Due: Thursday, February 20th, 2014

> Problem to be turned in: 2, 3(c)

1. Suppose that X and Y are random variables with joint probability density

$$
f(x, y)= \begin{cases}c(x y+2) & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

where $c>0$ is a constant to ensure that f is a probability density function. Find the conditional distribution $Y \mid X=x$ for $0 \leq x \leq 1$.
2. Let $R>0$. Suppose that (X, Y) is a point chosen uniformly in ball of radius R around the origin in \mathbb{R}^{2}. Find the conditional distribution $Y \mid X=x$ for $0 \leq x \leq R$.
3. Let X_{1} and X_{2} be independent Normal random variables with mean 0 and variance 1.
(a) Suppose $Y_{1}=X_{1}$ and $Y_{2}=\rho X_{1}+\sqrt{1-\rho^{2}} X_{2}$. Find the joint p.d.f. of $\left(Y_{1}, Y_{2}\right)$.
(b) Suppose $Y_{1}=a+b X_{1}$ and $Y_{2}=c+d X_{2}$, with $c, d>0$. Find the joint p.d.f. of $\left(Y_{1}, Y_{2}\right)$.
(c) Suppose $0 \leq R<\infty,-\pi<\Theta<\pi$ are random variables such that $X_{1}=R \cos (\Theta)$ and $X_{2}=R \sin (\bar{\Theta})$. Find the joint p.d.f. of (R, Θ).
4. Suppose X_{1} and X_{2} are independent Exponential (λ) random variables. Find the conditional distribution of X_{1} given $X_{1}+X_{2}=z$ for some $z>0$.
5. Let X_{1} and X_{2} be random variables with joint probability density function f. Suppose $f(x, y)>0$ if and only if $x>0$ and $y>0$. Let $Y_{1}=\frac{X_{2}}{X_{1}}$ and $Y_{2}=X_{1}+X_{2}$.
(a) Find the joint p.d.f of Y_{1}, Y_{2}.
(b) Further if X_{1} and X_{2} are independent $\Gamma(\alpha, \lambda)$ random variables show that Y_{1} and Y_{2} are independent. Are there any other examples of f where this happens?
6. Suppose X_{1} and X_{2} are independent $\Gamma(\alpha, \lambda)$ random variables. Find the distribution of $\frac{X_{1}}{X_{1}+X_{2}}$.

