1. Consider Γ to be the join of two copies of \mathbb{Z}^3 at their origins. Write $\mathbb{Z}^3_{(i)}$, i = 1, 2 the two copies, and 0_i for their origins. Let

 $F = \{X \text{ is ultimately in } Z^3_{(1)}\}$

and let $h(x) = \mathbb{P}^x(F)$.

- (a) Show that h is harmonic,
- (b) Show that $h(x) \ge \mathbb{P}^x(X \text{ never hits } 0_1)$ for $x \in \mathbb{Z}^3_{(1)}$.
- (c) Show that $h(x) \leq \mathbb{P}^x(X \text{ hits } 0_2)$ for $x \in \mathbb{Z}^3_{(2)}$.
- (d) Conclude that Γ does not satisfy the Liouville Property

Let $(\Gamma = (V, E), \mu)$ be a locally finite, connected, infinite vertex, weighted graph. Let $\Omega = V^{\mathbb{Z}_+}$. For any $n \ge 0$, let $X_n : \Omega \to V$ be given by $X_n(\omega) = \omega_n$,

$$\mathcal{F}_n = \sigma\{X_k : 0 \le k \le n\}, \mathcal{G}_n = \sigma\{X_k : 0 \le k \ge n\}, \text{ and } \mathcal{F} = \mathcal{G}_0 = \sigma\{X_n : n \ge 0\}.$$

Random Walk on (Γ, μ) : For any $x \in V$ let \mathbb{P}^x be the unique measure on (Ω, \mathcal{F}) such that

$$\mathbb{P}^{x}(X_{0} = x_{1}, X_{1} = x_{2}, \dots, X_{n} = x_{n}) = 1_{x}(x_{0}) \prod_{i=1}^{n} \mathcal{P}(x_{i-1}, x_{i}),$$

where $x_i \in V$ and $\mathcal{P}(x,y) = \frac{\mu_{xy}}{\mu_x}$. For $x \in \alpha$, a σ -field \mathcal{K} is \mathbb{P}^x trivial if $\mathbb{P}^x(K)\{0,1\}$ for all $K \in \mathcal{K}$.

- 2. Let X_n be a random walk on \mathbb{Z} .
 - (a) Show that $L = \sup\{n \ge 1 : X_n = 1\}$ is not a stopping time.
 - (b) Show that $F = \inf\{n \ge 1 : X_n \in \{0, 4\}\}$ is a stopping time. Can you find the distribution of X_F ?
 - (c) Show that the return time T_i to a state $i \in S$ is a stopping time.
 - (d) Let $T_a = \inf\{n \ge 1 : X_n = a\}$. Show that T_a is a stopping time and the 'inf' in T_a is actually a minimum almost everywhere.
 - (e) (Reflection Principle) Suppose $M_n = \max_{0 \le i \le n} X_i$. Show that

$$P(M_n \ge a, X_n < a) = P(M_n \ge a, X_n > a).$$

(Hint: Apply the strong markov property at T_a and symmetry of the distribution of the Bernoulli trials.)