Due: Thursday, April 10th, 2014

Problem to be turned in: 4

Modes of Convergence:

• Convergence in Probability: A sequence of random variables X_n converges to a random variable X in Probability if for any $\epsilon > 0$,

$$\lim_{n \to \infty} P(\mid X_n - X \mid > \epsilon) = 0.$$

This is denoted by $X_n \xrightarrow{p} X$.

• Almost everywhere convergence: A sequence of random variables X_n converges to a random variable X almost everywhere if,

$$P(\lim_{n \to \infty} X_n = X) = 1.$$

This is denoted by $X_n \xrightarrow{a.e.} X$.

• Convergence in Distribution: A sequence of random variables X_n (with distribution functions F_n) converges to a random variable X (with distribution function F) in distribution if

$$\lim_{n \to \infty} F_n(x) = F(x),$$

whenever x is a continuity point of F. This is denoted by $X_n \xrightarrow{d} X$.

- 1. Let $a_n = \sum_{k=0}^n \frac{n^k}{k!} e^{-n}$, $n \ge 1$. Using the Central Limit Theorem evaluate $\lim_{n\to\infty} a_n$.
- 2. Let $Y \stackrel{d}{=} N(0,1)$. Let $X_n = (-1)^n Y$. Discuss convergence a.e., in probability, and in distribution of X_n .
- 3. For $n \ge 1$, let $0 \le p_n \le 1$ and $\lim_{n \to \infty} p_n = 0$. Consider

$$X_n = \begin{cases} 1 & \text{w.p. } p_n \\ 0 & \text{w.p. } 1 - p_n \end{cases}$$

Let $Y_n = \prod_{k=1}^n X_k$. Workout explicit conditions on the sequence $\{p_n\}$ that ensure

- (a) $Y_n \xrightarrow{p} 0$, or
- (b) $Y_n \xrightarrow{p} 1$, or
- (c) for any $0 \leq \alpha \leq 1, Y_n \xrightarrow{d} Y$, where

$$Y = \begin{cases} 1 & \text{w.p. } \alpha \\ 0 & \text{w.p. } 1 - \alpha. \end{cases}$$

4. Let X_n have the *t*-distribution with *n* degrees of freedom. Show that $X_n \xrightarrow{d} X$ where X is standard Normal distribution.