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1. Summary and introduction. We shall be concerned with an irreducible
Markov chain, which we shall call “the system.” For simplicity we shall assume
that the system is aperiodic, but this is not essential. The reader is referred to
[1] for explanations of the terminology used. We first state some general theorems
which provide criteria for determining whether the system is éransient, recurrent-
null or ergodic (recurrent-nonnull). These are then applied to the Markov chains
dssociated with certain queuing processes recently studied by D. G. Kendall
[4], [5]; most of the results have already been obtained by Kendall using direct
methods, and the main purpose of the present paper is to illustrate the applica-
tion of general theorems to this type of problem.

2. Let [p.;] (4,7 = 0, 1,2, ---) be the infinite stochastic matrix of the system,
and denote by [p'{}] its nth power. ‘
TueoreM 1. The system is ergodic if there exists a nonnull solution of the equa-

tions
(1) Z%xme; = z; (=012 ---)

such that 3 | z:| < o and only if this property is possessed by any nonnegative
solution of the tnequalities

(2) Zoxipij é ; (J = O) 11 2} "')~

Proor. It is known (cf. [1]) that lim,_. P'gz"‘ ‘= always exists and is inde-
pendent of 7; and further that either w; > 0 for all j or w; = 0. The system is
ergodic if and only if =; > 0. For any nonnull absolutely convergent solution

{z:} of (1)

(3) z‘:)x:pn(;l) = X; (]=07 1727')
for all n, and so
(4) ;xm = z; (j=012---).

Therefore =; > 0 (for otherwise the solution would be null), and so the system
is ergodic.

Conversely, suppose the system to be ergodic, so that =; > 0. Let {z;} be
any nonnegative solution of (2). Then we have also (3) and (4) with inequalities.
Therefore Y z; < .
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TaeoreEM 2. The system is ergodic if there exists a monnegative solution of the
tnequalilies

(5) Z szyJ =y— 1, i#0,

such that 2?,;0 Pojy; < .
Proor. Let D7 pojy; = A. Define

0
(n+1) __ (n) (1) —
Yi = 'Zo Dsj yn = Yie
-

I

Then . ‘
y&o Z Z Py Py = Zo PPy £ i + Z (y; — Dpi}
-

" < (1 + )‘)p(n) (n+l) - 1.

It follows that if y{™ is finite, then y("“j) is finite. But y{" is finite for all 3.
Therefore y{™ is finite for all ¢ and n. We have now a recurrence relation from
which we obtain l

J(n+2) < (142N Ep(r) (2) - n.
Therefore,
7y < (14 Mt Zp(') P — L

Letting n — «, we have 0 < (1 4+ \)my — 1. Therefore, m = (1 + N~ > 0,
and so the system is ergadic.

The corresponding necessary condition can be given the following sharper
form.

TuEoREM 3. If the system is ergodic, then the (finite) mean first-passage times,
d; , from the jth to the zero state satisfy the equations

(6) leijdj =d; — 1, 1 # 0,
’-
and
5 s <
J=

(For a proof see [1], p. 335.)
In the following theorems we do not distinguish between recurrent-nonnull

and recurrent-null systems.
THEOREM 4. The system is transient if and only if there exists a bounded non-

constant solution of the equations

) ;J Dii¥i = Yis i # 0.
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Proor. The system will be recurrent if and only if there is probability unity
that the zero state is eventually attained from any state ¢ # 0. Consider there-
fore the modified system in which the zero state is made completely absorbing.
Denote the modified stochastic matrix by [p:;]. [Thus pe = 1, pi; = pi;, ¢ % 0.
Then we have lim,_.., pi{” = =i;, where =;; = 0,j # 0,and is the probability
that the zero state is eventually attained from the ith state. Now ¥ 1 pi; 7 =
wio for all 4. If the original system is transient, i, < 1 for some 7, and in all cases
w0 = 1. Therefore, defining y; = 7 , we have a bounded nonconstant solution
for (7).

Conversely, suppose a bounded nonconstant solution of (7) to exist. Since
(for any constants a, 8) {a + By;} is also a solution, we may suppose without loss
of generality that yo = 1, 0 < y; < 2 for all 7. We have

8 Z:,) DY = Y for all 7,
’;

so that Z‘;Lo p$§~”)yj = y; for all 7, n. Therefore, letting n — «, we obtain
> 3o mi;y; < yifor all 4, and hence 7y < y; for all i. But we must have either
y: < 1ory, > 1for some . In the former case we have =i, < 1. In the latter
case by considering the solution {2 — ¥;} we reach the same conclusion.

(A different proof of essentially this theorem has been given by Feller ([1], p.
334). The above proof is included since the technique is required for the following
two theorems.)

THaEOREM 5. The system is recurrent if there exists a solution {y.} of the inequal-
tties

(9) Zopiiyi = Yi, 1 O)
J=

such that y; — «© ast — ©.

Proor. Using the same “matrix modification” technique as in Theorem 4,
we have (8) with inequalities, and we may assume without loss of generality
that y; = 0 for all 7. A proof that =i is now identically equal to unity has been
given by Kendall [3].

The condition given in Theorem 5 would appear to be necessary for recurrence
only under certain additional assumptions. (Cf. Foster [2].)

The following variant of Theorem 4 is sometimes useful.

THEOREM 6. The system is transient if and only if there exists a bounded solution
{y:} of the inequalities (9) such that y; < yo for some 1.

Proor. The proof of the necessity is as in Theorem 4. To prove the sufficiency,
we have as before, assuming 4o = 1, wjo < ¥, s0 that m; < 1 for some 3.

It may be noted that since the numbering of the states is conventional, there
is no particular virtue in selecting the zero state for its special role in the above
theorems.

" In the sequel we shall require the following familiar lemma from branching-
process theory. (For a proof of it see e.g., [1], p. 226.)
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THEOREM 7. Given that {p.} (n = 0, 1,2, - --) is a probability distribution with
Do > 0, the equation

2 I pa =2

m=0
possesses a root £ in the range 0 < £ < 1 if and only if D¢ np, > 1.

3. The queuing system M/G/1. (For an explanation of this labelling see
[5].) The associated stochastic matrix has the form

’Co kl k2 .o
ky &y ke
0 ke In

] = h
Pii 0 0 k -

.. |
in which k; > 0 for all <. Define p = Z?. nk, . We shall prove that the system
is ergodic if and only if p < 1; and that it is recurrent if and only if p < 1.

Suppose first that p < 1. Define y, = j(1 — p)~". We find that {y;} satisfies
the conditions of Theorem 2, and so the system is ergodic.

Conversely, suppose the system to be ergodic. From the structure of the
matrix it will be clear that if u,; is the mean first-passage time from the ith to
the jth state then

Mii1 = fio (z = 0).

Moreover, from the ith state the zero state can be attained only via the (z — 1)st
state. Therefore

Mo = i1+ Mio1,0 .
It follows by an induction that
Mg = 7:#]0 (’L = 0).

Therefore, using Theorem 3, we have
3 3
ﬂm; Piij = wmo — 1.

Therefore
Mo p = o — 1,
s0 that

e

p=1-—yu <1.
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We turn now to the problem of recurrence. If p < 1, defining y; = j, we find
that the inequalities (9) are satisfied, and y; — « as j — o. Therefore by
Theorem 5 the system is recurrent. (We have here merely reproduced the method
employed by Kendall [4].) . ,

Conversely, suppose p > 1. By Theorem 7 the equation > e2"%, = zhas a
root, £ in the range 0 < # < 1. Define y; = ¢’. We find that the equations (7)
are satisfied and y; — 0 as j — «, with y, = 1. Therefore by Theorem 4, the
system is transient.

4. The queuing system GI/M/1. The associated stochastic matrix has the
form
(a9 a9 0 0 .-
a Gy G 0

[pij]E a A @ GG --- |,

where the elements a;, a; [=)_ 71 a;) are all positive and Z a, = 1.

(The more general system GI/M/s studied in [5] would necessitate only
trivial alterations to the treatment given below.) Define p by o~ = D 7 na, .
We shall prove that the system is ergodic if and only if p < 1; and that it is re-
current if and only if p < 1.

Suppose first that p- < 1. By Theorem 7, the equation

(10) > e, =z
0

has a root £ in the range 0 < £ < 1. Define z; = £'. We find that equations (1)
are satisfied and we have ) x; < . Therefore the system is ergodic. On the
other hand, if p = 1, z; = 1 is a solution for (2). But in this case 3, z; is infinite,
and so by Theorem 1 the system cannot be ergodic. (The sufficiency only of the
condition p < 1 was previously proved by Kendall (5] using this method.)

We turn now to the problem of recurrence and consider the possible solutions
of the equations (7). We may without loss of generality suppose y, = 0. Define

i

Y(z) = 21: ¥ 2",

AR = i 2.

whenever these power-series converge. We find that

Y(2) = aopnz{A(z) — 2},

£
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¥ being arbitrary. By Theorem 7, if p < 1 the right-hand side has a singularity
at some point z = £, 0 < ¢ < 1. Therefore the sequence {y,} cannot be bounded
and nonconstant, and so, by Theorem 4, the system is recurrent.

We now consider p = 1. Write ]

AG) —z = (1 —2) {1 - 1‘—4(”)}

1\—z

Following Kendall ([4], p. 159), we have

l_l(z) 3 zam

1-— n=0 =1

Therefore for | 2] < 1,
I 1 — A()
1—2

and so | A(z) — z| # 0. It follows that the power-series expansion,
-1 0
1 -2 {A(z) - z} = b"
0

is valid for | z | < 1. It will further be observed that the coefficients b, are non-
negative, and so, by Abel’s theorem,

z::b,, =p/(p—1).

A1 2 {Z z"} {Z b,.z"}
0 0
- aoyl Zo zﬂ+1 Eo bi-

Therefore yn41 = @oy: 2 ¢ b: . Therefore the sequence {y.} is bounded and non-
constant if and only if p > 1. Therefore, by Theorem 4, the system is recurrent
if and only if p = 1.

I am indebted to Mr. Kendall for showing me a copy of his paper [5] prior to
publication, and for valuable criticism in preparing the present paper.
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