1. Let $A \subset V$ and $x \in V \setminus A$. Then show that

$$\frac{1}{\mu_x \operatorname{R_{eff}}(x,A)} - \mathbb{P}^x (T_x^+ - T_A = \infty) \le \mathbb{P}^x (T_x^+ > T_A) \le \frac{1}{\mu_x \operatorname{R_{eff}}(x,A)}$$

2. Let (Γ, μ) be a weighted graphs with $\mu(V) < \infty$. Then show that

$$\mathbb{E}^{x_0}(T_{x_1}) + \mathbb{E}^{x_1}(T_{x_0}) = \mathcal{R}_{\text{eff}}(x_0, x_1)\mu(V).$$

- 3. Let (Γ, μ) be a weighted graph. Then Show that $R_{eff}(\cdot, \cdot)$ is a metric on V
- 4. Show that the Binary tree \mathbb{T}^2 satisfies (I_{∞}) with $C_0 = 3$.
- 5. Let Γ_i for i = 1, 2 be graphs, with natural weights, which satisfy (I_{α_i}) respectively. Show that the join of Γ_1 and Γ_2 satisfies $(I_{\alpha_1 \wedge \alpha_2})$