Due: Thursday, February 7th, 2002

- 1. If S is a separable and complete metric space, then each probability measure on $(S, \mathcal{B}(S))$ is tight.
- 2. Show that $\mathbb{P}_n \Rightarrow \mathbb{P}$ if and only if $\lim_n \int f d\mathbb{P}_n = \int f d\mathbb{P}$ for real valued bounded uniformly continuous functions.
- 3. Let \mathcal{U} be a subclass of $\mathcal{B}(S)$ such that
 - (a) \mathcal{U} is closed under finite intersections
 - (b) Each open set in S is a countable union of elements of \mathcal{U} .

If
$$\mathbb{P}_n(A) \to \mathbb{P}(A)$$
 then $\forall A \in \mathcal{U}$ then $\mathbb{P}_n \Rightarrow \mathbb{P}$

- 4. Let S be a metric space. $\mathcal{V} \subset \mathcal{B}(S)$ is called a determining class if $\mathbb{P}(A) = \mathbb{Q}(A) \forall A \in \mathcal{V}$ implies that $\mathbb{P} \equiv \mathbb{Q}$. $\mathcal{W} \subset \mathcal{B}(S)$ a convergence determining class if $\mathbb{P}_n(A) \to \mathbb{P}(A) \ \forall A \in \mathcal{V}$ implies that $\mathbb{P}_n \Rightarrow \mathbb{P}$
 - (a) Give an example of a convergence determining class.
 - (b) Give an example of a determining class.
 - (c) Show that a convergence determining class is also a determining class.
 - (d) Let S = [0,1) with the usual metric. Let $\mathcal{V} = \{[a,b) : 0 < a < b < 1\}$. Show that \mathcal{V} is a determining class but not a convergence determining class.
- 5. Give an example
 - (a) of a metric space S, probabilities \mathbb{P}_n , \mathbb{P} , and a function f which is bounded but not continuous such that: $\mathbb{P}_n \Rightarrow \mathbb{P}$ and $\int f d\mathbb{P}_n \not \to \int f d\mathbb{P}$
 - (b) of a metric space S, probabilities \mathbb{P}_n, \mathbb{P} ,and a function f which is $L_1(\mathbb{P})$, continuous but not bounded such that: $\mathbb{P}_n \Rightarrow \mathbb{P}$ and $\int f d\mathbb{P}_n \not \to \int f d\mathbb{P}$