- 1. Consider the graph Γ obtained by identifying the origins of \mathbb{Z}_+ and \mathbb{Z}^3 .
 - (a) Show that Γ is transient.
 - (b) Let $f_n: \Gamma \to \mathbb{R}$ be given by

$$f_n(x) = \begin{cases} 1 - \frac{k}{n} & \text{if } x = k \text{ for } k \le n \\ 0 & \text{otherwise} \end{cases}$$

Find f such that $f_n \to f$ in H^2 . Conclude that H^2 , H^2_0 and L^2 are all distinct spaces.

(c) Let $h: \Gamma \to \mathbb{R}$ be given by

$$h(x) = \begin{cases} \mathbb{P}^x(T_0 < \infty) & \text{if } x \in \mathbb{Z}^3\\ 1 + 6p_0n & \text{if } x = n \in \mathbb{Z}_+ \end{cases}$$

where $p_o = \mathbb{P}^0(\mathbb{R}.\mathbb{W} \text{ on } \mathbb{Z}^3 \text{ does not return to } 0)$. Show that h is non-constant positive harmonic function on Γ .

- (d) Show that Γ satisfies the Liouville property.
- 2. Consider the graph \mathbb{Z} with natural weights. Calculate $R_{eff}(\{0\}, [-n, n]^c)$. Use this to conclude that \mathbb{Z} is recurrent.
- 3. Let $(\Gamma = (V, E), \mu)$ be a locally finite, connected, infinite vertex, weighted graph. Let $B_0, B_1 \subset V$. Let the effective conductance between them be given by

$$C_{\text{eff}}(B_0, B_1) = \inf \{ \mathcal{E}(f, f) : f \mid_{B_1} = 1, f \mid_{B_0} = 0 \}.$$

- (a) Let $B_0 = \{x\}$ and $B_1 = \{y\}$ where $x \sim y$ in V. Find $C_{\text{eff}}(B_0, B_1)$.
- (b) Let $B_0 = \{x_1, x_2, x_3, \dots, x_n\}$ and $B_1 = \{y_1, y_2, y_3, \dots, y_n\}$ with only $x_i \sim y_i$ in V for $i = 1, 2, \dots, n$. Find $C_{\text{eff}}(B_0, B_1)$.
- 4. Let V be a countable graph, $A \subset V$, and $x_0 \in A$. Let $|A| < \infty$. Construct a unit flow from A^c to x_0 . That is a flow $I: V \times V \to \mathbb{R}$ such that
 - (a) $\operatorname{Div} I(x) = 0$ for all $x \in V \setminus (A^c \cup \{x_0\})$
 - (b) $\text{Div}I(x_0) = -1$
 - (c) $\sum_{x \in A^c} \operatorname{Div} I(x) = 1$

Hint: Consider a flow derived from a suitable Green function.

- 5. Let I be a flow on the weighted graph $(\Gamma = (V, E), \mu)$. Then show that $||I||_2^2 \leq 2E(I, I)$.
- 6. Let $V = \{0,1\} \times \mathbb{Z}_+$ and let $\Gamma = (V, E)$ be the (ladder) subgraph of Z^3 induced by V. Let $B_j = \{j\} \times \mathbb{Z}_+$ for j = 0, 1. If I^n be the flow such that $I^n_{(0,k),(1,k)} = \frac{1}{n}$ for $k = 1, 2, \ldots n$.
 - (a) Find $E[I_n, I_n]$
 - (b) Find $I \in \overline{\mathcal{I}}_o(B_0, B_1)$ such that $I_n \to I$.
 - (c) Deduce that I is the minimiser of $\inf\{E[I, I] : I \in \overline{\mathcal{I}}_o(B_0, B_1)\}$
 - (d) Conclude that we cannot replace $\overline{\mathcal{I}}_o(B_0, B_1)$ by $\mathcal{I}_o(B_0, B_1)$ in the above minimising problem.