4) - B(t_3), \dots B(t_k) - B(t_{k-1})$$
 are independent. (3)

Let $\xi_1, \xi_2, \xi_3, \ldots$ be independent and normally distributed with mean 0 and variance 1 on (Ω, \mathcal{F}, P) . Let $S_n = \sum_{i=1}^n \xi_i$. Let X_n be defined:

$$X_n(t) = \frac{1}{\sqrt{n}} S_{[nt]} + (nt - [nt]) \frac{1}{\sqrt{n}} \xi_{[nt]+1}$$

- (a) Show that X_n is a random variable on (C([0,1]).
- (b) Show that the finite dimensional distributions of X_n converge to the finite dimensional distributions of P.
- (c) Show that X_n is tight.
- (d) Conclude that X_n converges weakly to P and hence the weiner measure P exists.
- 6. Let B(t) be as defined above. Let $\xi_1, \xi_2, \xi_3, \ldots$ be independent and distributed with Bernoulli($\frac{1}{2}$) on (Ω, \mathcal{F}, P) . Let $S_n = \sum_{i=1}^n \xi_i$. Let X_n be defined:

$$X_n(t) = \frac{1}{\sqrt{n}} S_{[nt]} + (nt - [nt]) \frac{1}{\sqrt{n}} \xi_{[nt]+1}$$

- (a) Using Donsker's theorem conclude that $\sup_t X_n(t) \Rightarrow B(t)$.
- (b) Show that $P\{\sup_{t} B(t) \leq \alpha\} = \frac{2}{\sqrt{2\pi}} \int_{0}^{\alpha} e^{-\frac{u^2}{2}} du, \alpha \geq 0$