1. Show that \mathbb{Z}^3 is transient by using the flow¹ on \mathbb{Z}^3_+ given by;

$$I_{(x,y,z),(x+1,y,z)} = \frac{x+1}{C}, I_{(x,y,z),(x,y+1,z)} = \frac{y+1}{C}, I_{(x,y,z),(x,y,z+1)} = \frac{z+1}{C},$$

with C=(x+y+z+1)(x+y+z+2)(x+y+z+3) . Further conclude that \mathbb{Z}^d is transient for $d\geq 3.$

- 2. Let \mathbb{T} be a rooted binary tree, with root ρ , as discussed in class. Let \mathbb{T}_n be the set of 2^n points at a distance n from the root ρ .
 - (a) Using the flow I given by

$$I_{x_n,x_{n+1}} = 2^{-(n+1)}$$
 for $x_n \in \mathbb{T}_n, x_{n+1} \in \mathbb{T}_{n+1}$ and $x_n \sim x_{n+1}$

show that $\mathbf{R}_{\text{eff}}(\rho, \mathbb{T}_n) \leq 1 - 2^{-n}$

(b) Using the function f given by

$$f(x) = \frac{1 - 2^{-d(\rho, x)}}{1 - 2^{-n}}$$

show that $\mathbf{R}_{\text{eff}}(\rho, \mathbb{T}_n) \geq 1 - 2^{-n}$

- (c) Show that \mathbb{T} is transient.
- (d) Suppose we allow weights on \mathbb{T} to be given by

$$\mu_{x_n,x_{n+1}} = \frac{1}{r_n} \text{ for } x_m \in \mathbb{T}_n, x_{n+1} \in \mathbb{T}_{n+1} \text{ and } x_n \sim x_{n+1},$$

where r_n is positive sequence of numbers. Decide if \mathbb{T}, μ is transient or not.

3. Let $V_n \uparrow V$. Then if $B_0, B_1 \subset V$ show that

$$\mathbf{C}_{\text{eff}}(B_0, B_1) = \lim_{n \to \infty} \mathbf{C}_{\text{eff}}(B_0 \cap V_n, B_1 \cap V_n; V_n)$$

- 4. Let $I \in \overline{\mathcal{I}}_o(B_0, B_1)$ and let $I^n \in \mathcal{I}_o(B_0, B_1)$, with $E[I I^n, I I^n] \to 0$. Then $I^n_{xy} \to I_{xy}$ for each $x, y \in V$. Show that DivI(x) = 0 for $x \in V \setminus B_0 \cup B_1$. In addition if $B_0 \cup B_1$ is finite then I satisfies $\sum_{x \in B_0} \text{Div}I(x) = 1$ and $\sum_{x \in B_0} \text{Div}I(x) = -1$
- 5. Show that $1 \in H_0^2 \iff H_0^2 = H^2$

¹Verify DivI(x) = 0 for all $x \neq 0$ and $E(I, I) < \infty$