Due: Thursday, April 10th, 2014

Problem to be turned in: 4

Modes of Convergence:

- Convergence in Probability: A sequence of random variables X_{n} converges to a random variable X in Probability if for any $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

This is denoted by $X_{n} \xrightarrow{p} X$.

- Almost everywhere convergence: A sequence of random variables X_{n} converges to a random variable X almost everywhere if,

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

This is denoted by $X_{n} \xrightarrow{\text { a.e. }} X$.

- Convergence in Distribution: A sequence of random variables X_{n} (with distribution functions F_{n}) converges to a random variable X (with distribution function F) in distribution if

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x),
$$

whenever x is a continuity point of F. This is denoted by $X_{n} \xrightarrow{d} X$.

1. Let $a_{n}=\sum_{k=0}^{n} \frac{n^{k}}{k!} e^{-n}, n \geq 1$. Using the Central Limit Theorem evaluate $\lim _{n \rightarrow \infty} a_{n}$.
2. Let $Y \stackrel{d}{=} N(0,1)$. Let $X_{n}=(-1)^{n} Y$. Discuss convergence a.e, in probability, and in distribution of X_{n}.
3. For $n \geq 1$, let $0 \leq p_{n} \leq 1$ and $\lim _{n \rightarrow \infty} p_{n}=0$. Consider

$$
X_{n}= \begin{cases}1 & \text { w.p. } p_{n} \\ 0 & \text { w.p. } 1-p_{n}\end{cases}
$$

Let $Y_{n}=\prod_{k=1}^{n} X_{k}$. Workout explicit conditions on the sequence $\left\{p_{n}\right\}$ that ensure
(a) $Y_{n} \xrightarrow{p} 0$, or
(b) $Y_{n} \xrightarrow{p} 1$, or
(c) for any $0 \leq \alpha \leq 1, Y_{n} \xrightarrow{d} Y$, where

$$
Y=\left\{\begin{array}{lll}
1 & \text { w.p. } & \alpha \\
0 & \text { w.p. } & 1-\alpha
\end{array}\right.
$$

4. Let X_{n} have the t-distribution with n degrees of freedom. Show that $X_{n} \xrightarrow{d} X$ where X is standard Normal distribution.
