Due: Thursday, February 20th, 2014

Problem to be turned in: 2, 3(c)

1. Suppose that X and Y are random variables with joint probability density

$$f(x,y) = \begin{cases} c(xy+2) & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

where c > 0 is a constant to ensure that f is a probability density function. Find the conditional distribution $Y \mid X = x$ for $0 \le x \le 1$.

- 2. Let R > 0. Suppose that (X, Y) is a point chosen uniformly in ball of radius R around the origin in \mathbb{R}^2 . Find the conditional distribution $Y \mid X = x$ for $0 \le x \le R$.
- 3. Let X_1 and X_2 be independent Normal random variables with mean 0 and variance 1.
 - (a) Suppose $Y_1 = X_1$ and $Y_2 = \rho X_1 + \sqrt{1 \rho^2} X_2$. Find the joint p.d.f. of (Y_1, Y_2) .
 - (b) Suppose $Y_1 = a + bX_1$ and $Y_2 = c + dX_2$, with c, d > 0. Find the joint p.d.f. of (Y_1, Y_2) .
 - (c) Suppose $0 \le R < \infty, -\pi < \Theta < \pi$ are random variables such that $X_1 = R\cos(\Theta)$ and $X_2 = R\sin(\Theta)$. Find the joint p.d.f. of (R, Θ) .
- 4. Suppose X_1 and X_2 are independent Exponential (λ) random variables. Find the conditional distribution of X_1 given $X_1 + X_2 = z$ for some z > 0.
- 5. Let X_1 and X_2 be random variables with joint probability density function f. Suppose f(x, y) > 0 if and only if x > 0 and y > 0. Let $Y_1 = \frac{X_2}{X_1}$ and $Y_2 = X_1 + X_2$.
 - (a) Find the joint p.d.f of Y_1, Y_2 .
 - (b) Further if X_1 and X_2 are independent $\Gamma(\alpha, \lambda)$ random variables show that Y_1 and Y_2 are independent. Are there any other examples of f where this happens?
- 6. Suppose X_1 and X_2 are independent $\Gamma(\alpha, \lambda)$ random variables. Find the distribution of $\frac{X_1}{X_1+X_2}$.