- 1. Show that the weak Poincare inequality is stable under rough isometry.
- 2. Consider, Γ the join of two copies of \mathbb{Z}^3 at the origin with natural weights. Let $f: V \to \mathbb{R}$ be such that it is 1 on one copy and -1 on the other copy. Using f show that the weak Poincare inequality does not hold on Γ .
- 3. Show that \mathbb{Z}^d satisfied Weak Poincare Inequality.
- 4. Let (Γ, μ) be a weighted graph. Let $f \in L^2(V)$. Then for any $n \ge 0$,

$$0 \le \| P^{n+1}f \|_2^2 - \| P^{n+2}f \|_2^2 \le P^n f \|_2^2 - \| P^{n+1}f \|_2^2$$

5. Let (Γ, μ) be a weighted graph. Let $f \in L^2(V)$. Then for any $n \ge 0$,

$$|| f ||_2^2 - || P^n f ||_2^2 \le 2n\mathcal{E}(f, f)$$

6. Suppose Γ is \mathbb{Z}^d equipped with weights μ_{xy} such that $\mu_{xy} \geq \frac{c_1}{d}$ for some $c_1 > 0$. Let the transition kernel of the random walk on Γ be denoted by $p_n(x, y)$. Then show that

$$p_n(x,y) \le \frac{c_2}{n^{\frac{d}{2}}}$$

for some $c_2 > 0$.

7. Let Γ be two copies of \mathbb{Z}^d joined at the origin. Let the transition kernel of the random walk on Γ be denoted by $p_n(x, y)$. Then show that

$$p_n(x,y) \le \frac{c_2}{n^{\frac{d}{2}}},$$

for some $c_2 > 0$.