- 1. Let Γ_i for i = 1, 2 be graphs, with natural weights, which satisfy (N_{α_i}) respectively. Show that the join of Γ_1 and Γ_2 satisfies $(N_{\alpha_1 \wedge \alpha_2})$
- 2. Suppose Γ_1 and Γ_2 satisfy (N_{α}) then show that the join of Γ_1 and Γ_2 also satisfies (N_{α}) .
- 3. Let (Γ, μ) be a weighted graph. Let $\lambda > 0$ and $\mu^{\lambda} = \lambda \mu$. If (Γ, μ) satisfies (N_{α}) with constant C_N then (Γ, μ^{λ}) satisfies (N_{α}) with $\lambda^{\frac{\alpha}{2}}C_N$
- 4. Let (Γ, μ) be a finite graph. Let $R_I(\Gamma)$ be the relative isoperimetric constant. Let \mathcal{M} be a family of paths that cover¹ Γ . Let

$$\kappa(\mathcal{M}) = \max_{e \in E} \{\mu_e^{-1} \sum_{(x,y): e \in \gamma(x,y)} \mu_x \mu_y\}$$

(a) Let $f: V \to \mathbb{R}$, show that

$$\mu(V)\min_{\lambda}\sum_{x\in V} \mid f(x) - \lambda \mid \mu_x \le \sum_{y\in V}\sum_{x\in V} \mid f(x) - f(y) \mid \mu_x \mu_y$$

(b) Let $f: V \to \mathbb{R}$, show that

$$\sum_{y \in V} \sum_{x \in V} | f(x) - f(y) | \mu_x \mu_y \le \kappa(\mathcal{M}) \| \nabla f \|_1$$

(c) Show that

$$R_I(\Gamma) \ge \frac{\mu(V)}{\kappa(\mathcal{M})}$$

- 5. Consider, $\Gamma = \mathbb{Z}^d$.
 - (a) Let $Q = \{1, 2, ..., R\}^d$ be the cube in \mathbb{Z}^d . Let R_I denote the relative isoperimetric constant for Q. Show that Show that $R_I(Q) \geq \frac{c_d}{R}$.
 - (b) Show that \mathbb{Z}^d satisfies I_d .

¹ \mathcal{M} is said to cover Γ if for each distinct pair $x, y \in V$ there is a path $\gamma \equiv \gamma(x, y) \in \mathcal{M}$ from x to y.