Due: Thursday, February 13th, 2014
Problem to be turned in: 1(d), 2(a), 3(a)

1. Let X, Y, and Z be absolutely continuous random variables, and let $a, b \in \mathbb{R}$. Then,
(a) $\operatorname{Cov}[X, Y]=\operatorname{Cov}[Y, X] ;$
(b) $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+2 \operatorname{Cov}[X, Y]$.
(c) $\operatorname{Cov}[X, a Y+b Z]=a \cdot \operatorname{Cov}[X, Y]+b \cdot \operatorname{Cov}[X, Z]$
(d) $\operatorname{Cov}[a X+b Y, Z]=a \cdot \operatorname{Cov}[X, Z]+b \cdot \operatorname{Cov}[Y, Z]$
(e) If X and Y are independent with a finite covariance, then $\operatorname{Cov}[X, Y]=0$.
(f) Let ρ be the correlation coefficient of X, Y. Show that $\rho^{2} \in\{+1,-1\}$ if and only if there are $a, b \in \mathbb{R}$ with $a \neq 0$ for which $P(Y=a X+b)=1$.
2. Using Moment generating functions :
(a) Let $Y \sim \operatorname{Exponential}(\lambda)$, calculate $E\left[Y^{3}\right]$ and $E\left[Y^{4}\right]$, the third and fourth moments of an exponential distriubtion.
(b) For $i=1,2$ let $X_{i} \stackrel{d}{=} \operatorname{Normal}\left(\mu_{i}, \sigma_{i}^{2}\right)$ with X_{1}, X_{2} independent. Let a_{1}, a_{2} be real numbers, not all zero, and let $Y=a_{1} X_{1}+a_{2} X_{2}$. Prove that Y is normally distributed and find its mean and variance in terms of the a 's, μ 's, and σ 's.
(c) Suppose X, Y are two random variables then distributions of all linear combinations of X, Y completely characterise the joint distribution of X and Y.
3. Let $X=\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]$ be a Bivariate Normal random variable with mean vector μ and non-singular covariance matrix Λ.
(a) Suppose $A_{2 \times 2}$ and $b_{2 \times 1}$ are real matrices. Let $Y=A X+b$. Let its mean vector be η and covariance matrix Σ. Show that $\eta=A \mu+b, \Sigma=A \Lambda A^{T}$
(b) Show that X_{1} and X_{2} are independent if and only if $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.
(c) If X_{1} and X_{2} are independent then find the distribution of $W=\left[\begin{array}{l}X_{1}+X_{2} \\ X_{1}-X_{2}\end{array}\right]$
(d) Let X_{1} and X_{2} have standard Normal distribution and correlation ρ. Find the distribution of Z with $Z=\frac{1}{1-\rho^{2}}\left(X_{1}^{2}-2 \rho X_{1} X_{2}+X_{2}^{2}\right)$.
