1. Let $n \geq 1$ and $\left\{X_{i}\right\}_{i=1}^{n}$ be i.i.d. Normal random variables with mean μ and variance σ^{2}. Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $s_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)$.
(a) Construct an orthogonal matrix $T_{n \times n}$, (i.e. $T T^{t}=I=T^{t} T$) such that every element of first row of T is $\sqrt{\frac{1}{n}}$
(b) Let $X=\left[\begin{array}{l}X_{1} \\ X_{2} \\ \ldots \\ X_{n}\end{array}\right]$ and $Y=T X$. Find the distribution of X and Y.
(c) Show that $Y_{1}=\sqrt{n} \bar{X}_{n}$ and $\sum_{i=2}^{n} Y_{i}^{2}=(n-1) s_{n}^{2}$.
(d) Conclude that: \bar{X}_{n} and s_{n}^{2} are independent; and $\frac{n-1}{\sigma^{2}} s_{n}^{2}$ has χ_{n-1}^{2} distribution.
2. Let X be distrbuted as an Exponential (λ) random variable.
(a) Find the moment generating function of X (wherever it exists).
(b) Using the above find $E\left(Y^{m}\right)$ where $Y \stackrel{d}{=} \Gamma(n, \lambda)$ random variable, $m \geq 1$ and $n \geq 1$.
3. Suppose X and Y are two random variables having a joint density by

$$
f(x, y)= \begin{cases}\frac{2 e^{-\left(y+\frac{x}{y}\right)}}{y} & 0 \leq x<\infty, 0 \leq y<\infty \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find p.d.f of Y
(b) Find the conditional density of X given $Y=y$.
(c) Find the conditional expectation of X given $Y=y$.
(d) Find $\operatorname{Cov}(X, Y)$
4. Suppose X has a probability density function given by

$$
f_{X}(x)=\left\{\begin{array}{lc}
5 x^{-6} & 1 \leq x<\infty \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $k=\max \left\{n \in \mathbb{N}: E\left(X^{n}\right)<\infty\right\}$.

