Homework Set 3

- 1. Consider \mathbb{Z}^d for $d \ge 1$ with natural weights and the random walk X_n on it. Let $A \subset \mathbb{Z}^d$ and define $\tau_A = \inf\{n \ge 0 : X_n \notin A\}.$
 - (a) Let d = 1, a < 0 < b, A = (a, b) Show that $\mathbb{P}^0(\tau_A > n(b-a)) \le (1 \frac{1}{2^{b-a}})^n$.
 - (b) Let $\emptyset \neq A \subset \mathbb{Z}^d$ such that $|A| < \infty$. Then show that for any $x \in \mathbb{Z}^3$,

$$\mathbb{P}^x(\tau_A > n) \le c_1 \rho^n,$$

for some $c_1 > 0$ and $0 < \rho < 1$.

2. Consider the graph $\Gamma = (V, E)$ formed by joining two copies of \mathbb{Z}^3 at the origin. We shall refer to $\mathbb{Z}^3_{(1)}$ and $\mathbb{Z}^3_{(2)}$ as the two copies. Show that Γ does not satisfy the Liouville Property. (Hint: With $F = \{\{X_n\}_{n\geq 0} \text{ is eventually in } \mathbb{Z}^3_{(1)}\}$, show $h: V \to [0.1]$ be given by $h(x) = \mathbb{P}^x(F)$ is harmonic on V and non-constant.)

Check out recent Work on Liouville Property.

3. The invariant σ -field \mathcal{I} is given by

$$\mathcal{I} = \{ F \in \mathcal{F} : \theta_n^{-1}(F) = F \text{ for all } n \}.$$

The tail¹ σ -field \mathcal{T} is given by

$$\mathcal{T} = \cap_{n=1}^{\infty} \mathcal{G}_n.$$

Show that $\mathcal{I} \subset \mathcal{T}$. (Hint: first show that $F \in \mathcal{G}_n$ iff $F = \theta_n^{-1}(F_n)$ for some $F_n \in \mathcal{G}_0$.)

4. Show that Γ satisfies the Liouville property if and only if $\exists x \in V$ such that \mathcal{I} is \mathbb{P}^x trivial. (Hint: For \Longrightarrow for $F \in \mathcal{I}$ show that $h: V \to [0, 1]$ given by $h(x) = \mathbb{P}^x(F)$ is harmonic and \Leftarrow Use Martingale convergence Theorem.)

¹Think of Example of : an event in \mathcal{I} ; an event in \mathcal{T} ; and an event not in \mathcal{I} .

Book-Keeping Results

Let $(\Gamma = (V, E), \mu)$ be a locally finite, connected, infinite vertex, weighted graph. Let $\Omega = V^{\mathbb{Z}_+}$. For any $n \ge 0$, let $X_n : \Omega \to V$ be given by $X_n(\omega) = \omega_n$,

$$\mathcal{F}_n = \sigma\{X_k : 0 \le k \le n\}, \mathcal{G}_n = \sigma\{X_k : 0 \le k \ge n\}, \text{ and } \mathcal{F} = \mathcal{G}_0 = \sigma\{X_n : n \ge 0\}.$$

Random Walk on (Γ, μ) : For any $x \in V$ let \mathbb{P}^x be the unique measure on (Ω, \mathcal{F}) such that

$$\mathbb{P}^{x}(X_{0} = x_{1}, X_{1} = x_{2}, \dots, X_{n} = x_{n}) = 1_{x}(x_{0}) \prod_{i=1}^{n} \mathcal{P}(x_{i-1}, x_{i})$$

where $x_i \in V$ and $\mathcal{P}(x, y) = \frac{\mu_{xy}}{\mu_x}$. For $x \in$, a σ -field \mathcal{K} is \mathbb{P}^x trivial if $\mathbb{P}^x(K)\{0,1\}$ for all $K \in \mathcal{K}$. Let $I \subset \mathbb{Z}$. Let $X = \{X_n : n \in I\}$ be a stochastic process on a filtered probability space.

Martingale: We say X is a martingale if: (a) X is in L_1 , so that $E[X_n] < \infty$ for each n, (b) X_n is \mathcal{F}_n measurable for all n and (c)

$$E[X_n \mid \mathcal{F}_m] = X_m$$

for each $m \leq n$ and $m, n \in I$.

- 1. (Optional Sampling Theorem) Let $\{X_n : n \ge 0\}$ be a martingale and T be a stopping time. Suppose one of the following conditions holds:
 - (a) T is bounded random variable,
 - (b) X is bounded

Then

$$E(X_T) = E(X_0).$$

- 2. (Martingale Convergence Theorem) Let X be a martingale bounded in L_1 .
 - (a) If $I = \mathbb{Z}_+$ then there exists a random variable X_{∞} with $\mathbb{P}(|X_{\infty}| < \infty) = 1$ such that $X_n \to X_{\infty}$ a.s. as $n \to \infty$.
 - (b) If $I = \mathbb{Z}_{-}$ then there exists a random variable $X_{-\infty}$ with $\mathbb{P}(|X_{-\infty}| < \infty) = 1$ such that $X_n \to X_{-\infty}$ a.s. as $n \to -\infty$.
- 3. (Uniform Integrability) If $\{X_n\}$ is uniformly integrable if for all $\epsilon > 0$ there exists K such that

$$E[\mid X_n \mid ; \mid X_n \mid > K] < \epsilon$$

for all $n \ge 0$.

- (a) Bounded in L_1 does not imply that $\{X_n\}$ is uniformly integrable.
- (b) Let $\{X_n\}$ be uniformly integrable martingale. Then there exists X_{∞} such that $X_n \to X_{\infty}$ a.s. and in L_1 .

The above can be found in the book: [D] Probability Theory and Examples, R. Durrett